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Charge-changing cross sections for 42–51Ca and effect of charged-particle evaporation induced by
neutron-removal reactions
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Charge-changing cross sections σCC for 42–51Ca on a carbon target at around 280 MeV/nucleon have been
measured. Though the existing point-proton radii rp of Ca isotopes increase as the neutron number increases,
the measured σCC data show a significant decrease, which is against the expectation from a simple Glauber-like
model. We found that this observed phenomenon could be attributed to the charged-particle evaporation effect
induced by the neutron-removal reaction. By taking the evaporation effect into account, various σCC data sets for
nuclides from C to Fe isotopes on 12C measured at around 280 MeV/nucleon are reproduced with a standard
deviation of 1.6%. It is also clarified that this evaporation effect becomes negligibly small in the neutron-rich
region. The evaluated relation between σCC and rp using the current model indicates that σCC data for neutron-rich
Ca isotopes (A � 51) are highly sensitive to rp. This high sensitivity potentially allows one to determine the rp

of very neutron-rich nuclei.

DOI: 10.1103/PhysRevC.106.014617

I. INTRODUCTION

The point-proton radius rp of the atomic nucleus, usually
defined as the root mean square (RMS) radius of the point-
proton density distribution, is one of the key quantities used
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to study nuclear structures. Point-proton or charge radii have
been measured using the electron elastic scattering, muonic
x-ray, and optical isotope shift (IS) methods [1]. Among these,
the IS measurement is generally regarded as the only way to
extract the rp of unstable nuclei. Systematic rp investigations
have helped clarify exotic phenomena, such as the neutron-
halo structure [2,3] and the dramatic enhancement of nuclear
radii beyond the magic numbers [4,5]. The neutron-skin thick-
ness can be also extracted from rp combined with the matter
radius rm [6,7]. The pursuit of neutron-skin thickness has
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attracted significant attention particularly for very neutron-
rich nuclei, to elucidate the density-dependent parameter of
the symmetry energy term in the nuclear-matter equation of
state [8]. However, the IS method is inapplicable to unstable
nuclei far from the stability line, or certain elements, because
of beam production difficulties.

Alternative rp determination methods for unstable nuclei
have been proposed, based on reaction cross sections on
proton and carbon targets [9–11], proton elastic scattering
at double energies [12], and electron elastic scattering un-
der trapping in a storage ring [13–15]. The charge-changing
cross section σCC, defined as the atomic-number-changing
total cross section, can potentially also be used to derive rp.
Similarly to the interaction cross section σI or reaction cross
section σR, which are sensitive to rm, σCC is used to probe rp

[16,17]. Furthermore, σCC can be measured even with low-
intensity heavy-ion beams [e.g., a few particles per second
(pps)]. Therefore, this method is a potential tool to study the
rp of a very neutron-rich nucleus.

To date, σCC measurement has been utilized to derive the
rp of light-mass nuclei [18–30]. Several methods based on the
Glauber model have been proposed to describe the relation-
ship between σCC and rp. For example, Yamaguchi et al. pre-
viously introduced an empirical scaling factor for the Glauber-
like model to explain experimental σCC data for 28Si on a car-
bon target at intermediate energies of 100–600 MeV/nucleon
[18]. This phenomenological model universally explained σCC

data at 300 MeV/nucleon for light-mass nuclei over a wide
range of mass-to-atomic-number ratios A/Z [19]. However,
some σCC data for medium-mass nuclides around calcium
deviate from the above phenomenological-model calculation
[20,21]. A similar approach introducing an empirical param-
eter has been proposed in another study [31]. In contrast,
σCC data for nuclei up to nitrogen at ≈ 900 MeV/nucleon
have been explained by a Glauber-like calculation without
the above scaling factor [24–27]. To explain σCC for 12C on
12C at 10–2100 MeV/nucleon, Tran et al. tuned the slope
parameter of the proton-neutron elastic differential cross sec-
tion, βi j , which is one of the parameters in the Glauber-model
calculation [28]. However, their model underestimated the
σCC data for 12C on 12C at 200–400 MeV/nucleon. Although
theoretical studies have investigated this problem [32,33], a
consistent universal model for rp derivation from σCC has not
been established. The mechanism underlying the discrepancy
between the experimental data and the Glauber model remains
crucially unknown.

In this study, we report measurement of σCC on a carbon
target at around 280 MeV/nucleon for 42–51Ca, for which rp

was previously measured via the IS method [4]. The obtained
σCC results show a significant decrease with increases in the
neutron number, a trend that differs from those in light-mass
isotopic chains. Based on a comparison between the experi-
mental results and the calculations of the Glauber-like model
(taking the known rp as input values), the reaction dynam-
ics in the charge-changing process were investigated. The
Glauber-like model could not explain the trends of experimen-
tal σCC values. On the other hand, the calculation which takes
into account the charged-particle evaporation effect induced
by the neutron-removal reactions explains the decrease of

TABLE I. Measured charge-changing cross sections σCC for
42–51Ca on 12C target. The categories of nuclides measured simul-
taneously are listed in the second column. The mean energies in the
reaction target are listed in the third column. The first and second
parentheses in the fourth column contain the statistical and system-
atic uncertainties, respectively.

Emean σCC

Nuclide Category (MeV/nucleon) (mb)

42Ca Run1 297 1378(11)(6)
43Ca Run1 284 1352(9)(7)
44Ca Run1 270 1351(10)(10)
45Ca Run2 302 1291(6)(10)
46Ca Run2 290 1300(8)(15)
47Ca Run2 277 1283(14)(14)
48Ca Run3 300 1259(14)(16)
49Ca Run3 291 1280(8)(18)
50Ca Run3 283 1297(11)(23)
51Ca Run3 271 1319(33)(28)

σCC against the increment of neutron number very well. This
model systematically reproduces σCC data for various nuclides
from C to Fe isotopes measured at around 280 MeV/nucleon
without any empirical corrections.

II. EXPERIMENT AND ANALYSIS

A. Experiment

The experiment was conducted at the RI Beam Fac-
tory (RIBF), operated by the RIKEN Nishina Center, and
the Center for Nuclear Study, University of Tokyo. A
345-MeV/nucleon 238U primary beam and a rotating beryl-
lium production target were used to produce 42–51Ca sec-
ondary beams. The secondary beams produced at the F0 focal
plane were roughly purified in the first stage of the BigRIPS
fragment separator [34] between the F0 and F3 focal planes.
Then, σCC was measured between the F3 and F7 focal planes.
Owing to the large acceptance of BigRIPS, experimental data
were acquired for three or four Ca isotopes simultaneously
in a single BigRIPS setting. The groups of simultaneously
measured nuclides and σCC results of them are listed in the
second column of Table I.

The transmission method was applied to measure σCC [35],
where

σCC = − 1

Nt
ln

(
γ

γ0

)
, (1)

with Nt being the number of target nuclei per unit area and
γ and γ0 the nonreaction rates with and without the reaction
target, respectively. Note that, for σCC measurement, outgoing
particles with the same Z as the incoming ones correspond to
the nonreaction events. A wedge-shaped carbon target with an
angle of 9.61 mrad was placed at the F5 momentum-dispersive
focal plane to maintain the achromatic property of the F7
focal plane. The central-point thickness of the target was
1.803(3) g/cm2. The σCC value with the wedge-shaped
target was obtained from the values at each position,
i.e., σCC(X ), weighted with the incident-particle distri-
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FIG. 1. Schematic view of the experimental setup.

bution on the target, Nin(X ), where X is the position
along the momentum-dispersive (horizontal) direction per-
pendicular to the beam axis z. The target-thickness pro-
file d (X ) was measured with 0.15% accuracy or higher.
The mean energies in the reaction target, Emean, at the
weighted mean position of Nin(X ) are listed in Table I.
The average Emean of the 42–51Ca data was approximately
280 MeV/nucleon. Note that the experimental σCC data re-
ported herein were obtained simultaneously with σI data
for 42–51Ca [7]. Figure 1 shows the experimental setup be-
tween the F3 and F7 focal planes of BigRIPS. To derive
the nonreaction rate, the incoming and nonreacting outgoing
particles were counted before and after the reaction target, re-
spectively. For particle identification (PID) before the reaction
target, the mass-to-charge ratio A/Q and Z of the incom-
ing particle were identified in event-by-event mode via the
Bρ-TOF-�E method between the F3 and F5 focal planes,
where Bρ, TOF, and �E represent the magnetic rigidity, time
of flight, and energy loss, respectively. Here, Bρ was deter-
mined from the dipole-magnet magnetic field data together
with the beam-ray tracking using parallel plate avalanche
counters (PPACs) at F3 and a plastic scintillation counter (PL)
at F5, which was sensitive to X . The TOF was measured by
PLs installed at F3 and F5. A multisampling ionization cham-
ber (MUSIC) at F3 (F3MUSIC) was used to measure �E .

In the downstream side of the reaction target, i.e., between
F5 and F7, Z was identified from the �E measured by two
MUSICs installed at F5 and F7 (F5MUSIC and F7MUSIC,
respectively). F5MUSIC is a large acceptance specification
(240 mm × 150 mm area and 200 mm length), whereas
F7MUSIC is a high resolution specification (240 mm φ area
and 480 mm length). Between the F5 and F7 focal planes,
BigRIPS was tuned to transport particles that changed neither
A nor Z at the reaction target. Therefore, only non-nuclide-
changing and one-neutron-removal events of Ca isotopes
[42Ca and 41Ca in Fig. 2(b)] were transported to the F7 focal
plane, owing to the ±3% momentum acceptance of BigRIPS.
The Z resolution of F7MUSIC was much higher than that
of F5MUSIC. For clear identification and reliable counting
of the nonreacting particles, the non-nuclide-changing and
one-neutron-removal particles of Ca isotopes were identified
by using F7MUSIC. The other Ca-isotope particles were
identified from the �E data of F5MUSIC only. To ensure
the full acceptance of nonreacting particles after the reaction
target, the position, angle, and momentum information from
upstream detectors was constrained. This constraint was opti-
mized for nuclides of interest.
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FIG. 2. Particle-identification plots of (a) the cocktail beam for
the 42Ca setting before the reaction target and (b) particles trans-
ported to the F7 focal plane, with incoming 42Ca selection indicated
by the ellipse in (a). In (b), Z was determined from F7MUSIC �E .
The appropriate beam-emittance constraint was adopted for both
plots. The 48Ca plots are presented in Ref. [7].

B. Data analysis and results

Figure 2(a) shows the typical PID plot for the beam before
the reaction target for 42Ca, as an example. The nuclides
were separated with 19.2σ and 6.5σ resolutions on A/Q and
Z , respectively. The 42Ca incident particles were selected by
an elliptical gate with a width of 3.5σ of each axis. Con-
tamination from neighboring nuclides, i.e., 44Sc and 40K,
was excluded through additional selection in the correlation
between the �E in F3MUSIC and those in the F3 and F5
PLs. Finally, these contaminants had effects far lower than
0.1% on σCC.

Figure 3 shows the Z identification plot for the incoming
Ca isotopes after the reaction target. The events transported
to the F7 focal plane were identified from the correlation
plot between the atomic numbers determined by F5MUSIC
and F7MUSIC, i.e., ZF5 and ZF7, respectively [Fig. 3(a)]. The
peak separations of ZF5 and ZF7 were 3.0σ and 6.3σ , respec-
tively. The events within the black lines in Fig. 3(a) were
counted as nonreacting particles. Here, the widths of elliptical
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FIG. 3. (a) Identification of Z after the reaction target with se-
lection of incoming 42Ca in correlation between ZF5 and ZF7. The
events inside the black lines were counted. (b) ZF5 histogram for
ZF7 = 19 events indicated by the arrow in plot (a). The shaded region
corresponds to the area enclosed by the black line in plot (a). (c,d) ZF5

histograms for events that were not transported to F7 in cases of 42Ca
and 50Ca, respectively. The dotted green line represents the fitting
result. The red solid and dashed lines indicate the compositions.

and vertical-lines regions are 4σ and 2σ , respectively. The
K-isotope contaminants indicated by the arrow were sub-
tracted by fitting the ZF5 histogram shown in Fig. 3(b). The
particles that were not transported to F7 were identified in the
ZF5 histograms shown in Figs. 3(c) and 3(d). Although the
ZF5 resolution was insufficient for complete peak separation,
fitting was achieved with the help of ZF7. In this fit, the
position and width of each element in ZF5 were constrained
using data on the peaks tagged by ZF7 in Fig. 3(a). The events
in the shaded areas, where the Ca events are dominant, were
regarded as nonreacting particles. The Ca events outside this
region and neighboring-element contaminants were corrected
based on the fitted distributions [the red solid and dashed lines
in Figs. 3(c) and 3(d)]. This event-counting uncertainty in
the identification only on ZF5 was typically 7%. The ratio of
the number of nonreaction events identified in Figs. 3(c) and
3(d), NF5, to that identified in Fig. 3(a), NF7, was larger for
a neutron-rich nucleus. For example, the NF5/NF7 values for
42Ca and 50Ca were 0.0079(4) and 0.0285(20), respectively.

The experimental data without the reaction target for the
respective isotopes were similarly analyzed. For example, γ

and γ0 of 42Ca were 0.8744(8) and 0.9914(4), respectively.
Table I summarizes the obtained σCC for 42–51Ca on 12C. The
statistical uncertainties (first parentheses) were typically less
than 1.0%. The main source of systematic uncertainty (second
parentheses) was the accuracy of NF5. As mentioned above,
NF5/NF7 increases with increases in the neutron number of
the nuclide of interest. Therefore, the total uncertainty is gov-
erned by a systematic uncertainty, especially in neutron-rich
isotopes. Below, we treat the square root of the sum of these
two uncertainties as the total uncertainty.

III. DISCUSSION

Figure 4(b) shows the present σCC results for Ca isotopes
as a function of mass number A. The existing data are also
shown for comparison [20,21]. The minimum energy of the
present study and the energy of existing data were E = 270
and 300 MeV/nucleon, respectively. A negligibly small dif-
ference of 0.2% in σCC due to its energy dependence was
estimated between these energies. Therefore, this slight dif-
ference was ignored and the calculation was performed for
280 MeV/nucleon. The present and existing data [20,21] are
consistent for 42Ca and 45Ca, but not for 44Ca and 46Ca. How-
ever, the present σCC results of Ca isotopes show a decreasing
trend similar to the existing data of Ca, Ti, Cr, and Fe iso-
topes [20,21], which will be mentioned later in Fig. 6. Upon
extension of the experimental data to the neutron-rich region,
σCC decreased with increasing mass or neutron number. On
the other hand, this A dependence of Ca isotopes significantly
differs from the experimental σCC trend in the light-mass re-
gion [17,24–28], which shows rather flat dependence on A. To
understand the trend of the experimental σCC of Ca isotopes,
we first performed the Glauber-like calculation.

A. Glauber-like model

As indicated in the Introduction, the σCC data for deriving
rp are usually discussed based on the Glauber-like calculation
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FIG. 4. (a) A dependence of Pevap values [Eq. (18)] with Emax =
20 MeV (thin black dashed line), 45(8) MeV (red solid line), and
70 MeV (thin black dotted line). (b) A dependence of σCC for Ca
isotopes on 12C. The present 42–51Ca results and existing data [20,21]
are indicated by closed circles and open triangles, respectively. The
black solid line and green dashed line represent the σCC values
from the Glauber(ZROLA) calculation [Eq. (12)] and the Glauber-
like(ZROLA) calculation with the correction factor [18] (Eq. (13)),
respectively. The thin black dashed line, red solid line, and thin black
dotted line show the σCC calculations from the Glauber(CE) model
[Eq. (17)] with Emax = 20, 45(8), and 70 MeV, respectively.

[18–31,33]. There are several types of Glauber model calcu-
lations for σR and σCC that incorporate various effects such as
multiple scattering [36], energy-dependent range parameters
[28,37], and Fermi motion [38].

Here, to describe both the σR and σCC in the same
framework, we implemented the zero range optical limit
approximation (ZROLA) with a nucleon–nucleon (NN) to-
tal cross section that takes the Fermi motion effect into
account. The Fermi motion effect was introduced into the
Glauber-model calculation in almost the same way as in
Ref. [38]. As shown in Figs. 4 and 5, which will be discussed
later, the applied Glauber model can reproduce the experimen-
tal values of both σR and σCC simultaneously and consistently.
Furthermore, this model can reproduce the energy depen-
dences of σR for 9Be and 27Al on 12C (Appendix A), and that
of σCC for 28Si on 12Ca at E > 200 MeV/nucleon shown in
Fig. 14 (to be mentioned later). It should also be mentioned
that the introduction of the Fermi motion itself does not influ-
ence the essence of the following discussion concerning σCC

measured at 280 MeV/nucleon (see Appendix B).
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FIG. 5. Energy dependence of σR for 12C on 12C [16,38,39]. The
red solid and black dotted lines indicate the present ZROLA calcu-
lation with the best-fit parameter for the Fermi motion, CFM = 0.53,
and the conventional ZROLA calculation without the Fermi motion
effect on σi j , respectively.

In this framework, σR is expressed using the transmission
function T (b) as follows:

σR = 2π

∫
b[1 − T (b)]db, (2)

T (b) ≡ exp

[
−

∫
ds

(∑
i, j

σi j (b, s) ρP
i (s)ρT

j (|b − s|)
)]

,

(3)

where b is an impact parameter; s and |b − s| are the distances
from the centers of the projectile and target nuclei, respec-
tively; the indexes i, j denote the isospins of the nucleons in
projectile and target nuclei, respectively; σi j is the NN total
cross section; and ρP(r) and ρT(r) are density distributions
of the projectile and target integrated along beam axis z, i.e.,
ρ(b) = ∫

ρ(b, z)dz, respectively.
We applied the effective NN cross section (σ eff

NN) that in-
cludes the Fermi motion effect of the nucleons in the nucleus
[38]. Here, σ eff

NN was calculated from the bare NN cross
section (σ bare

NN ) averaged by the distribution of the relative
momentum (prel) of the colliding nucleons in the projectile
and target nuclei, D(prel ):

σ eff
i j (b, s) =

∫ ∞

−∞
d prelσ

bare
i j (prel )Di j (prel, b, s), (4)

Di j (prel, b, s) = 1√
2π

[〈p2〉P
i (s) + 〈p2〉T

j (|b − s|)]

× exp

[
− (prel − pP)2

2
(〈p2〉P

i (s) + 〈p2〉T
j (|b − s|))

]
,

(5)

014617-5



M. TANAKA et al. PHYSICAL REVIEW C 106, 014617 (2022)

where 〈p2〉P and 〈p2〉T are the mean-square momenta of the
nucleon in the projectile and target nuclei, respectively, and pP

is the momentum of the entire projectile nucleus. In Ref. [38],
a fixed value of 90 MeV/c was generally adopted as the value
of 〈p2〉1/2 based on the Goldhaber model [40], while here
the 〈p2〉1/2 was calculated from the density-dependent Fermi
momentum averaged along z:

pFermi,i(s, z) = h̄[3π2ρi(s, z)]1/3, (6)

pz
Fermi,i(s) =

∫
pFermi,i(s, z)ρi(

√
s2 + z2)dz∫

ρi(
√

s2 + z2)dz
, (7)

[〈p2〉i(s)]1/2 = CFM pz
Fermi,i(s). (8)

Here, CFM is a constant parameter, which was set to 0.53 to
reproduce the energy dependence of experimental σR data for
12C on 12C [16,38,39] (Fig. 5). The point-proton and point-
neutron density distributions ρp(r) and ρn(r), respectively,
introduced in Ref. [38], were used as the density profile of
12C. Note that CFM = 0.53 is roughly consistent with the
Goldhaber model (CFM = 0.45 derived from Eqs. (5) and
(6) of Ref. [40]). The small deviation from the Goldhaber’s
value may be due to the fact that the consideration of the
Fermi-motion effect effectively includes other effects that are
not considered in the present calculation such as the multiple
scattering and energy-dependent range parameters [28,37,38].
Note that the calculation with CFM = 0.45 still reproduces
the experimental data in Fig. 5 within 1.5% deviation in the
energy range of E > 150 MeV/nucleon.

In analogy with the Glauber model for σR, σCC is usually
formulated by ignoring the contribution of the neutrons in
the projectile nucleus. Here, T (b) can be explicitly written
according to the projectile composition [31]:

T (b) = Tp(b)Tn(b), (9)

Tp(b) = exp

[
−

∫
dsρP

p

{
σppρ

T
p + σpnρ

T
n

}]
, (10)

Tn(b) = exp

[
−

∫
dsρP

n

{
σnpρ

T
p + σnnρ

T
n

}]
. (11)

Then, the charge-changing cross section is obtained as

σ̃CC = 2π

∫
b[1 − Tp(b)]db. (12)

Here, we denote this quantity as σ̃CC. In this Glauber-like
calculation, only ρp(r) in the projectile nucleus is assumed
to contribute to the charge-changing cross section. Based on
Eq. (12), in the empirical method [18], σCC is expressed by
introducing the energy-dependent scaling factor ε(E ):

σCC = ε(E )σ̃CC. (13)

At E = 280 MeV/nucleon, ε = 1.123.
For the Glauber-model calculation, we assumed the two-

parameter Fermi-type (2pF) function for ρp(r) of Ca isotopes:

ρp(r) = ρp0

1 + exp
(

r−Cp

ap

), (14)

TABLE II. The rp values of Ca isotopes used in the calculation
deduced from the experimental data of charge radii [1,4,43].

Nuclide rp (fm) Nuclide rp (fm)

36Ca 3.345 46Ca 3.401
37Ca 3.345 47Ca 3.384
38Ca 3.364 48Ca 3.384
39Ca 3.361 49Ca 3.399
40Ca 3.377 50Ca 3.428
41Ca 3.379 51Ca 3.444
42Ca 3.411 52Ca 3.465
43Ca 3.397 53Ca 3.487
44Ca 3.423 54Ca 3.508
45Ca 3.400

where ρp0, Cp, and ap are the density constant, half-density
radius, and diffuseness, respectively. We assumed that the cen-
tral density ρp(0) = ρp0/[1 + exp(−Cp/ap)] was 0.088 fm−3,
i.e., half that of the central density of the nucleon density
distribution adopted in Ref. [7]. The remaining two param-
eters were determined to satisfy the known rp and the volume
integral Z = ∫

ρp(r)d3r. The rp was obtained from the RMS
charge radius rch as follows:

r2
p = r2

ch − R2
p − N

Z
R2

n − 3h̄2

4m2
pc2

, (15)

where Rp and Rn are the RMS charge radii of the proton and
neutron, respectively, and the last term is the Darwin–Foldy
term [41,42]. Table II summarizes the rp values obtained from
rch through Eq. (15). The existing rch data [1,4,43] were used
for 36–52Ca, while the rp values for 53,54Ca were extrapolated
from those for 48–52Ca. This is because rp increases linearly in
all isotopic chains beyond N = 28 [44].

In Fig. 4(b), the values calculated using Eqs. (12) and
(13) are indicated by black solid and green dashed lines,
respectively. Although both calculations failed to reproduce
the A dependence of experimental data, each worked well in
a particular region: σ̃CC [Eq. (12)] was closer to the experi-
mental values in the neutron-rich region, but the calculation
using the correction factor [Eq. (13)] effectively reproduced
the experimental σCC of the stable nucleus around 42Ca. This
can be attributed to the determination of ε(E ) from the exper-
imental σCC for the stable nucleus, 28Si [18]. Thus, to explain
the overall trend of experimental data, mechanisms other than
the conventional Glauber model are required. The ratios of
experimental σCC values to the calculated σ̃CC values using
Eq. (12) are indicated as a function of one-proton separa-
tion energy Sp in Fig. 6. The Sp values were obtained from
Ref. [45]. In addition to the present results of 42–51Ca, the
existing σCC data of Ca, Ti, Cr, and Fe isotopes [20,21] are also
plotted by the open triangles. Here, the 2pF functions were
assumed for ρp(r) in Ti, Cr, and Fe isotopes to calculate σ̃CC.
The parameters of ρp(r) were determined in the same manner
as the Ca isotopes using the known rp values [1], except for
55,59,60Fe. The rp values for 55,59,60Fe were estimated from
experimental rp of 54,56–58Fe [1]. It can be seen that the data for
various nuclei commonly deviate more from the Glauber-like
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The open triangles represent the experimental results [20,21] of Ca
(red), Ti (brown), Cr (green), and Fe (blue). The experimental σCC

and calculated σ̃CC values of Ti, Cr, and Fe isotopes are illustrated
in Figs. 9(d)–9(f) by the closed circles and the black solid lines,
respectively.

calculation at lower Sp. The experimental σCC data decrease
as Sp increases, and become closer to the Glauber-like cal-
culation. This implies the importance of the proton binding
strength in σCC.

B. Introduction of charged-particle evaporation induced by
neutron-removal reaction

Strictly speaking, Eq. (12) is not based on microscopic
theory because it is simply obtained from analogy with the
Glauber-model calculation for σR. Using Eq. (9), the relation-
ship between σ̃CC and σR defined by Eqs. (12) and (2) is [31]

σR ≡ 2π

∫
b[1 − Tp(b)Tn(b)]db

= 2π

∫
b[1 − Tp(b)]db

+ 2π

∫
b[Tp(b){1 − Tn(b)}]db,

≡ σ̃CC + σ̃
−xn,

(16)

where σ̃
−xn is the total neutron-removal cross section with-
out proton removal from the projectile nucleus. Bhagwat
et al. previously noted the neutron-removal contribution to the
charge-changing cross section, i.e., σCC �= σ̃CC [31]. For this
reason, Yamaguchi et al. introduced a correction factor [18].

To explicitly incorporate the neutron-removal reaction ef-
fect in the σCC calculation, the abrasion-ablation process [46],
which consists of two processes to produce the reaction frag-

ments, was considered in addition to the direct proton-removal
process treated by the above Glauber-like model. The first
stage is abrasion, where a prefragment with excitation energy
is produced by abrading nucleons from the projectile nucleus.
In the subsequent ablation stage, the prefragment is deexcited
to the final fragment through light-particle or gamma-ray
emission.

Here, the abrasion–ablation process was introduced simi-
larly to Ref. [47]. Hence, σCC was defined as

σCC = σ̃CC + σevap, (17)

where σevap is the neutron-removal cross section followed by
the charged-particle evaporation and was calculated using the
contribution probability of the neutron-removal reaction to
σCC, Pevap (the online calculator for σevap is available [48]).
Thus,

σevap = Pevapσ̃
−xn, (18)

Pevap =
NP∑

x=1

p−xn

=
NP∑

x=1

r−xn

∫ ∞

0
w−xn(Eex) f (Eex, AP − x, ZP)dEex.

(19)

Here, Eex is the excitation energy of the prefragment; AP,
ZP, and NP are the projectile-nucleus mass number, atomic
number, and neutron number, respectively; r−xn is the ratio of
the x-neutron removal cross section to that of total neutron
removal; w−xn(Eex) is the excitation-energy distribution of
the prefragment in each channel; and f (Eex, AP − x, ZP) is
the probability of charged-particle evaporation for the pre-
fragment with mass and atomic numbers AP − x and ZP,
respectively, with Eex. In addition, p−xn is the partial value
of Pevap regarding x.

1. Abrasion stage

The partial neutron-removal cross section σ̃−xn was ex-
pressed in the following binomial form, similar to the
statistical abrasion model [46,49]:

σ̃−xn = 2π

(
NP

x

)∫
b Tp(b)[tn(b)]NP−x[1 − tn(b)]xdb, (20)

tn(b) = [Tn(b)]1/NP

= exp

[
−

∫
ds

(
ρP

n

NP

){
σnpρ

T
p + σnnρ

T
n

}]
. (21)

Here, tn(b) represents the probability that a single neutron
in the projectile transmits the target density. From Eq. (20),
σ̃
−xn and r−xn were calculated as

σ̃
−xn =
NP∑

x=0

σ̃−xn, (22)

r−xn = σ̃−xn

σ̃
−xn
. (23)
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Note that the sum of σ̃CC [Eq. (12)] and σ̃
−xn [Eq. (22)] is
mathematically equal to σR [Eq. (2)]; i.e., Eq. (16) is strictly
satisfied.

2. Prefragment excitation energy

The Gaimard-Schmidt method [46] was adopted to deter-
mine the prefragment excitation-energy distribution. In this
method, the excitation energy distribution of the one-hole
state via the single-nucleon removal, g(ε), is defined as

g(ε) = 2

Emax

(
1 − ε

Emax

)
. (24)

This is a linear function satisfying the maximum excitation
energy Emax, i.e., g(Emax) = 0 and

∫ Emax

0 g(ε)dε = 1. This
functional shape corresponds to an approximation of the
single-hole state density in the Woods-Saxon potential [50].
The excitation energy distribution w−xn(Eex) via the abrasion
of x neutrons is obtained from the convolution of g(ε):

w−xn(Eex) = 1

x!

∫ ∞

0
dε1 · · · dεx

×
[

g(ε1) · · · g(εx ) × δ

(
Eex −

x∑
i=1

εi

)]
. (25)

For the σCC calculation within this framework, the only free
parameter is Emax.

3. Ablation (evaporation) stage

The prefragment deexcitation process was treated using
the statistical model, with f (Eex, AP − x, ZP) calculated using
the GEMINI++ code [51–53]. This calculation reflects the
light-particle or gamma-ray evaporation from the prefragment
nucleus based on the Hauser-Feshbach theory. The yield dis-
tribution of the final fragment via the prefragment-nucleus
decay was calculated using the Monte Carlo method for all
sequential decays until no further decays occurred. Hence,
we obtained f (Eex, AP − x, ZP) from the fraction of all decay
channels with at least one charged-particle emission in the
sequential decay. Here, the average angular momentum of the
prefragment due to the peripheral fragmentation reaction was
estimated to be at most 3h̄, even for a multineutron abraded
channel (e.g., four neutrons) of 48Ca [54]. For such a small
angular momentum, f (Eex, AP − x, ZP) is largely independent
on the initial angular momentum; therefore, the initial angular
momentum was assumed to be zero here.

4. Contribution of respective xn channels to Pevap

To illustrate the influence of each of the above compo-
nents on Pevap, calculations using Emax = 45 MeV for 42,48Ca
are discussed as examples. In Figs. 7(c) and 7(d), results
for r−xnw−xn (the integral of which over Eex and x is 1)
are shown for channels up to three-neutron removal (dotted
lines). The r−xnw−xn distributions do not differ significantly
between 42Ca and 48Ca. In contrast, a significant difference
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is apparent for f (Eex, AP − x, ZP) between these nuclides
[Figs. 7(a) and 7(b)]. For 42Ca, f (Eex, AP − x, ZP) of all chan-
nels immediately saturates to 1 beyond the threshold energy,
which is the sum of the proton separation energy Sp and the
Coulomb barrier energy EC. However, the respective values
of f (Eex, AP − x, ZP) for 48Ca are far smaller than those for
42Ca. Qualitatively, this can be interpreted as reflecting the
fact that the ratio of the partial widths of the neutron and
proton emissions in a single step Γn/Γp, which is dominant
in the small Eex region, roughly depends on [55]

Γn

Γp
	 exp

[
2
√

a(Eex − Sn)
]

exp
[
2
√

a(Eex − Sp − EC)
], (26)

where a denotes the level density parameter. Thus, the compe-
tition between proton and neutron evaporation depends on the
difference between Sn and Sp. This tendency generates a small
f (Eex, AP − x, ZP) in the low-excitation-energy region for
neutron-rich nuclides. Thus, for 48Ca, r−xnw−xn f [Fig. 7(d),
solid lines] is distributed only in the high-excitation-energy
region.

To clarify the above, r−xn and p−xn, which results from
the integration of r−xnw−xn f over Eex, are plotted against
the number of abraded neutrons in Fig. 8 (dotted and solid
lines, respectively). For 42Ca, 44% of the 1n channel (which
accounts for approximately 70% of σ̃
−xn) contributes to σCC

with charged particle evaporation (p−1n/r−1n = 0.31/0.70 =
0.44). Most channels with more abraded neutrons contribute
to σCC, yielding Pevap ≡ ∑

p−xn = 0.58. In contrast, for 48Ca,
p−xn is almost zero in channels below 3n, yielding Pevap =
0.11. Thus, Pevap strongly depends on the neutron number of
the projectile nucleus. This dependence results in the decreas-
ing trend of the experimental σCC data against N and Sp shown
in Figs. 4 and 6.

C. Comparison of experimental and calculated results at
E � 280 MeV/nucleon

Hereafter, the calculation introducing the effects described
in the previous subsection is denoted “Glauber(CE).” To per-
form this calculation, a 2pF-type function was assumed for the
Ca-isotope ρn(r) used in Eq. (20). Similarly to ρp(r), ρn(0) =
0.088 fm−3 was assumed. Under this constraint, for 42–51Ca,
we employed a 2pF function that reproduced the experimental
σI [7]. For 52–54Ca, σI values extrapolated from 48–51Ca were
used. For 40Ca, the parameters of the 2pF function were de-
termined to reproduce the experimental rm [56]. For 36–39Ca,
the theoretical rm values from the Hartree-Fock-Bogoliubov
calculation with M3Y-P6a [57] were used to determine the
parameters of the 2pF function.

In Fig. 4(b), the Glauber(CE) results for σCC on 12C for
Ca isotopes with Emax = 20 and 70 MeV are represented
by dashed and dotted thin black lines, respectively. These
calculated results depend on the adopted value of Emax.
From the chi-square fitting of the Glauber(CE) calculations
to the present experimental σCC results for 42–51Ca, Emax =
45(8) MeV was obtained [Fig. 4(b), red line]. The corre-
sponding Pevap [Fig. 4(a)] approaches zero asymptotically in
the neutron-rich region, agreeing with the Glauber(ZROLA)
calculation for σ̃CC (black solid line).

The obtained Emax = 45(8) MeV can be understood by
considering a naive Fermi gas model [46], where the typical
Fermi energy is approximately 40 MeV. The Emax should be
obtained when the single hole is located at the potential depth.
Under this condition, the single-hole-state energy corresponds
to the Fermi energy.

To examine this model for other isotopic chains, we com-
pared the Glauber(CE) results with experimental values of
σCC on 12C at around 280 MeV/nucleon for Be [19], C
[19,29,58,59], O [19,60], Ti [20], Cr [20], and Fe [20] iso-
topes. Here, ρp(r) and ρn(r) were assumed to be the 2pF
functions for the Ti, Cr, and Fe isotopes. Harmonic-oscillator-
type (HO) functions [61] were assumed for the Be, C, and O
isotopes:

ρ(r) = ρ(0) ×
[

1 + C − 2

3

(
r

w

)2
]

exp

[
−

(
r

w

)2
]
, (27)

where C denotes the number of neutrons or protons, w is
the radius parameter, and ρ(0) is the normalization factor
determined by the volume integral. For nuclides whose ex-
perimental rp [1,44] and σI [16] results were available, the
HO or 2pF function parameters reproducing these results
were adopted, as for 42–51Ca. For 14Be and the unstable
C and O isotopes, no experimental rp values have been de-
termined other than from σCC; thus, the rp values were taken
from theoretical values via the fermionic molecular dynamics
(FMD) [24], the coupled-cluster method with NNLOsat [30],
and relativistic mean field (RMF) calculations [30], which
reproduce the experimental rp values of stable nuclides in
their respective isotopic chains [1]. In contrast, rp for 55–58Cr
were extrapolated from experimental rp for 52–54Cr [1] in the
same way as for 53,54Ca mentioned before. The parameters for
ρn(r) of the Ti, Cr, and Fe isotopes were selected to reproduce
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FIG. 9. Experimental σCC results at E 	 280 MeV/nucleon and Glauber(CE) σCC values for (a) Be, (b) C, (c) O, (d) Ti, (e) Cr, and (f) Fe
isotopes as functions of A. The experimental results were taken from Refs. [19] (closed triangles), [20] (open triangles), [29] (open squares),
[59,60] (open diamonds), and [58] (open circles). Each line is defined as in Fig. 4. The ratios of the experimental values to the calculated ones
using Eq. (12) (black solid lines) for Ti, Cr, and Fe isotopes are represented in Fig. 6. The ratios of the experimental values to the Glauber(CR)
calculations with Emax = 45 MeV are represented in Fig. 10.

the theoretical rm obtained via the Hartree-Fock–plus–BCS
(HFBCS) calculations with the SkM* parameters [62–64].

The A dependences of σCC for respective isotopic chains
at around 280 MeV/nucleon are shown in Fig. 9. In the
figure, the experimental values decrease with increasing A
for the Ca, Ti, Cr, and Fe isotopes, but are rather flat for
the Be, C, and O isotopes. Notably, the Glauber(CE) calcu-
lations with Emax = 45 MeV simultaneously reproduced the
trends of the experimental results for various isotopic chains
except for some data of Be isotopes and 12C. Note that the
existing results of 12C [29,58,59] deviate from each other.
The experimental results for Be isotopes are rather consistent
with the Glauber(CE) calculation using Emax = 20 MeV (thin
black dashed line). Existing σCC calculation models (black-
solid and green-dashed lines) cannot explain the experimental
values for nuclides such as 9Be, which are always accompa-
nied by charged particle emissions via 8Be according to the
one-neutron removal. However, the Glauber(CE) successfully
reproduced even the experimental value of 9Be.

To quantitatively evaluate the Glauber(CE) method for nu-
clides with known rp, the ratios of the experimental σCC values
to those of the Glauber(CE) calculations with Emax = 45 MeV
were plotted (Fig. 10). Here, in Fig. 10, only the experimental
σCC data at around 280 MeV/nucleon were evaluated. The
Glauber(CE) calculation reproduces the experimental data
quite well. The standard deviation of the ratios, indicated by
the shaded band in Fig. 10, around the mean ratio (1.004) is
1.6%, except for Be isotopes [Fig. 10(a)] and some 12C data
[open diamond and open circle in Fig. 10(b)]. In particular, the
standard deviation was 0.9%, and the mean ratio was 1.001 for
the present experimental data of Ca isotopes and existing data
for Ti, Cr, and Fe isotopes. Thus, the Glauber(CE) calculation

systematically explains the σCC data in several isotopic chains
at around 280 MeV/nucleon by tuning just one parameter
(Emax) to reproduce Ca-isotope data, indicating the effect of
charged-particle evaporation induced by neutron removal on
σCC probably exists.

D. Derivation sensitivity of σCC to rp

Using the proposed calculation method, the relationship
between σCC and the RMS radii of point-proton density dis-
tributions, rp, were investigated in Ca isotopes. In Fig. 11,
the relationship between rp and σCC, calculated by the
Glauber(CE) model with Emax = 45 MeV, are illustrated by
the red solid lines, considering the cases of 42Ca and 51Ca
as examples. Here, as before, the central densities of ρp(r)
and ρn(r) were assumed to be 0.088 fm−3, and the other
parameters of ρn(r) were determined to reproduce the existing
experimental σI data [7]. Then, σCC was calculated by chang-
ing the parameters of ρp(r), i.e., by changing the rp value.

As shown in Fig. 11, the correlation between σCC and rp

for 51Ca has a steeper slope than that for 42Ca. In other words,
the sensitivity of σCC to rp is small for nuclides near the beta-
stability line, where the neutron removal reaction contributes
to σCC through a large Pevap value, as shown in Fig. 4(a). In ad-
dition, to address the influence of the Emax uncertainty on the
relation between σCC and rp, the calculation results using the
Glauber(CE) with Emax = 45 ± 8 MeV are indicated by the
red dashed lines in Fig. 11. In 42Ca, the Emax uncertainty,
that is the treatment of the evaporation process, also causes
a non-negligible change in the relation between σCC and rp.
Therefore, at the present, it might be difficult to deduce rp

from σCC with a good accuracy.
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The red solid lines indicate the calculations of σCC using the
Glauber(CE) model with Emax = 45 MeV, while the red dashed lines
indicate the uncertainty of the calculation owing to the Emax value
(±8 MeV).

On the other hand, the uncertainty of the relation between
σCC and rp for 51Ca is significantly smaller than that for 42Ca.
For example, the change of rp owing to the uncertainty of Emax

with the same σCC value, i.e., the width between the dashed
lines along the horizontal axis, is approximately ±0.02 fm in
51Ca, which is quite small, less than ≈1/5 of that for 42Ca.
This is because the effect of charged-particle evaporation in-
duced by the neutron removal on σCC, which corresponds to
the difference between the red and black solid lines in Fig. 4,
becomes negligible in the neutron-rich region. Hence, in such
a region, the σCC data have the potential to extract rp using
a procedure similar to that used to deduce rm from σR (for
example, Refs. [6,7,16,65–74]).

To demonstrate the expected derivation accuracy of rp, the
relationship of the uncertainties of σCC and rp is derived below
in a simplified and general form. As shown in Eqs. (10) and
(12), σ̃CC is a quantity that is sensitive to ρp(r) of the projec-
tile nucleus. From Eqs. (16), (17), and (18), the relationship
between σ̃CC and σCC, which is an experimental observable,
can be expressed as follows:

σ̃CC = (1 − Pevap)−1σCC − (
P−1

evap − 1
)−1

σR. (28)

To simplify the discussion, the relationship between σ̃CC and
rp is expressed as

σ̃CC ∼ π (rp + rT)2, (29)

where rT is the RMS matter radius of the target nucleus. From
the above equations with the assumptions of rp ∝ (2ZP)1/3,
where the RMS proton radius of the projectile nucleus was
assumed to depend on the mass number of the self-conjugate
isotope ASC, i.e., ASC = 2ZP (ZP is the atomic number of
projectile the nucleus), and rT ∝ A1/3

T , the relation between
the uncertainties of rp and σCC is obtained as

δrp

rp
	 1

2

[
1 +

(
AT

2Zp

)1/3
]

×
[{

1 + (
P−1

evap − 1
)−1

(
σR

σ̃CC

)}2(
δσCC

σCC

)2

+
{(

P−1
evap − 1

)−1
(

σR

σ̃CC

)}2(
δσR

σR

)2
]1/2

. (30)

Figure 12 shows the relative uncertainty of rp, δrp/rp, for
Ca isotopes, calculated using Eq. (30) as a function of A
of Ca isotopes. In the calculations, the Pevap values using
Emax = 45 MeV were adopted. It was also assumed that rp is
deduced from the σCC data on a carbon target with a condition
of δσCC/σCC = 1%. Here, the calculation results under the
assumed relative uncertainties of 0%, 1%, and 3% in σR (or
σI) are shown by the black dotted, red solid, and blue dashed
lines, respectively. The uncertainty of σR does not affect the
sensitivity of σCC to rp in the neutron-rich region because all
calculations converge to the same value. This results from
the fact that the charged-particle evaporation induced by the
neutron removal reaction is negligibly small in this region, as
mentioned in Fig. 11. Fig.ure 12 also shows that rp can be
deduced with an accuracy of less than 1% from the σCC data
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value was assumed to be 1%. The black dotted, red solid, and blue
dashed lines indicate the results under the assumptions of δσR/σR =
0%, 1%, and 3%, respectively. The estimation with the assumption of
δσR/σR = 3% simulates the case wherein the experimental σR data
are not available.

with δσCC/σCC = 1% for A � 48 when σR has already been
measured with a typical accuracy of 1%. Note that σcc and
σI (or σR) can be easily measured simultaneously as in the
present study [7].

In contrast, in the nuclei for which the experimental σR

or σI is unavailable, the theoretical σR value must be used
instead of the experimental one. According to Refs. [75–77],
the maximum deviation of the calculated σR value to the
experimental one [7] is at most 3% in 42–51Ca. To simulate
this, the δrp/rp values assuming δσR/σR = 3% were indicated
by the blue dashed line in Fig. 12. This result demonstrates
that rp can be deduced with 0.9% accuracy from the σCC data
with δσCC/σCC = 1% for Ca isotopes for A � 51 even if the
experimental σR value is unavailable. Note that even if we
assume the 6% uncertainty for σR (twice the value used for
the blue dashed line), the rp values for Ca isotopes for A � 52
can be still deduced with 0.9% accuracy from the σCC data.
Thus, the σCC measurement at E 	 280 MeV/nucleon can be
utilized to deduce the rp of a neutron-rich nucleus.

E. Comparison of experimental and calculated results in other
energy regions

There are systematic σCC data to derive rp at energies
other than E 	 280 MeV/nucleon [17,18,24–27]. Therefore,
it would be valuable to evaluate the Glauber(CE) calculation
in other energy regions.

First, the experimental σCC values on 12C at around
900 MeV/nucleon [17,24–27,58] were compared. As for the
C isotopes above, the ρp(r) and ρn(r) of the B, N, and F

isotopes were assumed to be the HO functions that reproduce
the theoretical rp and experimental σI [16,78]. As rp values
to be reproduced, the anti-symmetrized molecular dynamics
(AMD) [79] theoretical values scaled to fit the experimental
rp of 11B [1] were used for the B isotopes, the theoretical
values from the in-medium similarity renormalization group
(VS-IMSRG) [27], which reproduce the experimental rp of
14N [1], were used for the N isotopes, and the theoretical
values from the HFBCS with the SkM* [62–64], which also
reproduce the experimental rp of 19F [1], were used for the F
isotopes.

The experimental and calculated values are presented in
Fig. 13. Note that although the calculation using the correc-
tion factor (green dashed line) has been validated between
100 and 600 MeV/nucleon in Ref. [18], the comparison
with this method also at 900 MeV/nucleon would be valu-
able. Experimental σCC results without the correction of the
neutron-removal cross section were taken from Refs. [25–27],
except for those for 7,9Be [24]. In Ref. [27], two types of
experimental values that depend on the analysis method were
reported for N isotopes. Both values, labeled by σ ex,veto

cc and
σ ex,noveto

cc in Ref. [27], are plotted as solid and open triangles in
Fig. 13(d), respectively. The existing experimental data devi-
ate from each other systematically depending on the datasets
in some isotopic chains. The Glauber(CE) calculations with
Emax = 45 MeV overestimated several values of the Be, B, C,
and N isotopes, as shown by the closed triangles [24–27], open
circle [24], and open diamond [58], and also overestimated the
values of O isotopes (crosses). The Glauber(ZROLA) calcu-
lations with the correction factor (green dashed line) and/or
the Glauber(CE) calculations with Emax = 20 MeV (thin black
dashed line) were rather consistent with these experimental
data. In contrast, the experimental values shown by crosses
[17] (except for O isotopes) and open triangles (σ ex,noveto

cc
[27]) agreed relatively well with the Glauber(CE) calculations
under the same Emax as for the data at 280 MeV/nucleon
(red line).

Then, the energy dependence of the experimental σCC

on 12C for 28Si [18,58,80,81] was compared to the
Glauber(CE) results (Fig. 14), for the same 28Si density pro-
files as in Ref. [18]. The Glauber(CE) results with Emax =
45(8) MeV overestimated the experimental results in E < 200
MeV/nucleon. On the other hand, at higher energies, the
calculation agreed well with some experimental values. How-
ever, as in Fig. 13, the experimental data in Fig. 14 also show
deviations beyond respective uncertainties from each other,
especially at E > 700 MeV. Therefore, to understand the σCC

data at energies other than around 280 MeV/nucleon in more
detail, future studies based on more sophisticated theories are
strongly desired.

IV. SUMMARY

In summary, we performed σCC measurements for 42–51Ca
on a carbon target at around 280 MeV/nucleon. The ob-
tained σCC results decreased significantly with increasing A,
differing from the trend for light-mass isotopic chains such
as C isotopes. The overall experimental trend could not be
explained by Glauber-like calculations. To explain the results

014617-12
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FIG. 13. Experimental σCC results at E 	 900 MeV/nucleon and Glauber(CE) values of σCC for (a) Be, (b) B, (c) C, (d) N, (e) O, and
(f) F isotopes as functions of A. The systematic experimental results are represented by crosses [17] and closed triangles [24–27]. The open
triangles in (d) indicate σ ex,noveto

CC values from Ref. [27]. The open diamond and circle indicate experimental values from Refs. [24] and [58],
respectively. Each line is defined as in Fig. 4.

of Ca isotopes, the charged-particle evaporation effect in-
duced by the neutron-removal reaction was introduced. From
the experimental σCC data for 42–51Ca, the parameter of the
Glauber(CE) model, Emax, was determined to be 45(8) MeV,
and experimental σCC values at around 280 MeV/nucleon
were successfully explained for other isotopic chains from C
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m
b
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FIG. 14. Energy dependence of σCC for 28Si on 12C. The experi-
mental values are represented by closed triangles [18], open circles
[58], open diamonds [80], and open squares [81]. Each line is defined
as in Fig. 4.

to Fe by the current model. The standard deviation between
these experimental results and the calculations was 1.6% for
the C to Fe isotopes and, notably, 0.9% for isotopes beyond
Ca. The comparison between experimental and calculated re-
sults also clarifies that the charged-particle evaporation effect
is negligibly small in the neutron-rich region, indicating the
σCC data potentially allow one to extract rp of very neutron-
rich unstable nuclei; these values are difficult to measure using
other experimental methods. The sensitivity of σCC to rp was
also evaluated. As a result, it was demonstrated that a σCC

with an accuracy of 1% is sensitive enough to determine
the rp with an accuracy of 0.9% for neutron-rich Ca iso-
topes (A � 50). The Glauber(CE) model was also evaluated
in other energy regions, and some σCC data were reproduced
using the proposed calculation model. To understand σCC in
more detail, especially in energy regions other than around
280 MeV/nucleon, future studies based on more sophisticated
theories are required.
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FIG. 15. Energy dependence of σR for (a) 9Be and (b) 27Al on
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present ZROLA calculation with the best-fit parameter for the Fermi
motion, CFM = 0.53, and the conventional ZROLA calculation with-
out the Fermi motion effect on σi j , respectively. The experimental
data are taken from Ref. [16] (triangle) and Ref. [38] (circles).

APPENDIX A: COMPARISON OF REACTION CROSS
SECTION DATA TO GLAUBER-MODEL CALCULATION

APPLIED IN THIS WORK

To demonstrate the validity of the Glauber-model calcu-
lation used in this work, we compare the Glauber-model
calculations to the σR data for 9Be and 27Al on 12C. The
experimental values were taken from Ref. [16,38]. In the
calculation, the point-proton and point-neutron density dis-
tributions introduced in Ref. [38] were used as the density
profiles of 9Be and 27Al.

Figure 15 shows the energy dependences of σR for 9Be and
27Al on 12C. Thus, the Glauber-model calculation applied in
this work not only systematically reproduces the σR data of
12C + 12C shown in Fig. 5, but also the data of other reaction
systems.
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A

σCC (ACa+12C)

FIG. 16. Same as Fig. 4(b), but with the Glauber-model cal-
culations without the Fermi-motion effect under the ZROLA.
The blue solid line and the corresponding shaded region indi-
cate the Glauber(CE) model with Emax = 55(6) MeV. The black
solid line and green dashed line represent the σCC values from the
Glauber(ZROLA) calculation [Eq. (12)] and the Glauber(ZROLA)
calculation with the correction factor [18] [Eq. (13)], respectively.
The present 42–51Ca results and existing data [20,21] are indicated by
closed circles and open triangles, respectively.

APPENDIX B: DISCUSSION BASED ON
GLAUBER-MODEL CALCULATION WITHOUT EFFECT

OF FERMI MOTION

In this study, we used the Glauber-model calculation taking
the Fermi-motion effect into account. From the comparison
between the two calculations shown in Figs. 5 and 15, the
reproducibility of the σR data below 200 MeV/nucleon was
improved by the calculation with the Fermi-motion effect.
This agreement in σR in a wide energy region is important
to evaluate the energy dependence of σCC shown in Fig. 14.

On the other hand, these two types of the Glauber-
model calculations give almost the same σR values in E �
200 MeV/nucleon. In Fig. 5, for example, the differences
between these calculations in σR for 12C on 12C at 280
MeV/nucleon and 900 MeV/nucleon are 1.3% and 0.05%,
respectively. Therefore, the adopted model for the Glauber-
model calculation does not influence the essence of the
discussion in this paper.

In Fig. 16, the calculation results of σCC for Ca isotopes
on 12C by the Glauber-model calculations without the Fermi-
motion effect under the ZROLA are shown. In this calculation,
the bare NN cross sections σ bare

NN were used instead of the
effective ones σ eff

NN defined in Eq. (4). Compared to Fig. 4(b),
the σ̃CC values (black solid line) in Fig. 16 are 1.3% smaller.
As a result, the obtained value of Emax, which contributes to
the other term in σCC, i.e., σevap [see Eq. (18)], was 55(6) MeV.
This value is slightly larger than the one mentioned in the
main discussion of the paper [Emax = 45(8) MeV]. However,
the Glauber(CE) calculation with Emax = 55(6) MeV (blue

014617-14



CHARGE-CHANGING CROSS SECTIONS FOR … PHYSICAL REVIEW C 106, 014617 (2022)

1400

1300

1200

1100

1000

σ C
C
 (

m
b
)

7 8 9

100
2 3 4 5 6 7 8 9

1000

E (MeV/nucleon)

σCC(
28

Si + 
12

C)

FIG. 17. Same as Fig. 14, but with the Glauber-model calcu-
lations without the Fermi-motion effect under the ZROLA. The
definitions of all the lines are the same as in Fig. 16. The experi-
mental values are represented by closed triangles [18], open circles
[58], open diamonds [80], and open squares [81].

line in Fig. 16) still accurately reproduces the trend of experi-
mental σCC data at around 280 MeV/nucleon, not only for Ca
isotopes but also for other isotopes shown in Fig. 9, similarly
to the Glauber(CE) calculation with the Fermi-motion effect

using Emax = 45(8) MeV. Therefore, the importance of the
effect of charged-particle evaporation induced by the neutron
removal reaction on σCC does not change.

In Fig. 17, the blue line shows the calculated energy
dependence of σCC for 28Si on 12C by the Glauber(CE)
model without the Fermi-motion effect using Emax = 55(6)
MeV. Below 200 MeV/nucleon, the Glauber(CE) calculation
without the Fermi motion are rather consistent with the exper-
imental data. However, this calculation fails to reproduce σR

data in this energy region, as shown in Fig. 5 and Appendix A.
At high energies around 900 MeV/nucleon, the σ̃CC value

is independent of the Fermi motion effect for the Glauber-like
model similar to σR mentioned above. Therefore, with an
increase in the value of Emax from 45 MeV to 55 MeV, the
calculated value of σCC using the Glauber(CE) model without
the Fermi motion effect also increases. Figure 17 shows σCC

for 28Si on 12C as a function of energy. Compared to Fig. 14,
the calculated σCC value at around 900 MeV/nucleon by the
Glauber(CE) model (blue solid line) in Fig. 17 increases by
about 1.6%. Although the Glauber(CE) calculation with the
Fermi motion effect using Emax = 45(8) MeV agrees with
some of the existing data at E > 700 MeV/nucleon, as shown
by the red line in Fig. 14, the calculation without the Fermi
motion using Emax = 55(6) MeV shown by the blue line in
Fig. 17 overestimates all the existing data.

Therefore, to maintain the consistency of the agree-
ment between the experimental data and the calculations
both in σR at E = 30–1000 MeV/nucleon and σCC at E >

200 MeV/nucleon, we applied the Glauber model with the
Fermi motion effect. In future work, it will be interesting to
investigate the energy dependence of σCC in detail.
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