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Machine-learning model-driven prediction of the initial geometry in heavy-ion collision experiments
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We demonstrate high prediction accuracy of three important properties that determine the initial geometry
of the heavy-ion collision (HIC) experiments by using supervised machine learning (ML) methods. These
properties are the impact parameter, the eccentricity, and the participant eccentricity. Although ML techniques
have been used previously to determine the impact parameter of these collisions, we study multiple ML
algorithms, their error spectrum, and sampling methods using exhaustive parameter scans and ablation studies
to determine a combination of efficient algorithm and tuned training set that gives multifold improvement in
accuracy for all three different heavy-ion collision models. The three models chosen are a transport model, a
hydrodynamic model, and a hybrid model. The motivation of using three different heavy-ion collision models
was to show that even if the model is trained using a transport model, it gives accurate results for a hydrodynamic
model as well as a hybrid model. We show that the accuracy of the impact-parameter prediction depends on
the centrality of the collision. With the standard application of ML training methods, prediction accuracy is
considerably low for central collisions. Our method increases this accuracy by multiple folds. We also show
that the eccentricity prediction accuracy can be improved by inclusion of the impact parameter as a feature in
all these algorithms. We discuss how the errors can be minimized and the accuracy can be improved to a great
extent in all the ranges of impact-parameter and eccentricity predictions.
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I. INTRODUCTION

Ever since the first run of the heavy-ion collision experi-
ments, a lot of studies have been carried out describing and
analyzing the data that we get from these experiments [1–3].
The beam energy scan program of the BNL Relativistic Heavy
Ion Collider (RHIC) runs the collider experiments using Au-
Au nuclei at collision energies from 7.7 to 200 GeV [4–7].
One of their important aims is to search for the critical point
in the QCD phase diagram [8]. The matter created in these
experiments has a high baryon density. On the other hand, Pb-
Pb collisions are conducted at the LHC at collision energies
of 2.76 TeV [9], 5.02 TeV [10], the aim of these experiments
is to examine the high-temperature region of the QCD phase
diagram. The distribution of particles in the initial stage is
different for different collision systems and this affects the
final stage particle spectra and the anisotropic flows [11].
The primary data we get from these experiments are the
transverse momentum (pT ) spectra, the rapidity (y) spectra,
the pseudorapidity (η) spectra, the particle-antiparticle ratios,
and the multiplicity fluctuations. Some phenomena, e.g., the
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anisotropic flows, can be obtained directly from these data.
But some parameters are difficult to calculate directly from the
experimental data. These are the impact parameter, the initial
state geometry parameters, (e.g., eccentricities) event plane
angles, etc. The impact parameter is the distance between
the centers of the colliding nuclei on the transverse plane
of the collision. In experiments, the data are always studied
with respect to the centrality of the collision because we get
different spectra for different centrality collisions. The high-
centrality collisions are those where the impact parameter
is close to zero i.e., the head-on collisions. The peripheral
collisions refer to the higher values of the impact parameter.
The collision centrality plays an important role in determin-
ing the final particle spectra. The multiplicity distribution of
different species is observed to depend on the centrality of
the collision. In Refs. [6,12], the multiplicity fluctuations at
different centralities are studied at RHIC energies, and in
Refs. [9,10,13], the same has been studied at collision energies
2.76, 5.02, and 5.44 TeV, respectively. The centrality is not a
property that can be attained directly from the experiments,
but it can be calculated with the help of theoretical modeling
by using the Glauber model [14] or some other similar model.
The impact parameter as well as the initial geometry of the
collision is difficult to determine experimentally. This is true
especially for the more central collisions. That is why there are
various proposals to determine the impact parameter. Apart
from different simulations and algorithms, neural networks
have also been proposed to determine the impact parameter
from the experimental data [15].
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The determination of the impact parameter is related to the
charged multiplicity produced during the heavy-ion collision.
The charged particle multiplicity has a contribution from hard
and soft collision processes, which in turn depend on the num-
ber of participants and also on the number of binary collisions.
If x is the fraction of contribution from hard processes then
the charged particle multiplicity per unit pseudorapidity can
be expressed as

dNch

dη
= npp

[
(1 − x)

Npart

2
+ xNcoll

]
, (1)

where npp is the multiplicity per unit rapidity in pp collisions
and Ncoll is the number of binary NN collision. The number
Npart of participant nuclei can be expressed as a function of the
impact parameter [14,16]. If TA(s) is the thickness function
of nucleus A, i.e., the probability density function of finding
nucleons in A, then the number of participants in A at the
transverse position s can be found by multiplying with the
probability of binary nuclei-nuclei collisions with the nucle-
ons of the nucleus B at the same position (b − s), where b is
the impact parameter. So the total number of participants can
be expressed as

Npart (b) =
∫

TA(s)
{
1 − exp

[−σ NN
inel TB(b − s)

]}
ds

+
∫

TB(b − s)
{
1 − exp

[−σ NN
inel TA(b)

]}
ds. (2)

Here the total number of participating nuclei is found out by
summing over the contribution from nucleus A and nucleus B.
Using Eqs. (1) and (2), the impact parameter, hence centrality,
can be estimated by fitting the multiplicity spectra. In this
method, the multiplicity fitting must be done for every event
to obtain its centrality. An easier way of getting the central-
ity is to use machine-learning models. Machine learning has
been invoked to determine the impact parameter from the
experimental data in several papers [17–19]. Using machine
learning, we can automate the whole process and the impact
parameter can be calculated in an efficient way. The advan-
tage of using machine learning (ML) is that it requires less
computational power and computational time, which makes
the process more agile. Most of the work in this field is
related to the deep neural network algorithms. The convoluted
neural network has also been used to make predictions about
the impact parameter [20]. The first paper to demonstrate the
importance of neural network analysis for improving the accu-
racy of the determination of the impact parameter is Ref. [21].
Using an artificial neural networks (ANNs) or convolutional
neural networks (CNNs) they have effectively determined the
impact parameter, but these networks require the tuning of
hundreds of parameters. This makes the process computation-
ally expensive. On the other hand, different non-neuronal ML
models like state vector machine (SVM), random forest, kNN,
etc. require fewer parameters to produce results with an accu-
racy similar to that of the ANN or CNN models. Thereafter,
many papers explored various machine-learning algorithms to
obtain more accurate results for the impact parameter.

In this study, we analyze various machine-learning algo-
rithms and provide a rigorous comparison of the accuracy

and efficiency of these algorithms by using well-defined tech-
niques of machine learning to show a critical gap in their
prediction accuracy for central collisions. We have mainly
focused on three properties, impact parameter, eccentricity,
and participant eccentricity. We analyze the errors in the pre-
dictions and discuss the causes that lead to these errors. We
find that the accuracy is less for the low impact parameters.
This is an already-known problem in the determination of the
impact parameter. We provide a custom sampling method that
shows significant improvement in accuracy over commonly
used sampling methods in the ML community. We have also
used a particular HIC model for training, while the data from
two different HIC models have been used to make the predic-
tions. This indicates that, for a well-defined training data set,
the predictions for the impact parameter using the ML model
are model independent.

In this study, the transverse momentum (pT ) spectra are
taken as features and the impact parameter, eccentricity, and
participant eccentricity are taken as the target variable which
the model must predict. We have used a multiphase transport
(AMPT) model to generate the transverse momentum spectra
of Au-Au collision events at 200 GeV collision energy [22].
The charged particle multiplicity has been studied previously
using the AMPT model [23]. As the target variables are known
for fitting, we use supervised machine-learning algorithms.
Also, the target is a continuous variable so it can have any
real value, hence we use regression algorithms.

The focus of our study is predicting the impact parameter
and the eccentricity. Eccentricity is one of the parameters
which gives us the initial geometrical shape of the collision
region. This also affects the elliptic flow of produced parti-
cles, which is one of the important observables used to study
collective behavior in heavy-ion collisions. In Ref. [24], the
effects of eccentricity fluctuation on the elliptic flow is studied
at

√
s = 200 GeV for Au-Au and Cu-Cu collisions. In a recent

study [25], the flow-harmonics are studied as a function of
different components of initial anisotropy using the AMPT

model. In our study, the learnings and experiences gathered
by the ML models from the impact-parameter prediction are
passed on to predict the eccentricity of the initial stage of
the heavy-ion collision system. We have also looked at how
the inclusion of the impact parameter as a feature affects the
prediction accuracy. We have made predictions of the initial-
state anisotropy, using the impact parameter. The initial-state
anisotropy is given by [16],

εn(b) = 〈rn cos (nφ − nψ )〉
rn

, (3)

where r = (x2 + y2)1/2, ψ = tan−1(y/x), n = 2 gives the
eccentricity, and n = 3 gives the triangularity. The above ec-
centricities are with respect to the reaction plane. We have
also trained the model to predict participant plane eccentricity,
which is given by [24]

εpart =
√

σ 2
y − σ 2

x + 4σ 2
xy

σ 2
y + σ 2

x

, (4)
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where the σ are the variances of the positions of the particles,
σ 2

x = 〈x2〉 − 〈x〉2, σ 2
y = 〈y2〉 − 〈y〉2, and σxy = 〈xy〉 − 〈x〉〈y〉.

Here 〈 . . .〉 is the average over the transverse plane.
The AMPT is a transport model which has been used

extensively to model the different stages of the heavy-ion
collision from the initial collision dynamics to the final stage
hadron dynamics. However, like all models, it has certain
drawbacks. There are alternate simulations based on hydro-
dynamics which also give reliable outputs which match well
with the data. In this study, we have taken the results from
other models, too. This is to test if the predictions of the
ML algorithms depend crucially upon the nature of the model
used. Our results show that, as long as the models accurately
reflect the experimental data, the ML algorithms do not distin-
guish between the different models. A ML algorithm trained
on a specific model gives pretty accurate results when tested
with the data generated by a different model.

The two other heavy-ion collision models used in this
study are VISH2 + 1 [viscous Israel Stewart hydrodynamics in
(2 + 1) dimensions] [26] and a hybrid model made of a hydro
evolution model and a hadronic cascade model [27]. These
two models are different from the AMPT model which is used
to train the ML algorithms. So the ML models train from the
pT spectra and the impact-parameter data of AMPT events and
predicts impact parameters by using test data of pT spectra
from the VISH2 + 1 and the hybrid models. We choose the
initial conditions of different models such that they generate
the pT spectra close to the one that is obtained in the actual ex-
periments. In this way, we are examining the efficiency of the
ML algorithms in a model-independent manner. However, the
model-independency is limited only to those models which
generate the pT spectra close to the experimental pT spectrum.
The pT spectra of the hydro and the hybrid model are fit to the
experimental pT spectra to measure the effectiveness of ML
models to reproduce the experimental data.

In Sec. II, we give a brief description of the heavy-ion
collision models used in this study. In Sec. III, we talk about
the ML models used in this study. We also describe the param-
eters used to check the accuracy of different ML models. The
learning process of various algorithms as well as the tuning
of the hyperparameters are given in this section. We have also
used rebalancing techniques to improve the accuracy of the
results. These rebalancing techniques are discussed in this
section. Section IV discusses the results and the predictions
made by the ML models of the eccentricity and the partici-
pant eccentricity. It also discusses the ranges of eccentricity
where optimum accuracy has been observed. The efficiency
of predicting the impact parameter using unknown data of
different HIC models and experimental data is discussed in
this section. In the end, we show how the accuracy can be
improved by rebalancing the dataset. We then summarize the
paper in Sec. V.

II. EVENT GENERATION

A. The AMPT model

The AMPT model is a publicly available heavy-ion collision
model which generates heavy-ion collision events. It is often

used to understand the results obtained from experiments and
it has successfully given the results which match well with
the experimental observations [22]. There are two versions
of AMPT. In both, the initial condition is generated by the
HIJING model [28–30]. Here the initial configuration of nucle-
ons is determined by the Glauber model with a Woods-Saxon
nuclear distribution. Particle production from two colliding
nuclei is given in terms of two processes. In hard processes,
the momentum transfer is larger and they are described by
pQCD and they produce minijets. The soft processes are those
where the momentum transfer is lower and described by the
nonperturbative process by the formation of strings. Of the
two models, in the default version, the partons recombine
with their parent strings after the end of interaction in the
partonic state and forms hadrons using the Lund String frag-
mentation model [31]. In the string melting (SM) version of
AMPT, the strings are converted to their valence quarks and
antiquarks. The partonic stage interactions are described by
Zhang’s parton cascade (ZPC) where the interactions are de-
scribed by the Boltzmann equations [32]. The scattering cross
section of the parton interactions is calculated using pQCD.
The simplified relation between total parton elastic-scattering
cross-section and the medium induced screening mass is taken
as

σ ≈ 9πα2
s

2μ2
, (5)

where αs, the strong-coupling constant and μ, the screening
mass, taken as 0.33 and 3 fm−1, respectively, for a total cross
section of 3 mb. When the partons stop interacting, they are
hadronized by a quark coalescence model. Here the nearest
quark-antiquark pair is converted into a meson and the three
nearest quarks or antiquarks are converted into a baryon or
an antibaryon. The hadronic dynamics are described by a
relativistic transport (ART) model [33]. We have used both
the versions of the AMPT model. In all the collision setup, we
use Au-Au collision at 200 GeV collision energy. Different
centralities are considered for different purposes. The other
settings are the same as the parameters taken in Refs. [23,34].

B. The VISH2 + 1 model

VISH2 + 1 is a publicly available code where the evolution
of the system created in heavy-ion collisions is described
by relativistic causal viscous hydrodynamics [26,35,36]. The
code has been tested extensively and successfully reproduces
the results from experiments [37]. The initial distribution is
taken from the Glauber model in terms of energy-momentum
tensor T mn. Then it solves the local energy-momentum con-
servation equation dmT mn = 0, where

T mn = eumun − p	mn + πmn. (6)

Here 	mn = gmn − umun, um and un are the velocity compo-
nents, and p is the pressure. πmn is the viscous shear pressure
which follows the evolution equation,

Dπmn = 1

τπ

(2ησ mn − πmn) − (umπnk − unπmk )Duk (7)
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D = umdm and the symmetric and traceless shear tensor is
given by, σ mn = 1

2 (∇mun + ∇num) − 1
3	mndkuk . The pressure

p and the energy density e are related by the equation of state
(EoS), which is used to solve the hydrodynamic equations.
There are three different EoSs used in this study, EoS-L,
SM-EOS Q, and s95p-PCE. The EoS-L is based on lattice
QCD data where a smooth crossover transition connects the
QGP state to the chemically equilibrated hadron resonance
gas (HRG) state [37]. SM-EOS Q is the smoothed version of
the EOS Q where a first-order phase transition with a vacuum
energy (bag constant) connects the noninteracting QGP state
to the chemically equilibrated HRG state [38]. The s95p-PCE
equation of state is obtained from fits to lattice QCD data
for crossover transition at high temperatures and to a partial
chemical equilibrium system of the hadrons at low tempera-
tures [39].

In the Israel-Stewart [40,41] framework, the generalized
hydrodynamic equation of an energy-momentum tensor T mn,
together with viscous pressure contributions πmn is solved
with a collision timescale τπ (relaxation time). The longitudi-
nal boost-invariance is implemented and seven equations are
solved, three for the T ττ , T τx, and T τy and four for the
πmn. Here a flux-corrected transport (FCT) algorithm called
a sharp and smooth transport algorithm (SHASTA) [42] is
used to solve the hydrodynamic and kinetic equations. It has
two stages. In the transport stage, the multidimensional cal-
culations are simplified in terms of geometric interpretation,
which is followed by an antidiffusive or corrective stage. This
technique is also applied in codes like AZHYDRO [43]. The
final spectra are obtained on a freeze-out hypersurface where
the fluid stops interacting. The freeze-out is computed using
the Cooper-Frye procedure [44] at a decoupling temperature
Tdec. Here the ISPECTRA (iS) code is used, which is a fast
Cooper-Frye particle momentum distribution technique that
gives discrete momentum distribution of the desired hadron
species [45]. We get events of emitted hadrons similar to the
events generated in experiments which are then used for ML
model predictions.

C. Hybrid model

We have used the IEBE-VISHNU code package [27], which
is a hybrid model made by combining a (2 + 1)-dimensional
viscous hydrodynamic model and a hadronic cascade model.
Instead of using the whole package, we have used the mod-
ules separately for better handling of inputs and outputs. The
output of the iS particle sampler obtained at the end of hydro
evolution is used for hadronic rescatterings. Here, the UrQMD

after-burner package is used to serve this purpose. After the
particlization, the hadrons are produced on the hypersurface
with individual production time and location. The position
and momenta along with the ids are then written in a standard
OSCAR1997A format which is suitable for hadronic rescatter-
ing [46]. This is done using the OSCAR to UrQMD converter
routine. This also propagates all the hadrons backward in time
so that all of them have a fixed initial time and the Boltzmann
collision integral can be performed in the UrQMD model.

Ultrarelativistic quantum molecular dynamics (UrQMD) is a
transport model where the dynamics of the hadrons are mod-

eled [47,48]. UrQMD can generate a whole collision system
starting from the nuclear collision to the hadronic spectra but
here we have only used it to get the hadronic evolution. The
interaction among the hadrons is evaluated using the Boltz-
mann equation for the distribution of all hadrons. The system
evolves through binary collisions or by 2-N-body decays.
Fifty-three baryon species and 24 different meson species,
along with their resonances, antiparticle states, and isospin-
projected states are considered in the UrQMD interactions. The
interaction among the hadrons and their resonances in this
model are described in Ref. [48].

III. MACHINE LEARNING METHODS

A. Machine-learning algorithms and tuning of hyperparameters

As mentioned in the introduction, there are various ML
algorithms that we have tested for this study e.g., k-nearest-
neighbors, gradient boosting regression, decision trees, etc.
Details of these ML algorithms are available in Ref. [49]. The
accuracy of these models has been tested using standard mea-
sures such as R-squared, the root mean square error (RMSE),
the mean squared error (MSE), and the mean absolute error
(MAE). After running various ML algorithms, we find that
although all the algorithms give very good predictions for the
impact parameter, only three of them perform well for the
eccentricity prediction. Hence, we concentrate only on these
three algorithms. They are the k-nearest-neighbors (kNN),
extra-trees regressor (ET), and the random forest regressor
(RF) model. In kNN model, the target is predicted by doing
a local interpolation of the target associated with the k nearest
neighbors of the training dataset [50]. ET and RF are types of
ensemble methods. In RF, the decision trees are made during
the training and a mean of the ensemble is calculated [51]. In
ET, randomized decision trees are considered that are made
of subsamples of the training dataset [52]. We have used a
10-fold cross-validation (CV) to obtain a robust estimate of
the parameters [53]. This also gives a bias-variance trade-off.

Since we have used these ML algorithms for studying the
data from three different HIC models, we have standardized
the data before processing them. In this study, we are us-
ing the pT spectra of charged particles as features in the
dataset. The pT spectra is obtained for the midrapidity region
with a rapidity window of −0.5 to 0.5. All the pT bins have
a different range of values. The difference is more significant
when we compare a lower-pT bin with a higher-pT bin. Thus,
it is important to make them standardized. This makes the
model compatible with a new dataset coming from a different
HIC model. Two types of scaling are used in this study, (i) the
standard scaler or Z-score normalization and (ii) the min-max
scaler [54]. To use both of these scaling techniques, we have
used python sklearn.preprocessing library [55]. In most of
the cases discussed in this study, we observe that the Z-score
method provides an accuracy greater than the min-max scaling
by 4% to 6%. So, in all the cases, we have used the Z-score
standardization.

After standardization, the pT spectra serve as the features
in the dataset and the target variables are the impact parameter,
the eccentricity, and the participant eccentricity. When the
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FIG. 1. The learning curve of the kNN (green dots), ET (orange
triangles), and RF (blue stars) models. Accuracy scores as a function
of the number of events are shown and attain saturation after 3000
events for the training set (sky line), and after 6000–8000 events for
the test sets. The shaded region is the standard deviation.

impact parameter is used as the target variable, only the pT

spectra is used as feature variables. For the other targets, the
predicted impact parameter is included in the dataset as a
feature variable as all the other targets have a dependency on
the impact parameter. In this way, all the dependent variables

can be measured just by giving the pT spectra as inputs. A
standard training and test set separation was done for model
evaluation.

It is important to have enough events to achieve the best
accuracy without consuming too many computing resources.
The learning curve of a machine-learning model tells us how
effectively a model is learning throughout its running time.
We present the learning experience as a function of events.
In Fig. 1, the learning curves of the kNN (green circles),
ET (orange triangles), and RF (blue stars) models are shown,
where the changes in the cross-validation (CV) accuracy are
represented with the number of event iterations. The training
score curve is shown only for the kNN model (sky color
circles) which shows the accuracy while fitting the training
data to the model. In the training case, the accuracy comes to
a saturation very early around 3000 events, while the cases of
test data accuracy shown by the other curves saturate around
6000 to 8000 events. All the learning in this study are per-
formed over 10 000 events. The shaded area represents the
standard deviations in the accuracy score.

In Fig. 2, the accuracy plots for impact-parameter predic-
tions using kNN [Fig. 2(a)], ET [Fig. 2(b)], RF [Fig. 2(c)], and
linear regression (LR) [Fig. 2(d)] models are shown. The ML
models are trained by using the charged particle pT spectra
data of the AMPT-SM model. The linear regression algorithm
finds a linear relationship between a dependent and one or

FIG. 2. Impact-parameter prediction using the (a) kNN, (b) ET, (c) RF, and (d) LR models with accuracy scores 97.11%, 97.03%, 97.05%,
and 96.53%, respectively, for events of Au + Au system at collision energy 200 GeV. These plots are obtained for a random train and test set
split of input events.
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FIG. 3. Change in accuracy as a function of hyperparameters.
(a) kNN model with the number of nearest neighbors hyperparam-
eter, (b) random forest with max depth hyperparameter.

more independent variables [56]. The prediction is performed
by using a test dataset containing pT spectra of more than
4000 events of minimum bias Au + Au collision at 200 GeV.
The red line drawn here is the optimum accuracy line and the
blue points are the predictions made by the model. The ac-
curacies achieved are 97.11%, 97.03%, 97.05%, and 96.53%
for the kNN, ET, RF, and LR models, respectively. All of
these accuracies are observed for a random train-test dataset
split. The tenfold cross-validation scores of these models are
97.04%, 97%, 97.01%, and 96.56%, respectively. We get an
accuracy of more than 95% for the kNN, ET, and RF models
when the ML models are trained using the default AMPT model
data. In the case of impact-parameter predictions, most of
the machine-learning algorithms give a fair level of accuracy
without tuning any of the hyperparameters except in certain
critical impact-parameter regimes.

It is known that the choice of parameters can affect the
accuracy of a model. Hyperparameter tuning was done to fix
the parameters with minimum error validation set. In Fig. 3(a),
the change in the accuracy of a kNN model is shown as a
function of the number of nearest neighbors hyperparameter.
For every configuration, the model is trained using 12 000
events of minimum bias Au + Au collision, and the impact
parameter is taken as the target variable. The highest accuracy

FIG. 4. Effect on the eccentricity prediction accuracy by the
inclusion of impact parameter as a feature for different centrality
(%), (a) 0%–10%, (b) 10%–40%, (c) 40%–80%, (d) minimum-bias
events. The orange bar represents accuracy with impact parameter as
a feature and blue bars represent accuracy without impact parameter
as a feature.

is attained by the model when the number of nearest neighbors
is four or five. This is shown by the green curve which gives
the tenfold cross-validation score and the shaded region is the
standard deviation. The training score shown by the blue line
has a score of 1.00 when the number of nearest neighbors
is 1. This is a case of overfitting. For the random forest
(RF) model [see Fig. 3(b)], the choice of hyperparameter is
the maximum number of levels of the tree. We find that the
accuracy saturates for the hyperparameter value of four or
five. Like the RF model, we get the maximum CV score of
the ET model when the max-depth hyperparameter is four or
five. Although the above-mentioned parameters are those that
most hamper the accuracy, we fix the other hyperparameters
by running the RandomSearchCV function of the sklearn li-
brary and checking the accuracy for a different combination
of hyperparameters.

As discussed earlier, in Fig. 4, we see how the inclusion
of the impact parameter as a feature affects the accuracy
of eccentricity prediction. As is seen in earlier studies, the
eccentricity depends on the centrality of the collision. Here
we found that, by the inclusion of the impact parameter as a
feature, the accuracy increased in all the centrality ranges.

The errors in ML can be reduced by determining the highly
correlated features in the data. The principal components anal-
ysis (PCA) is the most popular technique used for feature
reduction of a large dataset [57]. In this work, we tried the
“SelectFromFeature” function from the sklearn library and
the PCA method to reduce the colinearity and compared the
outcomes with the already-achieved accuracy using all the
features. We have only shown the result of the PCA method.
In Fig. 5(a), the accuracy score of a kNN model, and in
Fig. 5(b), the accuracy score of an ET model are shown as a
function of the number of principal components is used. Here
the accuracy is observed for the impact-parameter predictions
by using the pT distribution dataset of 12 000 minimum-bias
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FIG. 5. Accuracy of a (a) kNN model and (b) an ET model as a
function of the number of principal components used.

Au-Au collision events at 200 GeV collision energy. The
saturation in the accuracy score is achieved for the use of 7 or
more principal components in both cases. Also, using seven
components, a variance coverage of 95% can be achieved
in the case of impact-parameter predictions. So, it is safe to
use seven to eight principal components to get good accuracy
without losing any major information. We used seven to eight
components for the impact-parameter determination. We also
found that at least ten features or ten principal components
are needed to obtain an accurate result for the eccentricity
and the participant eccentricity. This is expected as the data
that we are using is the transverse momentum data. Since the
impact parameter is known to be correlated with the trans-
verse momentum data hence, we need a smaller number of
features to obtain a high accuracy of prediction [58] for the
impact parameter as compared with the eccentricity. In all the
eccentricity predictions we use the PCA function to transform
the features.

B. Custom resampling for unbalanced training set

The pT spectra we used as a feature are comprised of
imbalanced datasets. As we have considered the pT spectra of
minimum bias events, there are a smaller number of events for
lower impact-parameter values. Thus, the event distribution of
pT spectra is left-skewed. The imbalance in the data affects the
prediction accuracy of the impact parameter and eccentricity

in the lower-b region (b � 1 fm). As is well known in the
literature, the impact parameter is not directly accessible to the
experiments. Bass et al. [59] have pointed out that, although
most of the experimental observables depend on the impact
parameter, the different methods of impact-parameter estima-
tion are usually optimized for the larger impact-parameter
range. This means that the experimental results for head-
on collisions pertaining to the lower impact-parameter range
will have higher errors due to the inaccuracy of the impact-
parameter calculations. Currently, efforts are being made to
improve the prediction of the impact parameter in the lower
impact-parameter range. This is very important because there
are considerable experimental results from head-on collisions
which can be better analyzed with an improved prediction of
the impact parameter in the lower range. So our aim is to
improve the accuracy of the impact parameter in the lower
range by balancing the data set appropriately.

There are a few sampling techniques in machine learn-
ing for rebalancing datasets, e.g., SmoteR and ADASYN
[60,61]. These are python packages that increase (over-
sampling) or decrease (under-sampling) the minority and
majority data classes, respectively, by using the neighboring
data. We evaluated both techniques with all possible hyper-
parameter combinations. The results discussed in the next
section (Sec. IV C) indicate that we do not have a sufficient
increase in the accuracy of the predictions and there is a high
chance of central events being predicted as noncentral ones.

We then adopt a method of rebalancing the data set using
class weights, where different classes are the different impact-
parameter regimes. The various combinations of distribution
region and weights were evaluated through an exhaustive grid
search. Based on test set minimum error, we selected events
with impact parameter �1.0 fm to be in category 1 and the
rest in category 2. The weights assigned to the two classes
are in the ratio 4 : 1. This technique has helped us to reduce
the errors further and the results are discussed in detail in
Sec. IV C.

IV. RESULTS AND DISCUSSIONS

A. Impact parameter and eccentricity prediction

As discussed earlier, the eccentricity is one of the key
parameters in heavy-ion collisions. It gives information about
initial-state geometry and also affects the final-state particle
flows. But like the impact parameter, it is difficult to measure
eccentricity directly from experiment. Here in this study, the
models which are used to get the impact-parameter prediction
are also used in eccentricity prediction. In fact, ET, kNN, and
RF are the three best-performing algorithms in the case of
eccentricity prediction.

Figure 6 shows the prediction plot of eccentricity using the
kNN [Fig. 6(a)] and ET [Fig. 6(b)] models. The accuracies
obtained are 97.84% and 95.47%, respectively. This is ob-
served for a randomly split train-test dataset of minimum-bias
Au + Au events. The models are trained using 10 000 ran-
domly selected events and the testing is performed over 2000
events, which are shown in Fig. 6. The tenfold cross-validation
score is also closer to the accuracy obtained using the random
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FIG. 6. Eccentricity prediction using the (a) kNN and (b) ET
models with their accuracy score 97.84% and 95.47% for events of
the Au + Au system at a collision energy of 200 GeV. These plots
are obtained for a random train and test set split of input events.

train-test split dataset, 97.52% for the kNN model and 95.18%
for the ET model. The tenfold CV score of RF model is
91.95%. We get accuracy between 87% to 93% when the ML
models are trained by using the default AMPT model data.

Figure 7 shows the prediction plot of participant eccentric-
ity using the kNN [Fig. 7(a)] and ET [Fig. 7(b)] models. The
accuracies obtained are 98.16% and 96.21%, respectively. In
this case, the tenfold cross-validation scores are 97.58% and
95.25% for the kNN and ET models, respectively, and 93.78%
for the RF model. In Table I, a comparison of accuracy for
ε3(triangularity) is shown. We have used Eq. (3) to obtain
ε3. Here also the kNN, ET, and RF models perform better
than the other ML models. All of the three have an accuracy
of over 90%. The light gradient boosting machine (LGBM)
model also has an accuracy of over 88% after a tenfold cross
validation. This is a tree-based machine-learning model where
the tree grows vertically (leaf-wise) [62].

In the eccentricity prediction figures (Fig. 7), a small range
of eccentricity (0.22–0.32) is taken for the model fitting and
predictions. It is specifically the range where the maximum

FIG. 7. Participant eccentricity prediction using the (a) kNN and
(b) ET models with their accuracy score 98.16% and 96.21% for
events of the Au + Au system at a collision energy of 200 GeV.
These plots are obtained for a random train and test set split of input
events.

prediction accuracy is obtained for all the models. One of
the reasons behind this is that the distribution of eccentricity
over the events is not isotropic. In Fig. 8(a), the distribu-
tion of participant eccentricity is shown. Here the vertical
axis represents the normalized number of events, and the

TABLE I. Tenfold cross-validation accuracy of ML models for
ε3 predictions of minimum-bias Au-Au events at

√
s = 200 GeV.

Model R2 MAE RMSE

k-nearest-neighbor regressor 0.9762 0.001 0.0013
Extra trees regressor 0.9574 0.0013 0.0017
Random forest regressor 0.9216 0.0017 0.0023
Light gradient boosting machine 0.8807 0.0022 0.0029
Decision tree regressor 0.7581 0.0024 0.0041
Gradient boosting regressor 0.6309 0.004 0.005
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FIG. 8. (a) Histogram plot of participant eccentricity distribution
and (b) prediction plot of εpart for higher εpart range using the kNN
model of minimum-bias Au-Au collision events at

√
s = 200 GeV

given by the AMPT model.

horizontal axis gives the eccentricity range. The peak in the
distribution is observed for eccentricities between 0.15 and
0.25. The distribution is thus skewed, which means that we
have an imbalanced dataset. So, the eccentricity of maximum
events that are occurring fall in a particular range. Hence the
model fits well in this range of eccentricity because of a larger
number of fitting points. From the graph, we see that the range
of eccentricity can be increased further from 0.1 to 0.5. In
Fig. 8(b), a prediction plot of participant eccentricity using
the kNN model is given for a larger range. Here the events
are considered which have eccentricities in the range from
0.1 to 0.5. So, the range has now become three times wider
than the previous cases. We observe that the points are wider
from the center and away from the 45◦ red line compared with
the points in Fig. 7(a). We also see some points which are
away and isolated from the bulk distribution. The accuracy is
lowered to 78.98% from its previous value of 98.16%. The
tenfold cross-validation score is 76% in this case, which is a
fair amount of accuracy although it is much lower compared

FIG. 9. Error in the prediction of impact parameter as a func-
tion of impact parameter and eccentricity distribution. This is for
200 GeV Au-Au collisions and the prediction is obtained by using
a kNN model.

with the maximum accuracy. This means that the range of
accuracy can be fixed according to the requirement of the
problem. To accommodate a wider eccentricity range, we have
to compensate with accuracy. We have also applied different
ML algorithms to obtain the accuracy at different collision
energies from 20 to 200 GeV for the impact parameter, eccen-
tricity, and the participant eccentricity predictions. For lower
collision energies, the number of events required to train a ML
model is higher compared with the number of events required
for higher collision energies. This is because high multiplicity
events are generated at higher collision energies. Thus, the
event-by-event averages become stable.

In Fig. 9, we plot the error in the impact-parameter predic-
tion as a function of the impact parameter and the eccentricity
distribution. The error here is the relative error (RE) which
is given by RE = |(bpred − borg)/borg|, where bpred and borg

are the predicted and original value of impact parameter,
respectively. We observe that, for all eccentricity and impact-
parameter ranges, the error is low except for the region where
the impact parameter is less than 2 fm. In the majority of the
distribution, the difference in the prediction and the original
impact parameter is less than 0.5 (shown by the red points)
and in some cases, it is less than 1. But for the lower range of
impact parameters (b < 2 fm) and eccentricities, we find the
difference becomes significantly larger. This is also because
of imbalance in the data as discussed. There are comparably
large errors for MC-Glauber model predictions of low impact
parameters. Large discrepancies are also obtained for events
of UrQMD and AMPT with higher charge particle when fit with
MC-Glauber model data which are shown in Ref. [63]. In
Ref. [64], large errors are observed for the fitting of Glauber
model data to the ALICE data. Our results are similar to the re-
cent results obtained from ML using other models like UrQMD,
where it was shown that the impact parameters are determined
efficiently in all the regions except the very central and the
very peripheral regions [65]. This is adequately reflected in
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Fig. 9, where a large amount of error is found in the very
central region.

B. Results from the different heavy-ion collision models

To check the model dependency, we have used the data
from other HIC models and obtained the prediction of the
impact parameter. The training of a ML model has been done
using the AMPT model data, but the predictions are made
for other heavy-ion collision models. The other HIC models
used in this study are the VISH2 + 1 model [26] which is a
hydrodynamic evolution code and a hybrid model made of the
VISH2 + 1 and the UrQMD models [27]. In the hybrid model,
the UrQMD code is used for later-stage hadronic rescatterings.
The reason for using multiple models is because we want the
test set and the training set to come from different models
giving the same pT spectra. This would mean that as long
as the pT spectra are the same, the ML algorithms will not
know which model simulated the test data. As done in the
previous cases, here also we have used the transverse momen-
tum spectra of the AMPT model as the features and impact
parameters of the corresponding AMPT events as targets for
the ML model training. The AMPT events considered here are
the minimum-bias Au-Au events of 200 GeV collision energy.
The pT spectra of VISH2 + 1 and hybrid model are obtained
at the same collision energy and at specific centralities with
impact parameters ranging from 0.1 to 14 fm. The parameter
settings of the VISH2 + 1 model in this study is similar to the
parameters considered in Ref. [37], with the Glauber initial
condition, shear viscosity to entropy density ratio η/s = 0.16,
and decoupling temperature Tdec = 160 MeV. The box plot is
obtained for the s95p-PCE equation of state. For the hybrid
model, we set the η/s to 0.08, the equation of state used is
s95p-PCE, and Tdec = 165 MeV. We got 5000 events each
from both of these models at all the impact-parameter ranges
separately and fit the average pT spectra to the experimen-
tally obtained pT spectra [66,67]. We considered the 0.15 to
1.4 GeV/c pT range to fit with the experimental spectra and
also for ML model training. In this range, VISH2 + 1 data
fit well with the experimental data. By doing this we are
ensuring that the data are similar to the experiments. In an
approximate manner, we are also examining the performance
of ML models in case of the use of experimental data as test
data for prediction. As we do not have event-by-event experi-
mental data at specific centralities, we have used different HIC
models to generate the pT spectra. In this way, we are able to
obtain the error distribution of the predictions given by the ML
model for a large number of events at specific centralities.

All the ML models considered in this study, e.g., kNN, RF,
ET, and LR, perform reasonably well for impact-parameter
prediction for unknown HIC model test data. In Figs. 10(a)
and 10(b), we show the error plots of impact parameter pre-
dictions by the kNN model for VISH2 + 1 and hybrid UrQMD

models, respectively. These are relative errors, and the box
represents the distribution of errors. The middle line inside
the box represents the median error, which is in the middle
of the box. The top and bottom lines represent the 25th and
75th percentile of the error distribution. The green point is
the mean error. In all the boxes, i.e., at all the centralities,

FIG. 10. Error plot of impact parameter predictions by kNN
model of different centrality events of (a) VISH2 + 1 and (b) UrQMD

simulations. The three lines in panel (a) show the mean errors in
impact-parameter prediction for different EoS.

the errors are in a normal distribution. This shows a good
prediction by the ML model. The end circles are the outliers
which are less in number. In both the figures, we find that
the error goes down for the higher-impact-parameter events.
Above the impact parameter of 2 fm, the prediction errors are
very close to zero. Above b = 10 fm, the errors stay low, con-
tinuing the previous trend. The three lines in Fig. 10(a) show
the mean errors in impact-parameter prediction for different
equations of state (EoS). The green (dashed), blue (solid),
and yellow (dotted) lines represent the mean errors for s95p-
PCE, EOS-L, and SM-EOS Q equations of state, respectively.
For all the EoS, the trend of error distribution is similar. In
Fig. 10(a), we see that, for 0.1 and 0.5 fm impact-parameter
events, the relative prediction errors are more than three times
and in Fig. 10(b), it is more than five times compared with the
real impact parameters. We have considered Au-Au collision
events where the most-central collisions of 0%–5% central-
ity are comprised of events of impact parameter range 0 to
3.31 fm [16]. As has been discussed, in the case of exper-
iments, the centrality is found by using the Glauber model.
Thus, it is difficult to assign a specific impact parameter,
especially in the case of the most-central events. We have seen
the same nature in error prediction in Fig. 9 while working
with only the AMPT events. In that case, training of the ML
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FIG. 11. Error distribution of ET model of impact-parameter
predictions of Au-Au collisions at

√
s = 200 GeV. The training set is

rebalanced using (a) the SmoteR method, and (b) a custom method
of giving weights to the input data.

model and the testing are performed with the AMPT events.
This is due to the imbalance in the dataset that we are using
for the ML model training. Although we get a similar nature of
error distribution in all the cases, we used the Glauber initial
conditions for the hydro model input. The initial condition
from the color glass condensate model can give different pT

spectra. To check whether the ML models are effective in

this scenario, the parameters of the hydro model should be
adjusted such that the pT spectra obtained match well with
the experimental pT spectra.

C. Results from rebalancing the data set

A large error [Figs. 9 and 10] is observed in the prediction
in the lower impact-parameter range due to the imbalance
in the impact-parameter distribution in the training set. We
overcome this through a custom sample weighing method, as
mentioned in Sec. III B. As mentioned previously in Sec. III B,
initially, we used standard packages to rebalance the data.
The results are shown in Fig. 11(a) for one of the methods.
The others give similar results. Although the error comes
down in the lower impact-parameter region compared with the
errors obtained in Fig. 9, still we get enough errors that would
give a wrong estimate for the low-impact-parameter events.
Finally, we give the results of our custom rebalancing method
which has been described previously in detail in Sec. III B in
Fig. 11(b). With our custom method we were able to minimize
the error to less than 1, as shown in Fig. 11(b). This error is
acceptable in this impact-parameter range as the prediction
made in this range will always fall in the most-central collision
category (0%–5%) for the Au-Au collisions.

It is also interesting to see how the AMPT trained mod-
els predict eccentricities when they are introduced to other
HIC model data. In Fig. 12(a), we show the distribution
of eccentricity with the centrality of 200 GeV AMPT colli-
sion events. However, the color plot suggests that there is
a linear relationship between the average eccentricity and
impact parameter of collision events. We see that the range
of eccentricity is lower for lower-impact-parameter values.
As we go for higher-impact-parameter events, the range of
eccentricity becomes larger. A similar observation has been
shown previously in Ref. [68]. In Fig. 12(b), we show the
distribution of eccentricity predictions of VISH2 + 1 events
for two centrality range. Here also the ML model is trained
using minimum-bias AMPT events. The orange dots are the
prediction events of 40%–80% centrality and the blue dots
are the prediction events of 0%–10% centrality. In the case
of 0%–10% centrality range, we get eccentricity distribution
in 0 − 0.15 range, which is also in the range of original

FIG. 12. (a) Distribution of eccentricity with impact parameter of minimum-bias Au-Au collision events at
√

s = 200 GeV. (b) Distribution
of eccentricity predictions by kNN model of 0%–10% and 40%–80% centrality events of Au-Au collisions at

√
s = 200 GeV from the

VISH2 + 1 model.
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FIG. 13. Participant eccentricity predictions of Au-Au collision
events at

√
s = 200 GeV after rebalancing the data using the custom

method.

distribution shown in Fig. 12(a). We get a larger range in
eccentricity values in the higher-impact-parameter range, the
prediction also gives us the same, as represented by the orange
dots. Although this shows the model independence character-
istics of the ML models, it is only examined for the Glauber
initial conditions of VISH2 + 1 model. We have not used the
color glass condensate initial conditions as it is known that it
gives a larger anisotropy but it would be interesting to see how
the model would perform in that case. We plan to look at these
in a later work.

We have shown an imbalance in the eccentricity distribu-
tion in Fig. 8(a). Due to this imbalance in the distribution, we
get an accuracy of more than 95% in eccentricity prediction
only when we consider a small range. For bigger range, the
CV accuracy dropped down to 76%. A good amount of accu-
racy can also be achieved for a higher range of eccentricity
distribution if the data are rebalanced in a suitable format.
We have tried a similar rebalancing technique as is done for
the impact-parameter prediction. We took the same number
of events from each of the distribution bins and trained the
model. The prediction plot is shown in Fig. 13. We observe
that the event points are much closer to the optimum accuracy
line (red line) compared with Fig. 8(b), which also has the
same range of eccentricity. The accuracy obtained in this case
is 89.49% with a cross-validation score of 91%. So, using
these data-rebalancing techniques, one can improve the per-
formance of these ML models for the prediction of the impact
parameter as well as the eccentricities.

V. CONCLUSIONS

We have trained different machine-learning models to pre-
dict various initial stage parameters of a heavy-ion collision
system using the AMPT model. We have used the pT spectra
for training and testing of the ML models. We have chosen
these spectra because they are one of the direct observables
in heavy-ion collision experiments. We have observed their
learning processes and made changes to the hyperparameters

to get an optimum accuracy in the predictions. Out of the
various models tested, we have chosen four models, kNN, RF,
ET, and LR, for the prediction of the impact parameter. All the
models performed well in the impact-parameter prediction.
Most of the algorithms have shown an accuracy of more than
90% in the prediction of the impact parameter. In the case
of the eccentricity, and the participant eccentricity prediction,
three models, i.e., the kNN, ET, and RF, have performed
exceptionally well and have given an accuracy of more than
90% after a tenfold cross-validation. These three models along
with the decision tree and the light gradient boosting machine
have a tenfold cross-validation score of more than 75% in
almost all cases. There is a range of eccentricity (0.2–0.32)
where the optimum accuracy is obtained for the eccentric-
ity predictions. A greater range of eccentricity (0.1–0.5) has
also been taken into consideration. We find that the choice
of the range in eccentricity affects the prediction accuracy
of the eccentricity due to the imbalance in the training data
distribution.

We have also performed an analysis of how the model
would possibly perform in predicting the centrality class us-
ing experimental data as test data. We have considered two
heavy-ion collision models, a viscous hydrodynamic model
(VISH2 + 1) and a hybrid model (HYDRO + UrQMD), which
are different from the AMPT model that is used for training
the machine-learning models. The ML model predictions of
impact parameters are obtained for the events of the VISH2 +
1 model and the hybrid model. The hydro and hybrid model
events considered for testing are taken at specific impact-
parameter ranges from 0.5 fm to 14 fm. The ML models (kNN
results shown specifically) predicted the centrality classes of
these events meticulously well. Although in both cases, we
have obtained higher errors for the 0.5 fm events, the errors
are very small at other impact parameters. The reason behind
this is the lack of balance in the data set. When the data set
is normalized, it is found that the peak of the distribution is
not at the center. This indicates that the distribution of impact
parameter and eccentricity over events are not isotropic.

To minimize these errors, we have used various sampling
methods. Although there are several standard packages that
help to rebalance the data, we finally see that the accuracy is
improved in the lower-impact-parameter region if we assign
different weights to the data at different impact parameters.
For the extratrees model, rarer events are given four times
the weight-age as the weight-age given to impact parameters
with a large number of events. This has helped improving the
accuracy in the lower-impact-parameter range. Our rebalanc-
ing technique resulted in a cross-validation accuracy of more
than 90% for a higher range of eccentricity distribution. This
meant an overall improvement from 75% accuracy before the
rebalancing to an accuracy of 90% after the rebalancing. Our
study therefore shows a rebalanced data set will be useful in
making accurate prediction close to the head-on collisions.

Finally in conclusion, we have shown that it is possible to
use the pT spectra only to make accurate predictions of the
initial parameters such as the impact parameter, the eccentric-
ity, and the participant eccentricity using the ML algorithms.
Even though the algorithm is trained by a single model, it
can make accurate predictions from the data generated by
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other models as long as all the models are able to generate
the experimental data accurately. This means that any of the
models may be used to train the data set. We have also found
that the inaccuracies in the prediction are due to the imbalance
in the data set. Proper rebalancing techniques can be used to
rebalance the data set and this can be used to predict more
accurate results in the low-impact-parameter regime.
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