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Pairing effects on vorticity of incident neutron currents at quasiparticle
resonance energies in n-A elastic scattering
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In this study, we analyzed how the incident neutron current is affected by the pairing effect in neutron-nucleus
scattering described within the framework of Hartree-Fock-Bogoliubov theory by performing numerical calcula-
tions in terms of current, vorticity, and circulation of the incident neutron current. We found that the pairing effect
on the incident neutron flux is completely different between particle-type and hole-type quasiparticle resonances.
In the case of h-type quasiparticle resonance, the pairing acts to prevent the neutron flux from entering the
nucleus, reducing circulation. In the case of p-type quasiparticle resonance, pairing acts to reduce circulation
at energies lower than the resonance energy, but, at energies higher than the resonance energy, the effect of
pairing on the neutron flux is reversed and, conversely, circulation is increased. These properties are consistent
with the approximate expression for the vorticity characteristics at p-type and h-type resonances, implying that
the vorticity appearing near p-type resonances due to the pair-correlation effect is inversely proportional to the
resonance width (proportional to the resonance lifetime). In contrast, at h-type resonances, the pair-correlation
effect has the effect of canceling out the vortex created by MF scattering and is independent of the resonance
width.
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I. INTRODUCTION

Quantum vortices have been introduced as quantized circu-
lation in superfluids and magnetic flux in superconductors to
understand the properties of superfluid helium, type II super-
conductors, Bose-Einstein condensation of ultracold atoms,
etc. [1–6], and have been successfully observed experimen-
tally [7]. Superfluid phase transition is thought to be caused
by the excitation of quantum vortices. Also in nuclear physics,
the coupling rotation of the deformed nucleus and the intrinsic
vorticity has been discussed as the superfluidity phenom-
ena [8–10]. The effect of superfluid vortices in the interior of
neutron stars has also been discussed [11–14].

Even if we consider it apart from the nature of superfluidity,
a vortex is a phenomenon that is easy to imagine intuitively
and is very characteristic in physics in general, as seen in
typhoons and tornadoes. In nuclear physics, vortex motion
has often been proposed as one of the characteristic collec-
tive modes of nuclei (toroidal mode) [15,16]. This is because
vortex motion has a unique topological structure and dynamic
stability (as seen in Kelvin’s circulation theorem, etc.), and
can appear anywhere in a system where there is a current.

In neutron-nucleus (n-A) scattering, resonances are ob-
served as sharp peaks with small widths at all cross
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sections given as a function of incident neutron energy. It
is known that the cross section satisfies the optical theorem
when there is no absorption effect on the potential in the
fundamental equations (such as the Schrödinger equation, the
Hartree-Fock-Bogoliubov equation, and so on), which means
that the neutron flux current satisfies the continuity equa-
tion, i.e., the current is conserved. According to Helmholtz’s
theorem, the current can be divided into the current with
vortices and the current without vortices. Regardless of the
conservation laws of the current, vortices can generally always
be present in the current, unless the wave function (as the
solution used to define the current) is constrained to be vortex
free, or the system requires a vortex-free condition [17].

Given the stability of vortices due to their special topolog-
ical properties and the metastable fundamental characteristic
of resonance, the existence and the contribution of vortices to
the resonant state can be expected. The vortices (vortexlike
current) that can appear in the neutron flux of n-A scattering
may be different from what has been defined as a quantum
vortex (whose circulation can be quantized), but may charac-
terize the resonances in the n-A scattering system.

Within the framework of Hartree-Fock-Bogoliubov (HFB)
theory, the resonances appearing in n-A scattering include
shape resonances formed by centrifugal barriers and quasi-
particle resonances formed by pair-correlation effects. There
are two types of quasiparticle resonances: particle (p) and
hole (h) type quasiparticle resonances [18–21]. In [20,21], we
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discussed the formation conditions of the resonances appear-
ing in n-A scattering and the effects of pair correlation in terms
of the S- and K-matrix poles.

In terms of resonance energy and width, our previous re-
sults in [20,21] are qualitatively consistent with the results
in [22] when the mean pair gap is given within the ordinary
range. In other words, the pair-correlation effect is negligi-
bly small for wide width resonances, which we classified as
“shape resonances” in [21]. And the continuum effect caused
by the pair-correlation effect on quasiparticle resonances due
to the p-h configuration mixing is negligibly small.

However, we have also identified other properties of quasi-
particle resonances caused by continuum effects (metastable
structure of the wave function of h-type resonances, cor-
relations between K- and S-matrix poles, and the Fano
effect [23]).

The metastable structure of the h-type resonance is cre-
ated by the coupling of the wave function of the bound hole
state with the continuum through p-h configuration mixing by
pair correlation. The correlation between the poles of the K
matrix and the poles of the S matrix is a correlation caused
by pair correlation, which gives rise to the disappearance of
the metastable structure of the resonant wave function and
the effect of vanishing K-matrix poles. The Fano effect is
a continuum effect that occurs under special conditions for
resonance states. When this effect occurs, the existence condi-
tion of resonance (simultaneous presence of K- and S-matrix
poles) does not disappear, but the metastable structure of the
wave function is lost, which appears as a characteristic shape
in the nucleon-nucleus scattering cross section.

These results suggest that the continuum effect in quasi-
particle resonance is more evident in the behavior of other
phenomena and physical quantities than in the resonance
energy or width. The neutron current in n-A scattering is a
complex combination of various partial wave components of
a continuum. Therefore, in order to investigate the unknown
characteristic of quasiparticle resonance, in this paper we fo-
cus on the neutron current and the vortex it creates.

In n-A scattering, it is realistic to use complex optical
potentials with absorption effects to quantitatively reproduce
experimental values. However, according to Feshbach’s the-
ory, the origin of the complex optical potential is channel
coupling, but at the same time channel coupling can be
also the origin of sharp resonances. In [24], the contin-
uum particle-vibration coupling (cPVC) method based on the
Skyrme effective two-body interaction was applied to n-A
scattering, and it was found that the complex optical poten-
tial calculated by the cPVC method not only quantitatively
reproduces the cross sections, but also reproduces some of
the sharp resonance structure. Those sharp resonances are
caused by the coupling of incident neutrons with the excited
states (RPA states) of the target nucleus, especially with giant
resonances. This is consistent with Feshbach’s theory, and the
same may occur when the target nucleus is an open shell
nucleus, i.e., sharp resonances may appear due to the cou-
pling between the incident neutrons as quasiparticle states
and the QRPA states of the target nucleus. In reality, the
quasiparticle resonance observed experimentally in n-A scat-
tering is likely to be caused by such a mechanism. However, a

continuum quasiparticle-vibration coupling (cQVC) method,
which takes pair correlation into account in the cPVC method,
is required to analyze such quasiparticle resonances, but no
one has achieved it yet. Furthermore, the characteristic of the
quasiparticle resonances that emerges within the framework
of HFB theory as the zeroth-order approximation has not
yet been fully clarified. Existing phenomenological complex
optical potentials are expected to have only a smoothing ef-
fect on the resonance, since they mainly take into account
only absorption effects. Therefore, existing phenomenological
complex optical potentials cannot be used solely for the pur-
pose of quantitatively reproducing cross sections in a study
in which the main objective is to explore the fundamental
qualitative characteristics of quasiparticle resonance.

For these reasons, in this paper we use the same model and
parameters as in our previous papers [20,21] to investigate the
qualitative characteristics of quasiparticle resonance in terms
of vortices in the neutron current in n-A scattering, paying
attention to the correspondence with our previous findings on
the characteristics of quasiparticle resonance.

II. THEORETICAL AND CALCULATION BACKGROUND

In this paper, the HFB equation is solved by assuming
spherical symmetry. We adopt the Woods-Saxon potential
for the mean-field potential U and pair potential � with
the same parameters as in Ref. [20] in order to clarify the
correspondence between the results in this paper and our pre-
vious results [20,21,23]. (To distinguish our model from the
self-consistent HFB equation based on the effective two-body
nuclear force, we will hereafter refer to our model as WS-HFB
in this paper.) The chemical potential λ = −1 MeV is adopted
in order to set the neutron-rich target of the system.

The neutron current j of the n-A scattering system is de-
fined as

j(r) = Im ψ
(+)∗
1 (r)∇ψ

(+)
1 (r) (1)

by using the upper component of the WS-HFB scattering
wave function ψ

(+)
1 (r). The vorticity ω for the neutron current

is defined by

ω(r) = ∇ × j(r) (2)

= 1

i
∇ψ

(+)∗
1 (r) × ∇ψ

(+)
1 (r) (3)

The vorticity is a pseudovector which describes the strength
and direction of the local spinning motion. The sign of the
vorticity is defined as positive for counterclockwise spinning
motion. The circulation �, which is defined by

� =
∫

S
dS · ω(r), (4)

is the total amount of vorticity in the area (S) enclosed by
the closed path. By Stokes’s theorem, the circulation can be
rewritten as

� =
∮

C
dl · j(r), (5)

where C represents the closed path to give the area S.
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In this paper, the direction of the incident neutron is taken
as the z axis in the system of n-A scattering [i.e., k of exp(ik ·
r) is chosen as k = kez]. Since the scattering behavior of
neutrons by spherical nuclei should be axially symmetric, we
show the numerical results of the current ( j) and vorticity (ω)
in the z-x plane, which is defined by setting ϕ = 0 in spherical
coordinates. To correctly represent a plane wave exp(ik · r) up
to 20 MeV in a region of 20 fm dynamic diameter, lmax = 20 is
adopted for the representation of the partial wave components.

In the z-x plane, the vorticity is represented as

ω(r) = 2ey Im[(ez · ∇ψ
(+)∗
1 (r))(ex · ∇ψ

(+)
1 (r))]ϕ=0, (6)

where ex, ey, and ez are the unit vectors for x, y, and z axes,
respectively. Using the partial components of the scattering
wave function, ez · ∇ψ

(+)
1 (r) and ex · ∇ψ

(+)
1 (r) are repre-

sented as

ez · ∇ψ
(+)
1 (r) = 1

r

∑
l j

(i)l 2 j + 1

2

√
4π

2l + 1

×
[

l + 1√
2l + 3

Yl+1,0( r̂ )

(
r − l + 1

r

)
+ l√

2l − 1
Yl−1,0( r̂ )

(
r + l

r

)]
ψ

(+)
1,l j (r), (7)

ex · ∇ψ
(+)
1 (r) = 1

r

∑
l j

(i)l 2 j + 1

2

√
4π

2l + 1

×
[
−

√
(l + 1)(l + 2)

2l + 3
Yl+1,1( r̂ )

(
r − l + 1

r

)
+

√
l (l − 1)

2l − 1
Yl−1,1( r̂ )

(
r + l

r

)]
ψ

(+)
1,l j (r).

(8)

Note that spin nonflip is supposed in these expressions. Al-
though a spin-flip current can also be defined, the spin-flip
component in n-A scattering is expected to be sensitive to
dynamical effects such as PVC effects and spin-dependent
terms in potentials and interactions, based on analyzing power
and other results [25–27]. Therefore, we do not discuss the
spin-flip current in this study, which uses a simple model.

We can obtain the Lippmann-Schwinger (LS) integral
equation for the WS-HFB scattering wave function(

ψ
(+)
1 (r)

ψ
(+)
2 (r)

)
=

(
ψ

(+)
0 (r)

0

)

+
∫

dr1

(
G(+)

0 (r, r1; k1(E )) 0

0 −G(+)
0 (r, r1; k2(E ))

)

×
(

0 �(r1)
�(r1) 0

)(
ψ

(+)
1 (r1)

ψ
(+)
2 (r1)

)
(9)

by applying the two-potential formula, where ψ
(+)
0 is the

scattering wave function by the mean field potential U and

the Green’s function which satisfies(
h̄2k2

2m
+ h̄2

2m
∇2 − U

)
G(+)

0 (r, r′; k) = δ(r − r′), (10)

k1(E ) and k2(E ) are defined by k1(E ) =
√

2m
h̄2 (λ + E ) and

k2(E ) =
√

2m
h̄2 (λ − E ) as is introduced in Ref. [20].

The LS equation Eq. (9) can be expressed in the form of
independent integral equations for the upper and lower com-
ponents, respectively, using the WS-HFB Green’s function G
and the Dyson equation [Eq. (A1)].

The upper component can be expressed in two ways as

ψ
(+)
1 (r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ψ

(+)
0 (r)

+∫∫
dr1dr2G (+)

11 (r, r1)	0(r1, r2)ψ (+)
0 (r2),

ψ
(+)
0 (r)

+∫∫
dr1dr2G(+)

0 (r, r1; k1)	(r1, r2)ψ (+)
0 (r2),

(11)

and the lower component is expressed in a form that is com-
puted using the upper component as

ψ
(+)
2 (r) = −

∫
dr1G(+)

0 (r, r1; k2)�(r1)ψ (+)
1 (r1), (12)

with 	0 and 	 which are defined by

	0(r, r′) = −�(r)G(+)
0 (r, r′; k2)�(r′), (13)

	(r, r′) = �(r)G (+)
22 (r, r′)�(r′), (14)

where G (+)
11 and G (+)

22 are the diagonal components of the
WS-HFB Green’s function which is expressed in 4 × 4 matrix
form. It should be noticed that Eq. (13) is the first term to
appear in the Dyson series expansion of Eq. (14) as 	 =
	0 + · · · .

Of course, it is obvious that 	0 and 	 would behave as the
nonlocal potential which originates from the pair correlation,
and it is important to analyze the role of its nonlocality, but
we will not discuss it yet in this paper.

In the HFB theory, it is known that quasiparticle states
exist symmetrically in the positive and negative regions of
quasiparticle energy. This is also true for the resonances (or
more precisely, the poles of the S matrix corresponding to
the resonances) [20]. There are two types of quasiparticle
resonances, particle-type (p-type) and hole-type (h-type), both
of which exist in both the positive and negative quasiparticle
energy regions.

By performing the similar approximate calculations to
derive the spectral representation of the WS-HFB Green func-
tion as shown in Ref. [23], it is possible to confirm that in
the positive energy region (E > 0) a particle-type resonance
behaves as a pole of G11 and a hole-type resonance behaves as
a pole of G22, i.e.,

〈p|G11|p〉 ∼ 1

E − E (p)
qp

, (15)

〈h|G22|h〉 ∼ 1

E − E (h)
qp

, (16)
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where E (p)
qp and E (h)

qp are the S-matrix poles for the particle-
type and hole-type quasiparticle resonance energies which are
given as complex numbers. The detail expressions of E (p)

qp

and E (h)
qp are given in Refs. [20,21]. This is the origin of the

metastable structure of the scattering wave function at the
resonance energy.

By inserting Eq. (11) into Eqs. (1), we can divide the
current j into three terms as

j = j0 + jint + δ j (17)

with

j0 = Im ψ
(+)∗
0 ∇ψ

(+)
0 , (18)

jint = Im[δψ (+)∗∇ψ
(+)
0 + ψ

(+)∗
0 ∇δψ (+)], (19)

δ j = Im δψ (+)∗∇δψ (+), (20)

where δψ (+) is the second term of Eq. (11) which includes
the pair correlation, j0 is the mean field (MF) current, jint is
the current which represents the interference between the MF
scattering wave function ψ

(+)
0 and δψ (+), and δ j is the current

formed by the scattered wave by the pair potential in the MF
mean field (δψ (+)).

By using Eqs. (17), the vorticity is also divided into three
terms as

ω = ω0 + ωint + δω (21)

with

ω0 = ∇ × j0 = 2ey Im[(ez · ∇ψ
(+)∗
0 )(ex · ∇ψ

(+)
0 )], (22)

ωint = ∇ × jint = 2ey Im[(ez · ∇δψ (+)∗)(ex · ∇ψ
(+)
0 ) − (ex · ∇δψ (+)∗)(ez · ∇ψ

(+)
0 )], (23)

δω = ∇ × δ j = 2ey Im[(ez · ∇δψ (+)∗)(ex · ∇δψ (+) )]. (24)

δ j and δω are expected to be smaller in absolute value (than jint and ωint) because they are quantities that give higher-order
pairing contributions. However, the continuity equation for δ j and jint is given by

∇ · ( jint + δ j) = 0 (25)

since j and j0 satisfy ∇ · j = 0 and ∇ · j0 = 0, respectively. Equation (25) is shown to say ∇ · jint 	= 0 as long as δ j 	= 0,
∇ · jint 	= 0 implies that jint contains the “gushing” or “suctioning” motion of the current. If we define

jpair = jint + δ j = j − j0 (26)

as the current representing the pairing contribution, jpair does not include “gushing” or “suctioning” motion, i.e., ∇ · jpair = 0.
The vorticity which corresponds to jpair (ωpair) is also defined as

ωpair = ∇ × jpair (27)

= ωint + δω = ω − ω0. (28)

The approximated expression of ωpair near the quasiparticle resonance energy can be represented as

ωpair ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

For particle-type quasiparticle resonance:(
E − Re E (p)

qp
)

Re〈p|	0|ψ (+)
0 〉(

E − Re E (p)
qp

)2 + (
Im E (p)

qp
)2 2ey Im[(ez · ∇φ∗

p )(ex · ∇ψ
(+)
0 ) − (ex · ∇φ∗

p )(ez · ∇ψ
(+)
0 )]

+(other partial wave components of ωint ) + δω;
For hole-type quasiparticle resonance:

−
(

Im E (h)
qp

)2(
E − Re E (h)

qp
)2 + (

Im E (h)
qp

)2 ω0 + (other partial wave components of ωint ) + δω.

(29)

(See the Appendix for a detailed derivation).
The first term of Eq. (29) can be obtained as a leading order term of ωint by applying Eqs. (15) and (16) to Eq. (11). The

contributions of other partial wave components of ωint and δω are expected to be very small compared to that of the first term.
From Eq. (29), we can expect that the contribution of pairing to vorticity is quite different between p-type and h-type quasiparticle
resonances. In the case of p-type, the positive and negative contributions of ωpair are reversed depending on whether E is greater
or less than Re Eqp.

Furthermore, ωpair takes a maximum/minimum value at E = Re E (p)
qp ± Im E (p)

qp . At these energies, ωpair can be expressed as

ωpair
(
E = Re E (p)

qp ± Im E (p)
qp

) ∼ ±Re〈p|	0|ψ (+)
0 〉

2
(

Im E (p)
qp

) 2ey Im[(ez · ∇φ∗
p )(ex · ∇ψ

(+)
0 ) − (ex · ∇φ∗

p )(ez · ∇ψ
(+)
0 )]

+ (other partial wave components of ωint ) + δω. (30)
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FIG. 1. The neutron currents (a) j, (c) j0, and (e) jpair at ε = 3.94
MeV (an energy corresponding to the h-type d3/2 resonance) with
λ = −1.0 MeV and 〈�〉 = 3.0 MeV. The panels (b), (d), and (f)
are the vortices corresponding to the currents (a), (c), and (e), re-
spectively. The arrows representing current are the same length. The
strength (absolute value) of the current, which is normalized by k( =√

2m
h̄2 (λ + E )) (the absolute value of the plane wave) is represented

by color. The unit of the vorticity is fm−2. The black solid semicircle
shows the size of the target nucleus given by r0A

1
3 = 3.66 fm.

Since Im E (p)
qp expresses the half-width of resonance, the maxi-

mum value of ωpair is inversely proportional to the width of the
resonance (i.e., proportional to the lifetime of the resonance).
This is the very result which we expected in the introduction
of this paper.

In the case of h-type, if we can ignore all but the first term
(leading term), the pairing effect leads to zero vorticity, i.e.,
the vortices disappear at E = Re E (h)

qp , because ωpair becomes

ωpair (E = Re E (h)
qp )

∼ −ω0 + (other partial wave components of ωint ) + δω.

(31)

The pair correlation for the h-type resonance has the effect
of vanishing vortices created by MF potential scattering and,
contrary to our expectation, has no relation to the width of
the resonance (the lifetime of the resonance), which is quite
different from that of p-type resonances.

However, in the definition of a vortex, each partial wave
component is complexly coupled, so it is impossible to per-
form a numerical calculation that extracts only the leading
term. In particular, it is expected that as the pair-correlation
becomes stronger, the pair-correlation effect on other partial
wave components that are not in resonance will become non-
negligible.

As is shown in [20,21], the width of the quasiparticle
resonance increases as the pair-correlations become stronger,

Circulation (λ=-1.0 MeV)
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p1/2(h-type)

FIG. 2. The contour plot of � as a function of ε and 〈�〉. The
dotted curves represent the real part of the S-matrix poles for the
quasiparticle resonances which were shown in Ref. [20].

but, within the range of realistic pair-correlation strengths, the
width of the quasiparticle resonance does not change very
much. In particular, the change is negligible for p-type res-
onances. Therefore, it is difficult to directly show properties
such as the relationship between vortex and resonance width
as a result of numerical calculations.

Fortunately, however, Eq. (29) also shows that the qualita-
tive properties of vortices themselves are completely different
between p-type and h-type resonances, so if we can actu-
ally confirm that the qualitative properties of vorticity are
completely different between p-type and h-type resonances
by analyzing the results of numerical calculations and then
confirm that they are consistent with Eq. (29), we can confirm
the relationship between the vortex and resonance width that
the main terms indicate, albeit indirectly.

III. NUMERICAL RESULTS

In Fig. 1, the neutron currents ( j, j0, and jpair) and the
vorticities (ω, ω0, and ωpair) at the energy corresponding to the
h-type d3/2 resonance are shown in the left and right panels,
respectively.

As given in Eqs. (4) and (5), the circulations (�, �0 and
�pair) are calculated by the area integrations of ω, ω0, and
ωpair or line integrations of j, j0, and jpair. Since the current is
symmetric about the z axis, the region of the upper half of the
z-x plane 0 � x � 10 fm, −10 � z � 10 fm (the area showing
current and vorticity in Fig. 1) is adopted as the integration
area for the calculation of the circulation.

In Fig. 2, the contour plot of the circulation � is shown
as a function of the energy ε and mean pairing gap 〈�〉. The
black dotted curves are the real parts of the S-matrix poles
for the quasiparticle resonances shown in Figs. 6 and 7 in
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FIG. 3. The circulation obtained by integrating the area of the re-
gion 0 � x � 10 fm, −10 � z � 10 fm (the area as shown in Fig. 1),
or by line integrating this region in a counterclockwise direction. �

(red solid), �0 (black dash), �pair (blue dot), and δ� (purple dot-dash)
are the circulations which are corresponding to ω, ω0, ωpair , and δω,
respectively. The lower panel shows an enlargement of the region
0 � ε � 2 MeV to make it easier to see the circulation for the p-type
resonances.

Ref. [21]. The curvilinear pattern in the contour plot of the
circulation coincides with the curve of the real part of the pole
of the S matrix of the quasiparticle resonance, indicating that
the circulation of the incident neutron flux in n-A scattering
is greatly affected by the pairing effect at the quasiparticle
resonance energy.

In Fig. 3, �, �0, and �pair calculated with 〈�〉 = 3.0 MeV
are plotted as a function of the energy ε, and δ� which is
obtained from δω (or δ j) is also shown in order to see the con-
tribution. In the previous section, we expected that δω would
be negligible as a contribution to ωpair because it provides a
higher-order contribution of the pairing. The correctness of
our expectation is confirmed by the fact that δ�, shown as
a purple dotted curve in Fig. 3, is actually negligibly small.
The characteristics of the p-type and h-type quasiparticle res-
onances for ωpair shown in Eq. (29) are clearly expressed in
the energy dependence of the circulation �pair in Fig. 3.

As shown in Eq. (29), the �pair calculated from ωpair takes
the form of a Lorentz distribution and acts to reduce � near
the h-type quasiparticle resonance. From the current point of
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FIG. 4. The current jpair and vorticity ωpair at ε = 1.45 − 1.16 ×
10−2, 1.45, and 1.45 + 1.16 × 10−2 MeV; ε = 1.45 MeV is the
energy at which �pair becomes zero (found near the real part of the S-
matrix pole of the p-type f7/2 resonance), and ±1.16 × 10−2 MeV is
the imaginary part of the S-matrix pole (half-width of the resonance).

view, it can be seen from Fig. 1 that the pairing effect, jpair,
occurs in the direction of counteracting the current j0 in the
nucleus, and acts to reduce the vorticity ω. In the case of the
h-type quasiparticle resonances, the pairing correlation works
to create a flow along the surface while preventing the incident
neutron current from entering the target nucleus.

As indicated in Eq. (29), the effect of pairing on p-type
quasiparticle resonances is quite different. In the case of p-
type quasiparticle resonance, the pairing acts to reduce the
circulation � on the lower side of the resonance energy (the
real part of the S-matrix pole), but in contrast it acts to in-
crease the circulation � in the energy region higher than the
resonance energy. Figure 4 shows the currents jpair and their
vorticities ωpair for the p-type quasiparticle resonance at f7/2.
Panels (a), (c), and (e) show the currents at ε = 1.45 − 1.16 ×
10−2, 1.45, and 1.45 + 1.16 × 10−2 MeV, respectively, and
panels (b), (d), and (f) show the corresponding vorticities,
where 1.45 MeV is the quasiparticle energy (the real part of
the S-matrix pole of f7/2), and 1.16 × 10−2 MeV is the half-
width of the resonance (the imaginary part of the S-matrix
pole).

In Fig. 4, we can see the obvious vortex that the current
creates. In panel (a), there is a clockwise vortex in the z >

0 region and a counterclockwise vortex in the z < 0 region.
In panel (e), these vortices are reversed. Since the vortices in
the z > 0 region are stronger in both cases, the vorticity is
negative in panel (a) and positive in panel (e). In panel (c), the
weak vortices are symmetrically located inside and outside the
nucleus, so that the overall vorticity is almost zero. It should
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FIG. 5. The pairing dependence of the circulations � and �pair

around the energy region for the p-type p3/2 resonance. The solid
blue, red, and purple curves represent the circulation with 〈�〉 = 2.0,
3.0, and 4.0 MeV, respectively. The dotted curves show the circula-
tion calculated every 0.2 MeV.

be noted that, since the current is symmetric about the z axis,
the vortex is torus shaped (like a donut about the z axis).

As shown in Ref. [21], the f7/2 p-type quasiparticle reso-
nance is a resonant state that appears at energies lower than
the centrifugal barrier, and the behavior of the f7/2 partial
wave component of the scattering WS-HFB wave function is
more like a bound state than a metastable state. Since jint is
dominant in jpair defined in Eq. (26), where jint is defined in
Eq. (19), the vortices arise from the interference between the
partial wave component of the WS-HFB wave function for
f7/2 and the MF scattering wave function.

By carefully observing the current flow in Fig. 4, we can
see that in panel (a) the current is only allowed to enter
the nucleus from the front (z > 0 region, θ ≈ 0), while in
panel (e) the current is allowed to enter from the back region
(z < 0 region). Qualitatively, this is a common property of
p-type quasiparticle resonances, although the angle at which
the current is allowed to flow into the nucleus from the back
region and the formation of vortices are different for p3/2 and
f7/2.

In Ref. [21], we showed that when the independent K-
matrix pole is located near the quasiparticle resonance, the
correlation between the K-matrix pole of the quasiparticle
resonance and the independent K-matrix pole causes the K-
matrix pole to disappear when the pairing gap 〈�〉 becomes
larger than the critical gap 〈�〉c. We also showed that the
critical gap of the p-type p3/2 is 〈�〉c = 4.08 MeV.

Figure 5 shows how the circulations � and �pair change
when the pairing gap is varied around the energy region of
the p-type p3/2 quasiparticle resonance. From the analysis of
this figure, we found that the energy for which � = 0 is found

almost at the same energy of the real part of the S-matrix pole,
and the energy for which �pair = 0 is found almost at the same
energy as the K-matrix pole when 〈�〉 < 〈�〉c, but no longer
exists when 〈�〉 > 〈�〉c.

IV. SUMMARY

In this paper, we analyze the effect of pairing on incident
neutron current in n-A scattering described within the frame-
work of HFB theory. For this purpose, the current was defined
using the WS-HFB scattering wave function and its numerical
calculation was performed. To analyze the effect of pairing,
the current was decomposed into a MF part and a pairing
part, and the corresponding vorticity and circulation were also
calculated and analyzed.

It was found that the pairing effects on current, vorticity,
and circulation are quite different between p-type and h-type
quasiparticle resonances. In the case of the h-type quasipar-
ticle resonances, the pairing has the effect of preventing the
neutron current from flowing into the nucleus, which reduces
vorticity and circulation. In the case of the p-type quasiparticle
resonance, the pairing acts to prevent neutron current from
entering the nucleus in the energy region below the resonance
energy, while the pairing acts to allow neutron current from
the backward region to enter in the energy region above the
resonance energy. Vortices appear due to the presence of
metastable structures of a certain partial wave component,
but the direction of the vortices is reversed below and above
the resonance energy. These features are consistent with the
results of Eq. (29), which shows how the S-matrix poles of
p-type and h-type quasiparticle resonances contribute to the
vorticity.

As a characteristic of quasiparticle resonance indicated by
Eq. (29), it can be said that, for p-type resonance, vorticity
and resonance width are inversely proportional, i.e., vorticity
and resonance lifetime are proportional [Eq. (30)]. However,
in contrast, in h-type resonances, the vortex created by MF
scattering is canceled out by the pair correlation effect, which
is not related to the resonance width [Eq. (31)]. We also found
that the effect of the disappearance of the K-matrix pole due
to the correlation between the independent K-matrix pole near
the quasiparticle resonance and the K matrix of the quasiparti-
cle resonance (which has been discussed in Ref. [21]) appears
in the form of the disappearance of the energy which satisfies
�pair = 0.

In order to discuss the dynamic features and properties
of vortices in quantum systems in more detail, it is neces-
sary to derive the fluid equation based on the Schrödinger
equation (including the HFB equation, etc.) and discuss it in
terms of the quantum pressure term that will appear in the
fluid equation, touching on the violation of Kelvin’s circu-
lation theorem and the hydrodynamic conservation law. The
development of a self-consistent cQVC method based on the
effective two-body nuclear force and the extension of the Jost
function method to the cQVC method to calculate the width of
resonances based on the cQVC method would also be impor-
tant issues for a more realistic and quantitative analysis and
a deeper exploration of vortex properties as described above.
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However, we leave them for future work without touching on
them in this paper.
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APPENDIX: DERIVATION OF EQ. (29)

The WS-HFB Green’s function satisfies the following
Dyson equation:

G = G0 +
∫

drG0V pairG (A1)

with

G =
(G11 G12

G21 G22

)
, (A2)

G0 =
(

G0(k1) 0
0 −G0(k2)

)
, (A3)

and

V pair =
(

0 �

� 0

)
. (A4)

By using Eq. (13), this Dyson equation (A1) can be rewritten
as

G11 = G0(k1) + G0(k1)	0G11. (A5)

G22 = −G0(k2) − G0(k2)�G0(k1)�G22. (A6)

By inserting Eq. (A6) into Eq. (14), we can obtain

	 = 	0 + 	0G0(k1)	. (A7)

By applying Eq. (A5) or (A7) to the series expansion of
Eq. (9), we can obtain Eq. (11).

Since δψ (+) = ψ
(+)
1 − ψ

(+)
0 and the poles of the particle-

and hole-type resonances are given as the poles of G11 and G22

as shown by Eqs. (15) and (16) respectively, we can obtain the
approximated expression for δψ (+) by using Eq. (11) as

δψ (+) = ψ (+) − ψ
(+)
0 (A8)

=
⎧⎨⎩G11	0ψ

(+)
0 ∼ ψqp

〈ψqp|	0|ψ (+)
0 〉

E−E (p)
qp

,

G0	ψ
(+)
0 ∼ −i 2mk1

h̄2 ψ0(k1) |〈ψ (+)
0 (k1 )|�|ψqp〉|2

E−E (h)
qp

(A9)

for the particle- and hole-type resonances, respectively.
By inserting Eq. (A9) into Eq. (23) and using Eq. (28),

Eq. (29) can be derived.
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