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Correlation between nuclear temperature and symmetry energy
in subsaturation nuclear matter density
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Herein, a study of the correlation between nuclear temperature and symmetry energy is presented for heavy ion
collisions at intermediate energies via the isospin-dependent quantum molecular-dynamics model. It is found that
different symmetry energy parameters change the density and kinetic energy distribution of the hot nuclei. More
importantly, nuclear temperatures that are based on kinetic energy properties can be used to study symmetry
energy information.
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I. INTRODUCTION

Nuclear symmetry energy, which has been a research focus
of nuclear physics for many years, governs important prop-
erties of nuclei and neutron stars [1]. Compared to regions
with saturation density, the large uncertainties in symmetry
energy exist in low- and high-density regions. To reduce
the uncertainties regarding symmetry energy in non-saturated
density regions, many investigations have been undertaken; at
subsaturation densities, these include isotopic scaling [2,3],
isospin fractionation [4,5], pre-equilibrium single and dou-
ble neutron-proton ratios [6–9], isobaric ratios of various
species [10], and giant dipole resonance (GDR) [11–14].
However, the high-density behavior of symmetry energy has
been studied using methods such as collective and elliptic
flows [15–17], neutron-proton ratios of free nucleons [18,19],
π−/π+ [20,21], and K+/K0 [22]. The divergence of symme-
try energy is larger in high-density regions than in low-density
regions. To constrain symmetry energy, π−/π+ has attracted
increasing attention. The ratio π−/π+ was first discussed in
terms of Coulomb effects by Bertsch et al. [23]. Accordingly,
Bonasera et al. further found that π−/π+ carried the informa-
tion of symmetry energy [24]. However, the ratio π−/π+ is
affected by the momentum-dependent interaction, threshold
effect, and pion potential [25], among other factors. Thus,
theoretical calculations resulted in different symmetry ener-
gies. Numerous efforts have been directed toward constraining
symmetry energy, but further studies are needed to improve
the accuracy of the constraint on symmetry energy at sub- and
suprasaturation densities.

Recent experimental and theoretical studies show that nu-
clear temperatures have isospin dependence [26–31]. Two
main factors contribute to this phenomenon: the Coulomb
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interaction and symmetry energy. Based on Landau theory,
McIntosh et al. revealed a linear dependence of temperature
on Coulomb energy and symmetry energy [27]. Therefore, if
one could select appropriate hot nuclei and reduce the effects
of the Coulomb interaction, one might use the nuclear tem-
perature isospin dependence to study symmetry energy. In this
work, we focus on symmetry energy at subsaturation densities
and examine the correlation between nuclear temperature and
symmetry energy in low-density regions.

II. MODEL AND METHODS

We attempted to study the correlation between nuclear
temperature and symmetry energy in a low-density region via
the isospin-dependent quantum molecular-dynamics (IQMD)
model [32–35] incorporating the statistical GEMINI decay
model [36]. To better connect the two models, we required a
dynamical model to describe the intermediate-mass-fragment
(IMF) emission. When the maximum fragment excitation en-
ergy is less than a certain value Estop, the dynamic simulation
stops and the statistical decay model will completes the de-
cay of pre-fragments. The value of Estop corresponds to the
threshold energy for IMF emission. In this work, Estop = 2
MeV/nucleon. Using this value, the experimental data for
IMF production can be described very well [34].

In the present model, the Hamiltonian H is expressed as

H = τ + UCoul +
∫

V (ρ)dr, (1)

where τ is the kinetic energy and UCoul the Coulomb potential
energy. V (ρ) is the nuclear potential energy density function,
which is written as
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The parameters used in this study are α = −168.40 MeV,
β = 115.90 MeV, γ = 1.50, gsur = 92.13 MeV fm2, giso

sur =
−6.97 MeV fm2, Csym = 38.13 MeV, and gτ = 0.40 MeV. The
corresponding compressibility is 271 MeV [37]. In this work,
we used three symmetry parameters, γi =0.5, 1.0, and 2.0,
which correspond to soft, linear, and hard symmetry energy,
respectively.

To study the energy distribution of the hot nuclei, we must
find them in the early stage of the reactions from the phase
space. Hot nuclei can be selected by the relative distance
(Rp) among the nucleons. If the relative distance between two
nucleons is smaller than Rp, then they can be recognized as
belonging to one cluster. In this work, Rp = 3 fm, which
is the typical value of nuclear force scope. To further select
the equilibrated projectile spectator, spherical spectators are
selected by the ratio of parallel to transverse quantities:

Qshape = 2
∑

i p2
zi∑

i

(
p2

xi + p2
yi

) , (3)

where pxi, pyi, and pzi are the momentum components of the
ith nucleon along the x, y, and z axes, respectively, in the
center-of-mass frame of the projectile spectator. If the Qshape

value of the spectator satisfies −0.3 � log10(Qshape) � 0.3,
then the spectator is a candidate that may be used to study ther-
modynamic properties. To use the spectator to study nuclear
temperature, the mass and neutron-proton ratio requirement
must also be met, because a large mass and neutron-proton
ratio range will affect the nuclear temperature isospin effects
measurement [38]. To reduce the effects of mass and the
neutron-proton ratio on the nuclear temperature measurement,
the mass and neutron-protons ratio range of hot nuclei should
be 185 � A � 195 and 1.3 � N/Z � 1.4, respectively.

When the hot nuclei are identified, their excitation energy
and temperature can be calculated. The excitation energy E∗
of the hot nuclei is calculated by

E∗ = τ + V − B, (4)

where τ and V are the kinetic and potential energy of the hot
nuclei, respectively, and B is the binding energy of the hot nu-
clei at the ground state. The temperatures of the spectator are
calculated by the momentum quadrupole temperature [39]:〈

σ 2
xy

〉 = 4m2T 2, (5)

where m is the probe particle mass, and 〈σ 2
xy〉 is the variance

of the momentum quadrupole.

III. RESULTS AND DISCUSSION

The early test for the symmetry energy by collective mo-
tion is the GDR [12]. Using the GDR, different symmetry
energies have been obtained [13,14,40]. Those calculations
clearly show that the GDR is sensitive to the symmetry energy,
but different symmetry energies and densities. Trippa et al.
found that the GDR is strongly correlated with the symmetry
energy around density 0.1 fm−3 [14]. In another reference,
the GDR is found to be sensitive to the symmetry energy at
density 0.02 fm−3 [13]. There is a debate about which density
region symmetry energy dominates the GDR. As a result,

FIG. 1. Time evolution of the largest cluster average density.

the strengths of symmetry energy are different for different
calculations. Using the GDR to study symmetry energy is also
affected by different Skyrme parametrizations and effective
mass splitting [14,40]. Therefore, studies of other observables
are needed. In the present work, we use the difference in
collective expansion which is caused by symmetry energy, to
study symmetry energy.

Figure 1 shows the time evolution of the largest-cluster
average density, in which the reaction system is 36Ar +
197Au at 80 MeV/nucleon with central collisions. It is worth
mentioning that the largest cluster is not the same as the
hot nuclei that are used to calculate energy distribution and
nuclear temperature. When the Qshape, mass, and N/Z values
meet the requirements of hot nuclei, the largest cluster is a
hot nucleus, and will be used in the next step of this study. It
can be seen from Fig. 1 that the largest-cluster average density
reaches the maximum value of approximate 20 fm/c. At this
moment, the reaction system reaches maximum compression.
After 20 fm/c, the largest-cluster average density decreases
with reaction time, which is caused by the expansion of the
reaction system. When the momentum distribution of the
largest cluster reaches isotropy (approximate 110 fm/c [29]),
the largest cluster is a candidate for a hot nucleus, which can
be used to study nuclear temperature. The average density of
the hot-nuclei candidates is in the subsaturation density region
and is approximately 0.7ρ0. If one studies the temperature
of hot nuclei, then the nuclear temperatures should carry the
information about nuclear symmetry energy at subsaturation
densities. It can be seen from Fig. 1 that the average density of
the largest cluster is below saturation density (0.7ρ0 < ρ <

0.9ρ0) in the formation process (50 fm/c < t). In this density
region, the pressure caused by symmetry energy is positive.
As such, the role of symmetry energy is to make it easier for
the system to expand.

The pressure of the symmetry energy can be written as

Psym = ρ2

(
∂esym

∂ρ

)
T,δ=constant

, (6)
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FIG. 2. Symmetry energy (a) and pressure of symmetry energy
(b) as function of density for isospin asymmetry of δ = 0.15 and γi

parameters of 0.5, 1.0, and 2.0, respectively.

where esym is Esymδ2. In the present work, δ = 0.15, which
corresponds to hot nuclei neutron-proton asymmetry. Since
the pressure increases with the slope of symmetry energy, it
can be seen from Fig. 2(b) that the hard (γi = 2.0) symme-
try energy leads to a larger pressure than the soft symmetry
energy (γi = 0.5) at densities above 0.7ρ0. The hot nuclei
with hard symmetry energy will be much easier to expand.
Therefore, the density of the hot nuclei that use hard symmetry
energy should be the lowest. To show the effects of symmetry
energy on the hot-nuclei properties, the density and energy
distribution are compared in Figs. 3 and 4 at 110 fm/c.

The density versus excitation energy of hot nuclei is shown
in Fig. 3. To obtain hot nuclei with different excitation en-
ergies, the reaction systems 36Ar + 197Au at 70, 75, and
80 MeV/nucleon with different symmetry energy parameters
are used. It can be seen from Fig. 3 that the average density
is the lowest for the hard symmetry energy, which supports
the above reasoning. It can also be seen from Fig. 3 that the
density decreases with increasing excitation energy. Using the
same symmetry energy, the hot nuclei will expand more easily
with higher excitation energy. A similar result was obtained by
Wuenschel et al. [39].

To further investigate the correlation between symmetry
energy and nuclear temperature, the energy distribution of hot
nuclei is shown in Fig. 4, in which the average total energy
Etot of the hot nuclei is divided into three parts, namely,
average potential energy Epot, collective kinetic energy Ecoll,
and intrinsic kinetic energy Eint,

Etot = Epot + Ecoll + Eint. (7)

FIG. 3. Hot-nuclei average density as a function of excitation
energy for different asymmetry parameters.

FIG. 4. Intrinsic kinetic energy (a), collective kinetic energy (b),
and potential energy (c) as a function of excitation energy.
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FIG. 5. Nuclear temperature of hot nuclei as function of excita-
tion energy for different asymmetry parameters.

Eint includes Fermi kinetic energy and thermal kinetic energy.
The difference between Fermi motion and thermal motion
comes from the change of hot-nuclei density, which carries
symmetry energy information.

It can be seen from Fig. 4 that the potential energy per
nucleon is the highest for hard symmetry energy. This is due
to the hot nuclei with hard symmetry energy having the lowest
densities (see Fig. 3). The difference in the potential en-
ergy among the different symmetry energies is approximately
2 MeV/nucleon. Compared to the potential energy, the differ-
ence in the collective kinetic energy is weak. Furthermore, the
difference in Ecoll is approximately 0.2–0.6 MeV/nucleon for
different excitation energies. For hot nuclei that have the same
excitation energy, the intrinsic kinetic energy will be higher
for hot nuclei with soft symmetry energy. It can be seen from
Fig. 4(a) that the difference in Eint among different symme-
try energies is approximately 2 MeV/nucleon; the Eint value
is higher for soft symmetry energy. It is worth mentioning

that Eint at 110 fm/c is not particle kinetic energy which is
measured by experiment, because the emitted particles must
overcome potential energy attraction. However, the emitted
particles still carry the information of Eint and reflect the
difference of symmetry energy. Therefore, the difference in
Eint among the different symmetry energies is expressed by
particle momentum. Based on the classical Maxwell distri-
bution, the nuclear temperature can be calculated by Eq. (5).
In Fig. 5, neutrons and protons were selected as the probe
particles, the yields of which are enough to satisfy statistical
requirements. It can be found from Fig. 5(a) that the softer the
symmetry parameter, the higher the hot-nuclei temperature.
Compared to neutrons, the difference in nuclear temperature
among different symmetry energies is weak when protons are
used [Fig. 5(b)]. This is mainly caused by the Coulomb effect.
After the neutrons and protons are created, the momentum of
protons is changed by Coulomb force. Since thermonuclear
information carried by protons is affected, the influence of the
Coulomb effect should be minimized when classical momen-
tum quadrupole temperatures are used to extract symmetry
energy information at the subsaturation density region.

IV. CONCLUSIONS

In this study, we presented the details of a study of the
relation between the momentum quadrupole temperature and
symmetry energy using the IQMD model. We found that us-
ing different symmetry energies, the energy distribution and
average density of hot nuclei were changed. Interestingly, a
strong correlation existed between the “classical” momentum
quadrupole temperature and symmetry energy in the subsatu-
ration density region.
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