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Microscopic description of the 2H(α, γ )6Li radiative capture reaction
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The 2H(α, γ )6Li radiative capture responsible for the 6Li production during the big-bang nucleosynthesis is
comprehensively studied within a microscopic approach. The approach implements microscopically clustering
aspects of nuclear structure and dynamics in an oscillator-basis representation. The total astrophysical S factor
of the reaction is calculated. All allowed partial electric quadrupole and magnetic dipole transitions between the
4He + 2H continuum and the 6Li ground state are considered in the standard long-wavelength limit. Isospin-
forbidden electric dipole transitions are taken into account in two ways. The first method is based on the
expression for the electric dipole operator at the leading order of the long-wavelength approximation with the
usage of the exact-mass prescription. In the second method, this operator is written at the first order beyond
the leading-order approximation. Contributions of the transitions are compared to each other. The 4He + 2H
nuclear phase shifts for the initial channels of the considered reaction are computed. Important properties of the
6Li nucleus, such as the breakup threshold, the asymptotic normalization constants, and the electric quadrupole
moment are also described. Deformation effects and their manifestations in 6Li are discussed. The obtained
results are shown to be in good agreement with a large set of experimental data.
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I. INTRODUCTION

Nuclear reactions responsible for production and destruc-
tion of lithium isotopes are of great interest for astrophysical
applications because their cross sections (astrophysical S fac-
tors) serve as input. At the present time, there is, in particular,
the so-called “lithium depletion” problem in nuclear astro-
physics. This problem is related to the abundance of the
lithium isotopes in the Universe and includes two puzzles.
The reason for the first lithium puzzle is a discrepancy be-
tween predictions of the big-bang nucleosynthesis model and
astronomical observations in metal-poor halo stars for the pri-
mordial 7Li/H ratio. The model predictions (5.24+0.71

−0.67)×10−10

[1], (4.56−5.34)×10−10 [2], (5.61 ± 0.26)×10−10 [3,4],
4.648×10−10 [5], and (4.68 ± 0.67)×10−10 [5] are about
three to four times larger than values of (1.23+0.68

−0.32)×10−10 [6]
and (1.58+0.35

−0.28)×10−10 [7] from analyses of the observational
data. The second lithium puzzle is caused by a disagreement
between estimations for the primordial abundance ratio of the
lithium isotopes (6Li/7Li) obtained from the big-bang nucle-
osynthesis model (∼ 10−5) [2,5,8] and from an analysis of
astrophysical data on the lithium abundance in metal-poor
halo stars (∼ 5×10−2) [9]. The discrepancy is about three
orders of magnitude. Nevertheless, it should be noted that
findings of works [10–12] demonstrate that the second lithium
puzzle could be weakened.

The 3H(α, γ )7Li and 3He(α, γ )7Be radiative captures are
assumed to be the key reactions for a calculation of the 7Li
primordial abundance. A recent theoretical study of these
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reactions was comprehensively performed within microscopic
approaches in works [13,14] where references to a large num-
ber of previous experimental and theoretical investigations
can be found. The corresponding review and discussions are
also given in Refs. [13,14].

In turn, the 2H(α, γ )6Li radiative capture at energies from
50 keV up to 400 keV is responsible for the big-bang nu-
cleosynthesis of the 6Li nuclei. Experimental studies of this
reaction at the astrophysically relevant energies are very dif-
ficult because of the Coulomb barrier, which exponentially
decreases the reaction cross section. In works [15–22], data
on the 2H(α, γ )6Li reaction are deduced from experimental
measurements. These experiments cover a wide energy range.
However, the data have some scatter and large uncertainties at
the astrophysical energies. That is why extrapolations based
on theoretical calculations are required.

The 2H(α, γ )6Li theoretical studies are also very challeng-
ing. As it is well known, electric dipole (E1) and magnetic
dipole (M1) transitions for radiative capture reactions be-
tween so-called self-conjugate nuclei, for which the number
of neutrons coincides with the number of protons, are strongly
suppressed due to an isospin selection rule (the isotopic sup-
pression). At the leading order of the long-wavelength limit,
which is a good approximation for a radiative-capture de-
scription at astrophysical energies, E1 transitions between
zero-isospin states for self-conjugate nuclei and systems com-
posed of them are isospin forbidden. Electric quadrupole (E2)
transitions dominate in this case. However, there are various
E1 corrections that should be taken into account because they
may become important in some cases. An analysis of these
corrections is a difficult task, especially from the microscopic
viewpoint.
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In Refs. [15,17], calculations of the 2H(α, γ )6Li total cross
section were performed in a direct capture model (DCM).
A three-body approach and a potential cluster model (PCM)
were respectively applied in Refs. [19,20]. The cross section
of the 2H(α, γ )6Li reaction caused by the E2 transitions only
was calculated using the PCM in Ref. [23], the PCM com-
bined with the resonating group model (RGM) in Ref. [24],
and the DCM in Refs. [25,26]. In Ref. [27], the relative
intensity of the E1 versus E2 radiation in the 2H(α, γ )6Li
reaction was estimated using simple versions of cluster and
shell models for the 6Li nucleus and perturbation theory for
a description of the Coulomb polarizability of the deuteron.
The obtained corrections to the E1 radiation were appeared
to be small enough but not negligible ones. Various E1 cor-
rections were also considered in work [28] within the PCM.
It was shown that the so-called prescription of exact masses
(PEM) led to the E1 transitions of the same order as the
E2 ones for the 2H(α, γ )6Li reaction at very low energies.
The former ones even turned out larger in magnitude than
the latter ones with the energy decrease. In other studies,
the PEM was employed to take into account the forbidden
E1 transitions for the considered reaction in the multichannel
RGM [29], in the framework of a multicluster dynamic model
with Pauli projection [30], and within the two-body PCM
based on a concept of the asymptotic normalization coeffi-
cient (ANC) [31–34]. A microscopic three-cluster generator
coordinate method was used in Ref. [35] to analyze the E2
contribution to the 2H(α, γ )6Li total astrophysical S factor
with different conditions of the calculations. In Refs. [36,37],
the total astrophysical S factor was computed using a hybrid
approach where the 6Li bound state wave function was gen-
erated by the variational Monte Carlo (VMC) method from
realistic potentials. The same potentials were used for the ini-
tial scattering state to generate the ground-state VMC solution
for the α particle and to solve almost exactly a two-nucleon
Schrödinger equation for the deuteron, whereas the α-d rel-
ative motion wave function followed from a Schrödinger
equation with a phenomenological two-body potential. In fact,
an ab initio description of the final state was combined with
a phenomenological two-body description of the initial states.
It was shown that the main contribution to the total E1 capture
was caused by the relativistic center-of-energy correction,
which was interpreted in the work [36] as an analog of the
PEM. In Refs. [38–43], calculations for the 2H(α, γ )6Li total
astrophysical S factor were performed in the framework of
various two-body PCM, using the PEM for the E1 transitions.
Finally, the considered reaction was studied in a three-body
cluster model in Refs. [44–47]. Only in the frame of the
PEM, the total astrophysical S-factor data were reproduced
in Ref. [44]. Meanwhile, it was suggested in Refs. [45–47]
that the forbidden E1 transitions were mainly caused by the
presence of isotriplet component admixtures in the wave func-
tions. Moreover, some criticism of the PEM was undertaken in
Ref. [46].

Thus, there are only a few microscopic studies devoted to
2H(α, γ )6Li. Those studies were performed a long time ago
and not devoid of certain drawbacks. In order to broaden the
knowledge and to find reliable answers to open questions,

new microscopic investigations of this reaction are obviously
worthwhile.

It should be noted that the description of nuclear spec-
troscopy and properties of 6Li and the d-α elastic scattering
also attracts attention of researchers, despite a long story of
the investigations. Nowadays, there are various approaches
to this problem. In recent works, both advanced ab initio
methods and simple two-body models have been developing.
The ab initio no-core shell model (NCSM) combined with
the RGM (NCSM/RGM) [48] and the NCSM with contin-
uum [49] were applied to describe the 6Li states and the d-α
scattering. In Ref. [50], the ab initio no-core full configuration
approach was implemented to solve for 6Li properties. A
feed-forward artificial neural network method was proposed
in Ref. [51] as an extrapolation tool to obtain the ground-state
energy and the ground-state point-proton root-mean-square
(rms) radius along with their extrapolation uncertainties based
upon NCSM results in readily solved basis spaces and was
applied to 6Li. In Ref. [52], the 6Li nucleus and the d-α
scattering were considered by an effective two-body clus-
terization method based on Sturmian expansion solutions of
the Lippmann-Schwinger equations. A method of analytical
continuation of elastic scattering data at positive energies to
the negative-energy region to obtain information about the
features of bound states was discussed and applied to ex-
tract some 6Li bound-state properties in works [53–56]. In
Ref. [57], an exactly solvable simple potential model with a
δ-shell potential was used to revisit bound states, resonances,
and elastic scattering in light-ion systems, including α + d.
It is clear from what has been said above that not only the
2H(α, γ )6Li reaction, but also its initial and final channels are
individually of interest for many modern studies.

The aim of the present paper is to study thoroughly the
2H(α, γ )6Li radiative capture reaction from the microscopic
viewpoint. The developed approach is based on a microscopic
implementation of clustering aspects of nuclear structure and
dynamics with the use of oscillator-basis expansions for the
relative motion wave functions of the clusters and a realis-
tic effective nuclear potential for the nucleon-nucleon (NN)
interaction. The energy dependence of the total astrophysical
S factor is calculated. The contributions of all possible E1,
E2, and M1 captures are taken into account. The 2H(α, α)2H
elastic scattering and the 6Li properties are also considered. In
fact, a unified microscopic description of nuclear structure and
dynamics of the six-nucleon 4He + 2H system is performed.
The discrete spectrum and the continuum of this system,
including the electromagnetic transitions between them, are
treated in a consistent way within the implemented approach.

It should be emphasized that approaches based on
oscillator-basis expansions are effective tools in modern nu-
clear physics for solving many important problems of nuclear
theory. In particular, it is clearly seen from works [13,14,58–
69] where various aspects of oscillator-basis calculations are
considered.

II. FORMALISM OF THE APPROACH

Cluster concept of nuclear structure and dynamics is
known to be a superb physical assumption for a variety of light
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nuclei. Clustering in light nuclei is confirmed by many exper-
imental facts and theoretical estimations (for example, see a
recent review [70] and references cited therein). According
to the nuclear cluster model, nucleons in nuclei spend a sig-
nificant fraction of their time in various substructures called
nuclear clusters. The total wave function of an A-nucleon
system studied in a microscopic two-cluster model should be
written in the form of a fully antisymmetrized product of the
translationally invariant intrinsic wave functions φ(1) and φ(2)

of the clusters and the wave function f (q) of their relative
motion,

� = A{φ(1)φ(2) f (q)}, (1)

where A is the antisymmetrization operator, and q is the rela-
tive vector. If the intrinsic cluster wave functions are supposed
to be fixed, the problem is reduced to finding the relative
motion wave function f (q).

In order to reformulate the problem, one can make use of
an expansion in series,

f (q) =
∑
νlm

Cνlm fνlm(q), (2)

of the oscillator functions,

fνlm(q) = Nνl q̄lL(l+1/2)
(ν−l )/2(q̄2) exp (−q̄2/2)Ylm(nq). (3)

Here

Nνl = (−1)(ν−l )/2

√
2Г[(ν − l + 2)/2]

r3
0Г[(ν + l + 3)/2]

(4)

is the normalization of the oscillator functions, q̄ = q/r0 is the
dimensionless spatial coordinate, r0 is the oscillator radius, Г
is the gamma function, L(β )

n is the generalized Laguerre poly-
nomial, Ylm is the spherical harmonic, l and m are the orbital
angular momentum and its projection, and ν is the number of
oscillator quanta. As a result, the total wave function (1) can
be represented in the form of an expansion,

� =
∞∑

J=J0

J∑
M=−J

s1+s2∑
s=|s1−s2|

J+s∑
l=|J−s|

∞∑
ν=ν0

CJπ Mlsν �Jπ Mlsν, (5)

over basis functions,

�Jπ Mlsν = NJπ lsν A
{ ∑

m+σ=M

CJM
lm sσ

[
φ(1)

s1
φ(2)

s2

]
sσ

fνlm(q)

}
,

(6)

where the cluster spins s1 and s2 are coupled to the channel
spin s (with the projection σ ), which is, in turn, coupled
with the orbital angular momentum l to the total angular
momentum J (with the projection M), CJM

lm sσ is the Clebsch-
Gordan coefficient, NJπ lsν is the normalization of the basis
functions (6), π is the parity of the system, and ν0 is the
minimum number of oscillator quanta allowed by the Pauli
exclusion principle.

Thus, the problem transforms to determination of the un-
known expansion coefficients CJπ Mlsν . In the general case,
these coefficients obey an infinite set of linear algebraic equa-
tions,

⎧⎪⎨
⎪⎩

s1+s2∑
s=|s1−s2|

J+s∑
l=|J−s|

∞∑
ν=ν0

(〈Jπ Ml̃s̃ν̃|H |Jπ Mlsν〉 − E δs̃sδl̃ lδν̃ν

)
CJπ Mlsν = 0,

s̃ = |s1 − s2|, . . . , s1 + s2, l̃ = |J − s̃|, . . . , J + s̃, ν̃ = ν0, ν0 + 2, . . . ,

(7)

obtained by projecting the multiparticle Schrödinger equation
for the total wave function (5) onto the basis functions (6),

〈�Jπ Mlsν |H − E |�〉 = 0. (8)

Here δi j is the Kronecker symbol, E is the total energy in the
center-of-mass frame, and H is the translationally invariant
microscopic Hamiltonian for the A-nucleon system,

H = T − Tc.m. + VCoul + Vnucl , (9)

where

T − Tc.m. = − h̄2

2mA

A∑
i> j=1

(∇i − ∇ j )
2 (10)

is the kinetic energy,

VCoul =
A∑

i> j=1

e2

|ri − r j |
(

1

2
− t3,i

)(
1

2
− t3, j

)
(11)

is the Coulomb interaction of the protons,

Vnucl =
A∑

i> j=1

V (nucl)
i j (12)

is the nuclear interaction, and V (nucl)
i j is a NN potential. In

Eq. (10), ∇ is the nabla, m is the nucleon mass, and h̄ is the
Planck constant. In Eq. (11), ri and t3,i are the radius vector
and the isospin projection operator of the ith nucleon, and e is
the elementary charge (e > 0).

The total angular momentum and parity conservation re-
moves the summation over J and π in Eq. (7). Taking into
account the boundary conditions for the discrete spectrum and
the continuum of the considered nuclear system, the infinite
set of Eqs. (7) can be reduced to the specific finite sets [13].
The solving a finite set of linear algebraic equations is not
so difficult problem from the mathematical viewpoint. The
most complicated task for realization of such a technique is to
calculate the Hamiltonian matrix elements, which serve as co-
efficients of the corresponding sets of algebraic equations. A
complexity originates from the need of the antisymmetrization
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of the total wave function with respect to every pair permuta-
tion of the nucleons. This leads to a great number of terms
in bra and ket vectors of the matrix elements. Nevertheless,
there is a graceful procedure for avoiding these computational
problems. It is based on the generating functions method [13].
The main idea of the method is to utilize the generating
function,

exp
(− q2

/
2r2

0 + qR/r0 − R2/4
)

=
∑
νlm

Bνl fνlm(q)
Rν

ν!
Y ∗

lm(nR ), (13)

for the oscillator functions (3). In Eq. (13), R is the generating
parameter, and the coefficients Bνl are expressed by

Bνl = (πr0)3/2 ν!

2ν−1/2
√
Г[(ν − l + 2)/2] Г[(ν + l + 3)/2]

. (14)

Replacing fνlm in Eq. (6) by the left-hand side of
relation (13), one can obtain the generating functions for
the basis functions (6). The use of the generating functions
simplifies the calculation of matrix elements. Having
calculated the generating matrix elements 〈Q, s f σ f |V |R, siσi〉
for an arbitrary operator V , all its matrix elements
〈Jπ f

f M f l f s f ν f |V |Jπi
i Milisiνi〉 between the basis functions (6)

can be deduced from the relation,

〈
J

π f

f M f l f s f ν f

∣∣V ∣∣Jπi
i Milisiνi

〉

= 1

κν f l f s f κνi lisiν f !νi!

⎡
⎢⎢⎣ ∂ν f

∂Qν f

∂νi

∂Rνi

∑
m f +σ f =M f ,
mi+σi=Mi

C
Jf M f

l f m f s f σ f
CJiMi

limi siσi

∫∫
Y ∗

l f m f
(nQ)〈Q, s f σ f |V |R, siσi〉Ylimi (nR )dnQdnR

⎤
⎥⎥⎦

Q=R=0

,

(15)

with

κ2
νls = 2π

(ν!)2

[
∂ν

∂Qν

∂ν

∂Rν

∫ 1

−1
〈Q, sσ |R, sσ 〉Pl (t )dt

]
Q=R=0

,

(16)
where Pl (t ) is the Legendre polynomial, and t is the cosine of
the angle between vectors Q and R. Expression (16) comes
from the basis orthonormality.

The 6Li nucleus is a weakly bound stable one. It has the
single bound state with the total energy Eg.s. = –31.994 MeV
and with the total angular momentum and the parity Jπ = 1+.
This state breaks into an α particle and a deuteron at the
excitation energy ε = 1.474 MeV (the breakup threshold). In
the present paper, this state is described as the bound one of
the α and d clusters that contain the protons and the neutrons
in the lowest harmonic-oscillator shells. It assumes that the
intrinsic cluster wave functions are given in the form of the
translationally invariant oscillator shell-model wave functions
for the lowest states compatible with the Pauli exclusion prin-
ciple. The α-d relative motion wave function is expanded in
series of the oscillator functions. The channel spin s is equal
to 1 (sα = 0; sd = 1), and the orbital angular momentum l
is equal to 0 and 2 in accordance with the composition of
moments and the parity conservation. In the framework of the
approach, the 6Li total wave function is found by the solving
set (7) written for the discrete spectrum [13].

The total wave functions for the 4He + 2H scattering states
follow from the solving set (7) written for the continuum [13].
Here the α and d clusters are also supposed to occupy the
lowest configurations of the translationally invariant oscillator
shell model and to have the channel spin s = 1 as in the pre-
vious case of the α-d discrete spectrum. The orbital angular
momentum can take one or two values depending on Jπ . For
example, l is equal to 1 for states with Jπ = 0– and 1– and

l = 2 for Jπ = 2+. In turn, l is equal to 0 and 2 for Jπ = 1+,
l = 1 and 3 for Jπ = 2–, l = 2 and 4 for Jπ = 3+, and so on.

In order to solve the set of Eqs. (7) for the discrete spectrum
and for the continuum of the α-d system, the Hamiltonian
matrix elements in the basis (6) should be calculated. The gen-
erating matrix elements necessary for this aim are presented in
Appendix A.

Values of the oscillator radius r0 for the intrinsic cluster
wave functions and for the oscillator basis are supposed to
be the same in Eq. (6). A choice of the oscillator-radius
value allows one to correct an approximate description of the
internal cluster states. The relative motion is not affected by
this choice because the convergence of the expansion can be
achieved with a required precision. It is worth noting that cal-
culations of observables for the α-d continuum (for example,
the nuclear phase shifts) should be performed at a significantly
larger basis size than calculations for the α-d discrete spec-
trum (in particular, the 6Li ground-state properties). At the
same time, the calculations of the α-d radiative-capture cross
section, which is determined by the overlap of the continuum
and discrete-spectrum states, require the correct allowance for
the tail of the 6Li ground-state wave function at long enough
distances. As a result, many terms of the expansion of this
function over the basis (6) must be retained. This is a conse-
quence of the peripheral character of the α-d radiative-capture
process at low energies. The number of the basis functions
used in the present paper is sufficient to achieve the good
convergence of the results in all considered cases. For each
state with the fixed Jπ , M, l , and s values, 500 basis func-
tions (6) are, at least, utilized. The elaborated well numerical
procedures and algorithms of the implemented approach make
it possible to use even larger sizes of the basis, but there is no
a need to do that. Practically, the reliable results for the α-d
system can be obtained at lower sizes of the truncated basis.
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The nuclear interaction in the considered system is de-
scribed by the realistic effective NN potential taken from
work [71]. The general form of this potential, which consists
of the central, spin-orbit, and tensor forces, is defined in
Appendix A. The central and tensor components have three-
range Gaussian forms, and the spin-orbit one has a two-range
Gaussian form. It was shown in numerous works (see, for
example, Refs. [13,14,71–73]) that the potential of such a
type was a rather good approximation for a description of the
nuclear interaction in microscopic studies of structure of light
nuclei and dynamics of light-nucleus-induced reactions.

III. ELECTROMAGNETIC MULTIPOLE OPERATORS

At the leading order of the long-wavelength limit, the elec-
tric and magnetic multipole operators in the translationally
invariant form can be written as

ME
Iμ = e

A∑
j=1

gl ( j) r̄I
jYIμ

(
nr̄ j

)
, (17)

MM
Iμ = μN

A∑
j=1

(
gs( j) s j + 2gl ( j)

I + 1
L̄ j

) [∇r̄ j r̄I
jYIμ

(
nr̄ j

)]
,

(18)

where the following denotations are introduced:

L̄ j = r̄ j × p̄ j, (19)

r̄ j = r j − rc.m., (20)

p̄ j = p j − pc.m.

A
, (21)

gl ( j) = 1

2
− t3, j, (22)

gs( j) = 1

2
(gn + gp) + t3, j (gn − gp), (23)

p and s are the momentum and the spin of a nucleon, rc.m. and
pc.m are the radius vector and the momentum of the center-of-
mass, I and μ are the multipolarity and its projection, gn and
gp are the neutron and proton gyromagnetic factors, and μN is
the nuclear magneton.

Expression (17) for I = 1 read

ME
1μ = e

A∑
j=1

gl ( j)r̄ jY1μ

(
nr̄ j

)
. (24)

The E1 operator defined by Eq. (24) is specific. Its isoscalar
component vanishes,

e

2

A∑
j=1

r̄ jY1μ

(
nr̄ j

) = 0, (25)

and the isovector one,

− e
A∑

j=1

t3, j r̄ jY1μ

(
nr̄ j

)
, (26)

remains only. The latter also vanishes for transitions between
states with the total isospin T = 0. These are the isospin-
forbidden E1 transitions.

At the first order beyond the leading order of the long-
wavelength approximation (FOLWA), the E1 operator has
a nonzero isoscalar part, which consists of three compo-
nents [74],

ME(FOLWA)
1μ = M̃E(1)

1μ + M̃E(2)
1μ + M̃E(3)

1μ

= −ek2
γ

60

A∑
j=1

r̄3
jY1μ

(
nr̄ j

)

+ μNkγ

4

A∑
j=1

r̄ j
[
L̄ j Y1μ

(
nr̄ j

)]

·
(

2

3
L̄ j + (gn + gp) s j

)
, (27)

where kγ = Eγ /h̄c is the photon wave number, and Eγ is the
energy of the emitted photon. A general expression for the
electric multipole operator at this order of the approximation
at an arbitrary value of the multipolarity I can be also found
in Ref. [74].

For the two-cluster system, the E1 operator (24) at the
leading order of the long-wavelength limit can be expressed
by

ME
1μ = ME(1)

1μ + ME(2)
1μ + e

Z1A2 − Z2A1

A1 + A2
ρY1μ(nρ ), (28)

where ME(1)
1μ and ME(2)

1μ are the E1 operators defined by
Eq. (24) for the clusters with the mass and charge numbers
(A1, Z1) and (A2, Z2), and ρ = r(1)

c.m. − r(2)
c.m. is the relative

vector between the cluster centers of mass. Expression (28)
is equivalent to Eq. (24). Both of them are equal to zero for
E1 transitions between zero-isospin states in self-conjugate
systems. Nevertheless, if one uses the measured values of
the cluster masses m1 and m2 instead of m1 = A1m and
m2 = A2m, which follow from the isospin formalism, one
can rewrite Eq. (28) in an alternative form that connects the
respective transitions:

ME(PEM)
1μ = e

Z1m2 − Z2m1

m1 + m2
ρY1μ(nρ ). (29)

The replacement of the cluster masses from the isospin for-
malism by their values extracted from experiment is known as
the PEM. In most works cited in the Introduction, the PEM
was exploited to take into consideration the isospin-forbidden
E1 transitions for the 2H(α, γ )6Li reaction. At the same time,
the PEM was criticized in the recent work [46]. The main
reason is a lack of a microscopic justification.

In the present paper, the E2 and M1 transitions are calcu-
lated at the leading order of the long-wavelength limit. The
isospin-forbidden E1 transitions are examined at the FOLWA,
utilizing Eq. (27). The PEM based on Eq. (29) is also used
to make the picture complete. Actually, there is an alterna-
tive way. Particularly, one can include isospin admixtures in
the wave functions and apply Eq. (26) in the calculations.
However, the last point is beyond the scope of the paper.
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Expressions for the generating matrix elements of the E1, E2,
and M1 operators together with their reduced matrix elements
between the basis functions (6) for the α-d system are given in
Appendix B. The reduced matrix elements of these operators
are required to calculate the electromagnetic moments for the

6Li ground state and the total cross section (the astrophysical
S factor) for the α-d radiative capture.

The electric quadrupole and magnetic dipole moments of
the 6Li ground state in the framework of the approach, respec-
tively, read

Q = 2

5

√
2 π

3

∑
l̃, l=0, 2

νmax∑
ν̃, ν=ν0

C (DS)
1+ l̃ sν̃

〈1+ l̃ sν̃‖ME
2 ‖1+lsν〉C (DS)

1+lsν, (30)

μ =
√

2 π

3

∑
l=0, 2

νmax∑
ν̃, ν=ν0

C (DS)
1+lsν̃〈1+lsν̃‖MM

1 ‖1+lsν〉C (DS)
1+lsν, (31)

where C (DS)
1+lsν are the expansion coefficients of the 6Li ground-state wave function over the basis (6), and νmax is the maximum

number of oscillator quanta for the truncated basis. Note that the reduced matrix elements of the E2 operator in Eq. (30) are
exactly zero for l̃ = l = 0.

The partial cross section for the 2H(α, γ )6Li radiative capture reaction within the approach have the form

σ(J
πi
i , li ) → 1+ (Ec.m., �I ) = 8π (I + 1)

3(2li + 1)h̄I[(2I + 1)!!]2

(
Eγ

h̄c

)2I+1
∣∣∣∣∣∣
∑

l f =0, 2

νmax∑
ν f =ν0

ν ′
max∑

νi=ν0

C (DS)
1+l f sν f

〈1+l f sν f ‖M�
I ‖Jπi

i lisνi〉C (CS)
J

πi
i lisνi

∣∣∣∣∣∣
2

.

(32)

Here Ec.m. is the relative motion energy of the colliding nuclei in the center-of-mass system, and C (CS)
J

πi
i lisνi

are the expansion

coefficients of the total wave functions for the α-d scattering states over the basis (6). The initial quantum numbers (Jπi
i , li ) can

take the values of

(0−, 1), (1−, 1), (2−, 1), and (2−, 3) for the E1 captures, (33)

(1+, 0), (1+, 2), (2+, 2), (3+, 2), and (3+, 4) for the E2 captures, (34)

(1+, 0), (1+, 2), and (2+, 2) for the M1 captures. (35)

The E1 and E2 transitions to the S (l f = 0) and D (l f = 2)
waves of the 6Li ground state come from all P-scattering
(li = 1) and D-scattering (li = 2) states presented in Eqs. (33)
and (34), respectively. The E1 transition from the F -scattering
state (li = 3) and the E2 transitions from the S-scattering
(li = 0) and G-scattering (li = 4) states are only possible to
the D-wave bound state. As to the M1 transitions, they occur
between S states and between D states of the initial and final
channels. The sum of the partial cross sections expressed by
Eq. (32) for all allowed transitions gives the total cross section
of the considered reaction.

At sub-barrier energies, a cross section of a reaction in-
duced by charged particles rapidly falls with the relative
motion energy decreasing. This strong dependence is predom-
inantly caused by the penetrability of the Coulomb barrier.
That is why it is generally accepted to write the cross section
of a charged-particle-induced reaction in terms of the astro-
physical S factor,

σ (Ec.m.) = exp (−√
EG/Ec.m.)

Ec.m.

S(Ec.m.), (36)

where EG is the Gamow energy for the colliding particles. In
fact, Eq. (36) implicitly defines the astrophysical S factor for
the reaction. The astrophysical S factor has smoother energy
behavior than the cross section because the exponentially

small factor of the Coulomb barrier penetrability is explicitly
extracted from it. The partial astrophysical S factors for the
α-d radiative capture are related to the corresponding partial
cross sections (32) by Eq. (36), in which the Gamow energy
EG is about equal to 5.258 MeV for the α-d system.

IV. RESULTS AND DISCUSSION

A. Potential parametrizations

In the present paper, different parametrizations hereinafter
referred to as MHN2, NHN2, and PHN are used for the
adopted nuclear potential. They generalize parametrizations
introduced in works [71,72] and referred to as NHN and
MHN. The MHN and the NHN differ from each other by
the short-range part of the central force. Changes only of the
long-range part of the tensor force in the MHN and the NHN
lead to the MHN2 and the NHN2, respectively. Changing the
long-range part of the tensor force and the short-range part of
the central one gives the PHN. The differences between the
parametrizations are explicitly demonstrated in Appendix A.

The intensity of the central Majorana force (gc) and the
intensities of the spin-orbit (gls) and tensor (gt) interactions
chosen in the calculations are given in Table I. In order to ex-
plore an effect of the potential on the calculated observables,
various sets of values of the intensities are applied. For this
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TABLE I. The parametrizations of the nuclear potential and
oscillator-radius values (in femtometers) used in the calculations.

Abbreviation gc gls gt r0

MHN2-I 0.988 21.944 1.036 1.45
MHN2-II 0.982 28.720 1.066 1.55
NHN2-I 0.953 23.438 1.051 1.45
NHN2-II 0.948 29.962 1.076 1.55
PHN-I 0.992 23.320 1.020 1.22
PHN-II 0.978 30.900 0.936 1.35
PHN-III 0.966 49.343 0.983 1.55

reason, the abbreviations of the potential parametrizations are
supplied with Roman numerals. Values of the oscillator radius
r0 are also presented in Table I.

B. Nuclear spectroscopy and electromagnetic
properties of the 6Li nucleus

In the framework of the approach, the following ground-
state observables of 6Li are calculated: the ground-state
energy (Eg.s.), the point-proton rms radius (rp), the electric
quadrupole moment (Q), the magnetic dipole moment (μ), the
breakup threshold into α and d (ε), and the binding energies
of the α (Eα) and d (Ed ) clusters. The results are summa-
rized in Table II. Experimental values of these quantities from
works [75–79] are collected in Table III.

As can be seen from Tables II and III, the α and d clusters
as well as the 6Li nucleus turn out to be underbound in the
MHN2 and NHN2 calculations. Here the point-proton rms
radius of 6Li is slightly overestimated. The calculation with
the PHN-I reproduces the α, d , and 6Li energies whereas rp

is underestimated. This radius is reproduced in the PHN-II
calculation but the considered clusters and 6Li are overbound.
In all cases, the breakup threshold of 6Li into the clusters and
the tiny magnitude of the 6Li electric quadrupole moment,
including its sign, are reproduced, and the magnetic dipole
moment is slightly overestimated. The nonzero value of Q
within the approach is generated by the tensor force through
the D state of 6Li.

Evidently, it is very difficult to reproduce all available
experimental data of different kinds on the considered six-
nucleon system, using a rather restricted model space within

TABLE III. The 6Li observables from experiments [75–79]. The
units of measure are those as in Table II.

Eα Ed Eg.s. ε rp Q μ

28.296 2.224 −31.994 1.474 2.38(3) −0.0818(16) 0.822

the approach. Although, the most suitable potential for achiev-
ing this aim for data from Table III is the PHN-I.

The calculated energies (Er) of 6Li low-lying resonances
with the total isospin T = 0 are compared with experimental
data [77] in Table IV. The energy of the lowest 3+ resonance
is reproduced. As to the energies of the 2+ and 1+ resonances,
they are slightly underestimated in the case of the MHN2
and the NHN2 but overestimated for the PHN. The splitting
between the 2+ and 1+ resonances, especially for the PHN
calculation, is close enough to the experimental one. The
positions of the 2+ and 1+ resonances govern the resonance
behavior of the respective α-d D-wave nuclear phase shifts,
which do not affect the α-d radiative capture at astrophysical
energies. Keeping in mind this fact, one can state that the
deviation of these calculated resonance positions from the
experiment is not so important in regard to the main goal
of the present paper focused on a microscopic low-energy
description of the α-d radiative-capture reaction.

C. ANCs for the bound S and D states of 6Li in the α + d
channel. Deformation effects

The tail of the 6Li S-wave function in the α + d channel
is known [31–33] to give an important contribution to the
low-energy behavior of the α + d radiative capture reaction
due to the peripheral nature of the process. The amplitude of
the tail is the ANC for the bound S state of 6Li in the α + d
channel (C0). Thus, this quantity plays a significant role for
the α + d radiative capture at astrophysical energies. The 6Li
S-state ANCs extracted from analyses of experimental data
are given in Table V where the following abbreviations are
introduced: FDRA is a forward dispersion relation analysis of
d-α elastic-scattering data [80], ATAP1 is an analysis of data

on the tensor analyzing powers (TAPs) for the 6Li(
−→
d , α)4He

reaction [81], ACPA is an analytic continuation of the solution
of an energy-dependent phase-shift analysis of elastic d-α

TABLE II. The 6Li calculated properties.

Quantity MHN2-I MHN2-II NHN2-I NHN2-II PHN-I PHN-II PHN-III

Eα (MeV) 27.384 25.369 27.355 25.344 28.296 29.291 25.843
Ed (MeV) 0.031 0.281 0.027 0.278 2.224 2.736 2.494
Eg.s. (MeV) −28.889 −27.124 −28.856 −27.096 −31.994 −33.501 −29.811
ε (MeV) 1.474 1.474 1.474 1.474 1.474 1.474 1.474
rp (fm) 2.44 2.52 2.45 2.53 2.28 2.39 2.55
Q (e fm2) −0.0818 −0.0818 −0.0818 −0.0818 −0.0818 −0.0818 −0.0818
μ (μN ) 0.87988 0.87989 0.87988 0.87989 0.87987 0.87988 0.87990
C0 (fm–1/2) 2.44 2.53 2.49 2.56 2.32 2.43 2.60
C2 (fm–1/2) −0.0077 −0.008 −0.0077 −0.008 −0.0073 −0.0075 −0.008
η −0.0032 −0.0032 −0.0031 −0.0031 −0.0031 −0.0031 −0.0031
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TABLE IV. The calculated energies (in MeV) of the 6Li low-
lying resonances (T = 0) compared to the experiment [77].

Energy MHN2-II NHN2-II PHN-I Experiment

Er (3+) 0.712 0.712 0.712 0.712
Er (2+) 2.642 2.653 5.034 2.838
Er (1+) 3.705 3.694 6.548 4.176

scattering to the pole corresponding to the 6Li ground state on
the basis of the statistical Padé approximation [82], ATAP2
is an analysis of data on the TAP for (6−→Li , d ) reactions on
medium-heavy targets [83], and PSA is a phase shift analysis
of 6Li + 4He elastic scattering data [84]. The calculated C0

values from Table II are close to the ACPA and PSA results.
The C0 value obtained with the PHN-I is in perfect agreement
with those data.

The importance of nonspherical terms of light nuclei has
been well understood many years ago [85,86]. Nevertheless,
the problem of D-state manifestations in 6Li still remains.
In general, a question concerned with the magnitude of
nonspherical components of the 6Li ground-state total wave
function is open. For example, the nonzero negative electric
quadrupole moment Q of 6Li points out the presence of these
components and the tensor force. In this respect, a study of
the D-state terms is also useful for understanding of the tensor
components of the NN potential, which particularly generate
these terms for S-shell nuclei. However, experimental obtain-
ing information about nonspherical components for 6Li is
known to be very difficult [83,84,86].

Nuclear deformation effects in light nuclei could be quanti-
fied by the ratio of the D- and S-state ANCs (η = C2/C0) [86].
It characterizes the relative strength of the D-state term of the
wave function in the asymptotic region where the influence of
the nuclear interaction is negligible. An experimental deter-
mination of this quantity is possible [83,84,86]. In addition to
nonzero Q for 6Li, a nonzero value of η is another indication
of a role of the D-state components in the 6Li wave function.
Obviously, information about η for 6Li serves as an addi-
tional useful knowledge of its nuclear structure. Moreover,
this information could have some practical applications [83].
However, η for 6Li is known poorer than for other lighter nu-
clei [85,86]. In the case of 6Li, there are yet no unambiguous
results for the magnitude of η and even its sign. Values of the
ANC C2 for the bound D state of 6Li in the α + d channel and
the asymptotic D- to S-state ratio η for 6Li from experiments
are presented in Table V.

There are also works [87–90] (not presented in Table V)
that provide additional findings on the magnitude of the ratio

FIG. 1. The 1+ S-wave nuclear phase shift for the 4He + 2H
elastic scattering.

η and its sign based on experimental data analyses. Measure-
ments of the TAP in the inclusive breakup of polarized 6−→Li
in Ref. [87] give data, which favor a small positive value
of η. In an analysis of measured data on 6−→Li + 58Ni elastic
scattering [88], it was summarized that the value of η must be
small and negative. Based on a reanalysis of the data [88], it
was found in Ref. [89] that the value of η should be very close
to zero with the negative sign. In Ref. [90], using measured
6−→Li + 4He elastic-scattering data, it was concluded that the
value of η was very small and could not be other than negative.

The calculations from Table II actually give C2 ≈
–0.008 ÷ –0.007 fm–1/2. These values are consistent well
in the magnitude with the experimental result based on the
FDRA. All calculations support a small negative value of the
asymptotic D- to S-state ratio η ≈ –0.003.

D. The 2H(α, α)2H elastic scattering

The calculated nuclear phase shifts δJ
l for all partial S, P,

and D waves of the α-d elastic scattering in a wide energy
range are depicted in Figs. 1–7. Experimental data marked
in these figures are taken from works [91–95]. It should be
emphasized that the data have a scatter, and experimental
errors are not presented. For these reasons, it is quite difficult
to assess a degree of agreement between the theory and the
experiment. Nevertheless, some statements concerning it are
given.

TABLE V. The 6Li ANCs (in fm–1/2) and their ratio from experimental data.

Quantity FDRA [80] ATAP1 [81] ACPA [82] ATAP2 [83] PSA [84]

C0 1.69(4) 2.30(12) 2.28(7)
C2 0.008(24) −0.060(14)
η 0.0047a –0.015 ÷ –0.010 0.0003(9) −0.025(6)(10)

aSign not determined.
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FIG. 2. The 0– P-wave nuclear phase shift for the 4He + 2H
elastic scattering.

The calculated S-wave (δ1
0) and D-wave (δ3

2) nuclear phase
shifts agree well with the data in Figs. 1 and 7, respectively.
The calculated P-wave nuclear phase shifts δ0

1 , δ1
1, and δ2

1 in
Figs. 2–4 demonstrate a monotonic decrease. The phase shift
δ0

1 is in agreement with the data whereas δ1
1 and δ2

1 deviate
from the experimental points at high energies but remain close
enough. The D-wave nuclear phase shifts δ1

2 (Fig. 5) and δ2
2

(Fig. 6) obtained with the MHN2 and the NHN2 describe
the data reasonably. The calculations with the PHN give the
underestimated phase shifts δ1

2 and δ2
2 because of the overesti-

mated positions of the 1+ and 2+ resonances (see Table IV).
However, the PHN yields the energy dependences of δ1

2 and
δ2

2 similar to the experimental one.

FIG. 3. The 1– P-wave nuclear phase shift for the 4He + 2H elas-
tic scattering.

FIG. 4. The 2– P-wave nuclear phase shift for the 4He + 2H
elastic scattering.

E. The 2H(α, γ )6Li radiative capture

In order to see the effect of choosing the different effec-
tive nuclear potentials on the resulting total astrophysical S
factor of the 2H(α, γ )6Li reaction, the calculations are per-
formed with the different parameterizations from Table I. The
2H(α, γ )6Li total astrophysical S factor calculated by using
the PEM for the E1 operator is shown in Fig. 8. Experimental
data [15–17,19,21,22] are drawn by symbols. All curves lie
close to each other, reproduce the peak at 0.712 MeV from
data [17], and agree reasonably with the other data in the
considered energy range. The difference between the curves
outside the vicinity of the peak is caused by two main reasons.
At energies lower than the peak position, the reason is that
the curves correspond to the different values of the ANC C0

FIG. 5. The 1+ D-wave nuclear phase shift for the 4He + 2H
elastic scattering.
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FIG. 6. The 2+ D-wave nuclear phase shift for the 4He + 2H
elastic scattering.

playing a crucial role for the low-energy behavior of the pe-
ripheral process. At higher energies, it is a combined influence
of the ANC and the 2+ resonance, which is essentially closer
to the 3+ one for the MHN2 and NHN2 calculations than in
the case of the PHN (see Table IV).

The 2H(α, γ )6Li total astrophysical S factor calculated
with the E1 operator at the FOLWA is depicted in Fig. 9. The
data outside the vicinity of the 3+ peak, especially the modern
data [19,21,22] at low energies, are described by the obtained
curves better as compared with the previous ones in the PEM
case. Explanations given above for the behavior of the curves
in Fig. 8 also remain true for the curves in Fig. 9.

In order to arrive at a conclusion regarding which utilized
potential to prefer and which astrophysical S-factor predic-

FIG. 7. The 3+ D-wave nuclear phase shift for the 4He + 2H
elastic scattering.

FIG. 8. The total astrophysical S factor for the 2H(α, γ )6Li reac-
tion with the E1 transitions described by using the PEM.

tion to adopt, first of all, one needs to have a look at the
calculated nuclear properties of the considered six-nucleon
system from Table II. It is clearly seen that the calculations
with the PHN-I fit best the data from Tables III and V. Note
that the calculated value obtained with this potential for the
6Li S-state ANC playing a significant role for describing the
α-d radiative capture at astrophysical energies [31–33] agrees
perfectly with the ACPA [82] and PSA [84] results given in
Table V. As for the nuclear phase shifts in Figs. 1–7, all
potentials provide almost equivalent description of the 1+
S- and 3+ D-wave nuclear phase shifts. The P-wave nuclear
phase shifts calculated with the PHN-I are closer to the data
than the calculations with the other potentials. However, this
potential results in the 1+ and 2+ D-wave nuclear phase

FIG. 9. The total astrophysical S factor for the 2H(α, γ )6Li reac-
tion with the E1 transitions at the FOLWA.
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FIG. 10. The 2H(α, γ )6Li astrophysical S factors for the total E1,
E2, and M1 captures calculated by using the PHN-I potential.

shifts, which qualitatively show the resonance behavior but
are underestimated quantitatively as compared to the data due
to the overestimated positions of the 1+ and 2+ resonances
presented in Table IV. Nevertheless, the indicated side effect
does not affect the considered reaction at low energies. Thus,
omitting this insignificant drawback that does not diminish
the validity of the PHN-I, one can conclude that the PHN-I
potential is overall better than the others used in the present
paper for a self-consistent prediction from the implemented
approach for the 2H(α, γ )6Li total astrophysical S factor at
energies of astrophysical interest.

Obviously, the calculations in Fig. 8 differ from the cal-
culations in Fig. 9 by the E1 contribution. The energy
dependences of the E1, E2, and M1 capture contributions to
the 2H(α, γ )6Li total astrophysical S factor calculated with
the best PHN-I potential are plotted in Fig. 10.

The E1 contribution obtained with the PEM significantly
exceeds the E1 one at the FOLWA and even lies higher than
the E2 one at low energies (<110 keV). The E2 contribu-
tion is larger than the E1-FOLWA one in the whole energy
region. The total M1 transition is essentially suppressed in
comparison with the total E1-PEM, E1-FOLWA, and E2 ones
at all considered energies. It means that the 2H(α, γ )6Li total
astrophysical S factor is substantially formed by the E1-PEM
and E2 contributions in Fig. 8 and only by the E2 one in Fig. 9.
As to the E1-FOLWA contribution, it turns out to be small but
not negligible one. The influence of the different components
of the E1 operator (27) at FOLWA is also analyzed in Fig. 10.
The E1-FOLWA contribution for the reaction is caused to a
considerable degree by the third component of the E1 opera-
tor (27).

It should be noted that the total E1 capture for 2H(α, γ )6Li
is mainly due to transitions from the P waves of the 0–, 1–,
and 2– scattering states to the 1+ bound one. The F -wave

FIG. 11. Predictions from the present paper for the 2H(α, γ )6Li
total astrophysical S factor calculated with the E1-PEM (dashed-dot
line) and E1-FOLWA (full line) contributions compared to the results
of the previous works [20,22,33].

E1 transition from the 2– state is negligible. The D-wave
transitions from the 1+, 2+, and 3+ states are responsible for
the total E2 capture as the S-wave transition from the 1+ state
is weak, and the G-wave one from the 3+ state is strongly
hindered. The total M1 capture is a result of the transitions
from the D waves of the 1+ and 2+ states. The S-wave M1
transition from the 1+ state is very weak.

Actually, the present microscopic calculation of the total
astrophysical S factor based on the PEM for the E1 oper-
ator is only interesting to compare with the results of the
previous PCM-based calculations exploiting the PEM and
also estimate the magnitude of the PEM correction to the
E1 transitions within the microscopic approach. In Fig. 11,
the present predictions for the 2H(α, γ )6Li total astrophysi-
cal S factor obtained from the developed approach with the
preferred PHN-I potential are compared with the predictions
from works [20,33] (PCM, dotted and short dotted lines,
respectively) and [22] (an analysis of the experimental data,
dashed line). A comparison of the respective E1 and E2 con-
tributions is demonstrated in Fig. 12.

As it can be seen in Fig. 11, the curves from the other
works lie slightly lower than the PEM curve of the present
paper, especially at energies below the resonance one. Despite
this fact, the total astrophysical S factor calculated here with
the E1-PEM contribution is rather similar to the results of the
PCM-PEM-based works [20,33]. The result of Ref. [20] is the
closest one to the present PEM curve. In turn, the E1-PEM
and E2 contributions of the present paper in Fig. 12 are also
the closest ones to the E1 and E2 contributions of Ref. [20],
respectively. The obtained result for the E1-PEM contribution
for lack of a rigorous microscopic justification for the PEM
should be treated as estimation useful only for comparison
with calculations from the PCM works where the PEM is
widely used.
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FIG. 12. Comparison of the E1 and E2 contributions to the en-
ergy dependence of the 2H(α, γ )6Li total astrophysical S factor
obtained in the different works.

The FOLWA prediction in Fig. 11 at energies above the
resonance one almost coincides with the predictions from
Refs. [20,22]. At lower energies, there is the difference due to
mainly the E1 contribution. Excepting for the energies below
about 300 keV, the 2H(α, γ )6Li total astrophysical S factor
calculated here with the E1-FOLWA contribution is quite
similar to the result of Ref. [22] based on the analysis of the
modern data. In that analysis, the E2 contribution is adopted
from Ref. [20]. For this reason, the respective E2 curves
are identical in Fig. 12. The E1 contribution in Ref. [22] is
extracted by rescaling the E1 one of Ref. [20] so that the
recommended total astrophysical S factor of Ref. [22] matches
the data obtained in that work. Most likely, taking into account
corrections to the isospin-forbidden E1 transitions caused by
the isospin mixing in the wave functions within the developed
approach is a possible way to smooth the indicated difference
between the predictions from the present paper and work [22].

V. CONCLUSION

In the present paper, nuclear structure and dynamics of
the six-nucleon 4He + 2H system have been studied micro-
scopically, implementing the multichannel cluster approach
formulated in the oscillator-basis representation and using the
realistic effective nuclear potential. The different parametriza-
tions of this potential have been applied to explore its
influence on the obtained results. Moreover, such a procedure
leads to the achievement of the optimum result. Clearly, the
deuteron occupied the lowest harmonic-oscillator shell-model
configuration is a quite simple approximation because the
deuteron is an untight object as opposed to the α particle.
That is why an appropriate choice of the nuclear potential
form along with an oscillator-radius value is to some extent a

necessary condition of improving the model treatment of the
studied system.

The α-d elastic scattering and the 6Li ground-state proper-
ties have been considered. The energy dependences of the S-,
P-, and D-wave nuclear phase shifts for the 2H(α, α)2H elastic
scattering have been computed in the wide energy range. The
most important 1+ S- and 3+ D-wave phase shifts agree well
with the data from the experiments. That is true for the 0–

P-wave phase shift as well. The deviations inherent in the
other phase shifts can be probably eliminated by taking into
consideration the terms, such as so-called distortion effects,
cluster rearrangements, pseudoinelastic configurations, and
excited pseudostates, affecting the elastic scattering and the
properties of the α-d system [48,49,96–99]. The energy and
the electromagnetic observables of the ground state of the
6Li nucleus as well as the energies of its low-lying resonance
states with the zero total isospin have been calculated. The 6Li
ground-state asymptotic characteristics have been separately
investigated. The ANCs for the bound S and D states of 6Li
in the α + d channel have been extracted. The deformation
effects and the problem of the D-state manifestations in 6Li
have been also discussed. The present paper supports the small
negative values of the asymptotic D- to S-state ratio. The best
agreement with the experimental phase shifts and the 6Li data
important for a reliable treatment of the 2H(α, γ )6Li reaction
at astrophysical energies is achieved by exploiting the PHN-I
potential in the calculations. In this regard, the PHN-I poten-
tial should be adopted as the preferred one to give a justified
self-consistent prediction for the total astrophysical S factor
of this reaction from the developed microscopic approach.

The most ambitious and intriguing problem studied here
is the α-d radiative capture description. The 2H(α, γ )6Li
radiative-capture reaction has been considered at the astro-
physically relevant energies, including the vicinity of the
lowest 3+ resonance of 6Li. The energy dependence of the
total astrophysical S factor has been thoroughly investigated.
The isospin-forbidden E1 transitions have been treated by
utilizing two different methods. The first one is based on the
widely used PEM to give a complete picture. However, the
result obtained with it should be interpreted as some estima-
tion for lack of a rigorous microscopic justification for the
PEM [46]. The second method making use of the FOLWA
is fully justified from the microscopic viewpoint. The E1
contribution at the FOLWA turns out to be small but not
negligible one as compared with the E2 contribution at the
leading order of the long-wavelength limit. The M1 contri-
bution is negligible. The E2 and M1 astrophysical S factors
calculated with the PHN-I potential are the recommended
ones within the approach. The recommended contribution of
the E1 transitions through the isoscalar part of the E1 operator
at FOLWA is also established with the PHN-I. The prediction
for the resulting total astrophysical S factor obtained with this
preferred potential yields the optimum result: the modern low-
energy data [19,21,22] are described very well, the peak at 712
keV from the measurements [17] is reproduced, and there is
the reasonable agreement with the data [15] at higher energies.
Nevertheless, the corrections to the isospin-forbidden E1 tran-
sitions caused by the isospin admixtures in the wave functions,
in particular, a small T = 1 isospin component of 6Li, and the
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isovector part of the E1 operator at the leading order of the
long-wavelength limit should be also examined in the frame-
work of the developed approach to come to the conclusive
microscopic recommendation concerning the magnitude of
the total E1 contribution. The effect of such corrections on
the energy dependence of the total astrophysical S factor is
still poorly known from the microscopic viewpoint.

Despite the smallness of the E1 transitions for the α-d
system at the FOLWA, the respective method could be espe-
cially useful for other applications. Among them, for example,
it is a microscopic description of the isospin-forbidden E1
transitions in the d-d system. In particular, the PEM does not
work there at all.

The opportunities of the implemented approach have been
shown to be rather promising to study the considered six-

nucleon system. It has been also demonstrated that this
approach is a well-grounded tool for the microscopic descrip-
tion of radiative capture reactions. Its further development
should include enriching the model space by the terms men-
tioned above, which apparently affect nuclear structure and
dynamics of the α-d system. The respective improvements
are beyond the scope of the present paper. They must be
investigated separately in the future.
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APPENDIX A

The generating matrix elements required to calculate the Hamiltonian matrix for the six-nucleon 4He + 2H system in the
basis (6) are collected in this appendix.

The generating matrix elements for the unit operator read

〈Q, sσ f |R, sσi〉 = 〈Q|R〉δσ f σi , (A1)

where

〈Q|R〉 = exp (−QR/3)[exp (QR/2) − 1]2. (A2)

The generating matrix elements for the kinetic-energy operator (10) are expressed by

〈Q, sσ f |T − Tc.m.|R, sσi〉 = h̄2

12mr2
0

(
45 − 2Q2 − 2R2 + 6 t

∂

∂t

)
〈Q|R〉δσ f σi . (A3)

The generating matrix elements for the Coulomb potential (11) are given by

〈Q, sσ f |VCoul|R, sσi〉

=
√

2

π

e2

r0
〈Q|R〉δσ f σi

{
1 + 1

exp (QR/2) − 1

∫ 1

0

[
2U (+)(ς, Q, R) − U (−)(ς, Q, R) − U (0)(ς, Q, R)

]
dς

}
, (A4)

where

U (+)(ς, Q, R) = exp

(
− (Q + R)2

8
ς2 + QR

2

)
, (A5)

U (−)(ς, Q, R) = exp

(
− (Q − R)2

8
ς2

)
, (A6)

U (0)(ς, Q, R) = exp

(
−Q2

8
ς2

)
+ exp

(
−R2

8
ς2

)
− 1. (A7)

The realistic effective nuclear potential adopted in the present paper to describe the nuclear interaction has the form

Vnucl = Vc + Vls + Vt . (A8)

It consists of the central (Vc), spin-orbit (Vls), and tensor (Vt) forces [71], which can be defined by

Vc =
3∑

n=1

A∑
i> j=1

V (c)
n, i j, (A9)

V (c)
n, i j = (

α(c)
n + β (c)

n P (σ )
i j + γ (c)

n P(τ )
i j + δ(c)

n P(σ )
i j P(τ )

i j

)
exp

[− (ri − r j )
2/a(c)

n

]
, (A10)

Vls =
2∑

n=1

A∑
i> j=1

V (ls)
n, i j, (A11)
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TABLE VI. The differences between the used parametrizations of the nuclear potential. Values of Vc,3 are in MeV.

Parametrization MHN NHN MHN2 NHN2 PHN

Vc,3 1655 1655 1655 1655 1495
wc,3 0.4474 0.5054 0.4474 0.5054 0.575
mc,3 0.3985 0.3404 0.3985 0.3404 0.3573
bc,3 0.1015 0.1596 0.1015 0.1596 0.1427
hc,3 0.0526 −0.0054 0.0526 −0.0054 −0.075
wt,1 0.3889 0.3889 0.7015 0.6986 0.7335
mt,1 0.6111 0.6111 0.2985 0.3014 0.2665

V (ls)
n, i j = (

α(ls)
n + γ (ls)

n P(τ )
i j

)
[(ri − r j ) × (pi − p j )](si + s j ) exp

[− (ri − r j )
2
/

a(ls)
n

]
, (A12)

Vt =
3∑

n=1

A∑
i> j=1

V (t)
n, i j, (A13)

V (t)
n, i j = 4

(
α(t)

n + γ (t)
n P(τ )

i j

)
[3 (si ni j ) (s j ni j ) − (si s j )](ri − r j )

2 exp
[− (ri − r j )

2/a(t)
n

]
. (A14)

Here the following denotations are introduced:

α(c)
n = Vc, n[wc, n + (1 − gc) mc, n], β (c)

n = Vc, n bc, n, γ (c)
n = −Vc, n hc, n, δ(c)

n = − gc Vc, n mc, n, (A15)

α(ls)
n = gls Vls, n wls, n, γ (ls)

n = − gls Vls, n mls, n, (A16)

α(t)
n = gt Vt, n wt, n, γ (t)

n = − gt Vt, n mt, n, (A17)

a(c)
n = 1

μc, n
, a(ls)

n = 1

μls, n
, a(t)

n = 1

μt, n
, (A18)

ni j = ri − r j

|ri − r j | , (A19)

P (σ )
i j and P(τ )

i j are the exchange operators, Vn and μn are the strength and range parameters, respectively, wn is the Wigner
parameter, and mn, bn, and hn, respectively, are the Majorana, Bartlett, and Heisenberg parameters of the exchange mixtures.
Values of these parameters from Ref. [71] are known as the NHN parametrization. Parameter values of the spin-orbit and
tensor components from the same Ref. [71] and parameter values of the central one from another Ref. [72] form the MHN
parametrization. Actually, the MHN differs from the NHN by the short-range part of the central force. Correcting the long-range
part of the tensor force, one obtains the MHN2 and the NHN2 from the MHN and the NHN, respectively. Having also corrected
the short-range part of the central force, one can get the PHN. In fact, the MHN2, NHN2, and PHN parametrizations are
introduced in the present paper by changing slightly the MHN and the NHN. The corrected parameter values along with the
initial ones are collected in Table VI. The others can be found in the original papers [71,72]. The intensity of the central
Majorana force (gc) and the intensities of the spin-orbit (gls) and tensor (gt) interactions, which serve as adjustable parameters
and vary within reasonable limits, are introduced in the potential (A8) in accordance with work [73].

The generating matrix elements of the central potential (A9) take the form

〈Q, sσ f |Vc|R, sσi〉 = 〈Q|R〉δσ f σi

3∑
n=1

(
ς (c)

n

)3/2{(
7α(c)

n + β (c)
n − γ (c)

n − 7δ(c)
n

)
+ [(

4α(c)
n + 2β (c)

n + 2γ (c)
n + δ(c)

n

)
exp (QR/2) − 3α(c)

n − β (c)
n − 3γ (c)

n − 2δ(c)
n

]
U (c,+)

n (Q, R)

− [(
α(c)

n + 2β (c)
n + 2γ (c)

n + 4δ(c)
n

)
exp (QR/2) − 2α(c)

n − 3β (c)
n − γ (c)

n − 3δ(c)
n

]
U (c,−)

n (Q, R)

− [(
4α(c)

n + β (c)
n − γ (c)

n − 4δ(c)
n

)
exp (QR/2) − 2α(c)

n + β (c)
n − γ (c)

n + 2δ(c)
n

]
U (c,0)

n (Q, R)
}
, (A20)

in which

ς (c)
n = a(c)

n

2r2
0 + a(c)

n

, (A21)

U (c, ±, 0)
n (Q, R) = 2

[exp (QR/2) − 1]2 U ( ±,0)
(
ς =

√
2r2

0ς
(c)
n

/
a(c)

n , Q, R
)
. (A22)
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The generating matrix elements of the spin-orbit potential (A11) can be expressed by

〈Q, sσ f |Vls|R, sσi〉 = i√
2
〈Q|R〉

∑
m

C1σi
1m 1σ f

[Q × R]1m

×
2∑

n=1

(
ς (ls)

n

)5/2{[(
2α(ls)

n + γ (ls)
n

)
exp (QR/2) − α(ls)

n − 2γ (ls)
n

]
U (ls,+)

n (Q, R)

+ [(
α(ls)

n + 2γ (ls)
n

)
exp (QR/2) − 2α(ls)

n − γ (ls)
n

]
U (ls,−)

n (Q, R)
}
, (A23)

where

ς (ls)
n = a(ls)

n

2r2
0 + a(ls)

n

, (A24)

U (ls,±)
n = 2

[exp (QR/2) − 1]2 U (±)
(
ς =

√
2r2

0ς
(ls)
n /a(ls)

n , Q, R
)
. (A25)

The generating matrix elements of the tensor potential (A13) can be written as

〈Q, sσ f |Vt|R, sσi〉 =
√

2π 〈Q|R〉
∑

m

C
1σ f

2m 1σi

3∑
n=1

(
ς (t)

n

)7/2(
α(t)

n − γ (t)
n

)
× {

(Q + R)2 Y ∗
2m(nQ+R )U (t,+)

n (Q, R) + (Q − R)2 Y ∗
2m(nQ−R )U (t,−)

n (Q, R)

− (exp (QR/2) + 1)
[
Q2 Y ∗

2m(nQ)U (t,0)
n (Q) + R2 Y ∗

2m(nR )U (t,0)
n (R)

]}
, (A26)

where

ς (t)
n = a(t)

n

2r2
0 + a(t)

n

, (A27)

U (t, ±)
n (Q, R) = 2

[exp (QR/2) − 1]2 U (±)
(
ς =

√
2r2

0ς
(t)
n /a(t)

n , Q, R
)
, (A28)

U (t,0)
n (Q) = U (0)

(
ς =

√
2r2

0ς
(t)
n /a(t)

n , Q, R = 0
)
, (A29)

U (t,0)
n (R) = U (0)

(
ς =

√
2r2

0ς
(t)
n /a(t)

n , Q = 0, R
)
. (A30)

Substituting the generating matrix elements (A1), (A3), (A4), (A20), (A23), and (A26) into Eq. (15), one can calculate all
necessary matrix elements in the basis (6) for the Hamiltonian of the six-nucleon α-d system.

APPENDIX B

The explicit expressions for the generating matrix elements of the E2 and M1 operators at the leading order of the long-
wavelength limit for the six-nucleon α-d system in the framework of the developed approach read

〈Q, sσ f |ME
2μ|R, sσi〉 = e r2

0

12
δσ f σi

{
U (2)(Q, R)(Q + R)2Y2μ(nQ+R ) − 3U (1)(Q, R)

exp ( QR/2) − 1
[Q2 Y2μ(nQ) + R2 Y2μ(nR )]

}
, (B1)

〈Q, sσ f |MM
1μ|R, sσi〉 = μN

12

√
3

π

{
3 (gp + gn)

√
s(s + 1)C

sσ f

sσi 1μ U (1)(Q, R) − i δσ f σiU
(2)(Q, R)[Q × R]1μ

}
, (B2)

where

U (1)(Q, R) = exp (−QR/3) [exp (QR/2) − 1]2, (B3)

U (2)(Q, R) = exp (−QR/3) [2 exp (QR/2) + 1] [exp (QR/2) − 1]. (B4)

The generating matrix elements of the components of the E1 operator at the FOLWA are given by

〈Q, sσ f |M̃E(1)
1μ |R, sσi〉 = −e k2

γ r3
0

1080
δσ f σi

{
3 QR[RY1μ(nQ) + QY1μ(nR )]

2[exp (QR/2) − 1]

+ [QY1μ(nQ) + RY1μ(nR )]

(
Q2 + R2 + 3 t

∂

∂t

)}
U (1)(Q, R), (B5)
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〈Q, sσ f |M̃E(2)
1μ |R, sσi〉 = −i

μN kγ r0

54
√

2
δσ f σiU

(2)(Q, R)
∑

λ=0,±1

(−1)λC1(μ+λ)
1μ 1λ [Q × R]1(−λ)[QY1(μ+λ)(nQ) + RY1(μ+λ)(nR )],

(B6)

〈Q, sσ f |M̃E(3)
1μ |R, sσi〉 = μN kγ r0

6
√

2
(gn + gp)

√
s(s + 1) U (1)(Q, R)

×
∑

λ=0,±1

(−1)λC1(μ+λ)
1μ 1λ C

sσ f

sσi 1(−λ)[QY1(μ+λ)(nQ) + RY1(μ+λ)(nR )]. (B7)

The generating matrix elements of the E1 operator based on the PEM are expressed by

〈Q, sσ f |ME(PEM)
1μ |R, sσi〉 = − e r0

m (2md − mα )

md (md + mα )
δσ f σi U (1)(Q, R)[QY1μ(nQ) + RY1μ(nR )], (B8)

where md and mα are the measured masses of the d and α clusters. Obviously, if one sets md = 2m and mα = 4m in accordance
with the isospin formalism, one obtains the zero value for Eq. (B8).

The reduced matrix elements of the considered E1, E2, and M1 operators have the form

〈
J

π f

f l f sν f

∥∥ME(PEM)
1

∥∥Jπi
i lisνi

〉 = − er0
m (2md − mα )

2md (md + mα )

√
3

π
�

(1)
Jf l f Ji lis

(
κν f l f s

κνi lis
δν f ,νi−1 + κνi lis

κν f l f s
δν f ,νi+1

)
, (B9)

〈
J

π f

f l f sν f

∥∥M̃E(1)
1

∥∥Jπi
i lisνi

〉 = − e k2
γ r3

0

1440
√

3π
�

(1)
Jf l f Ji lis

[
2

κνi lis

κν f l f s
δν f ,νi+3 +

(
6 νi

κνi lis

κν f l f s
+

κ̃2
(ν f −2)l f s

κν f l f s κνi lis

)
δν f ,νi+1

+
(

6 ν f
κν f l f s

κνi lis
+ κ̃2

(νi−2)lis

κν f l f s κνi lis

)
δν f ,νi−1 + 2

κν f l f s

κνi lis
δν f ,νi−3

]
, (B10)

〈
J

π f

f l f sν f

∥∥M̃E(2)
1

∥∥Jπi
i lisνi

〉 = − μN kγ r0

12
√

3π

�̄Jf l f Ji lis

κν f l f s κνi lis

[
δν f ,νi+1

∑
l

�̄l f li l κ̃2
(ν f −2)ls + δν f ,νi−1

∑
l

�̄li l f l κ̃2
(νi−2)ls

]
, (B11)

〈
J

π f

f l f sν f

∥∥M̃E(3)
1

∥∥Jπi
i lisνi

〉 = μN kγ r0

16
√

3π
(gn + gp)�̄�

(1)
Jf l f Ji lis

(
κνi lis

κν f l f s
δν f ,νi+1 + κν f l f s

κνi lis
δν f ,νi−1

)
, (B12)

〈
J

π f

f l f sν f

∥∥ME
2

∥∥Jπi
i lisνi

〉 = e r2
0

12

√
5

π

[
�

(2)
Jf l f Ji lis

(
κν f l f s

κνi lis
δν f ,νi−2 + κνi lis

κν f l f s
δν f ,νi+2

)
−

√
15

2

δν f νi

κν f l f s κνi lis

∑
l

�
(2, l )
Jf l f Ji lis

κ̃2
(ν f −1)ls

]
,

(B13)

〈
J

π f

f l f sν f

∥∥MM
1

∥∥Jπi
i lisνi

〉 = μN

4

√
3

π

[
(gp + gn) �

(1)
Jf l f Ji lis

−
√

2

3

1

κν f l f s κνi lis

∑
l

�
(1, l )
Jf l f Ji lis

κ̃2
(ν f −1)ls

]
δν f νi . (B14)

Expressions (B9)–(B14) incorporate the following notations:

�
(λ)
Jf l f Jilis

= (−1)Ji+l f +s+λ �Jf JiliC
l f 0
li0 λ0

{
li s Ji

Jf λ l f

}
, (B15)

�
(λ, l )
Jf l f Jilis

= (−1)Ji+l f +s+λ �Jf l f Ji liC
l0
l f 0 10 Cl0

li0 10

{
1 λ 1
l f l li

}{
li s Ji

Jf λ l f

}
, (B16)

�
(λ)
Jf l f Jilis

= (−1)Jf +l f +s+λ �Jf Ji s

√
s(s + 1) δl f li

{
s l f Ji

Jf λ s

}
, (B17)

�̄Jf l f Jilis = (−1)Ji+l f +s+1�Jf l f Ji li

{
li s Ji

Jf 1 l f

}
, (B18)

�̄l2 l1 l = √
2l + 1Cl0

l10 10

∑
l3

Cl30
l0 10 Cl30

l20 10

{
1 1 1
l l3 l1

}{
1 1 1
l1 l3 l2

}
, (B19)

� j1 j2... jn =
√

(2 j1 + 1) (2 j2 + 1) . . . (2 jn + 1), (B20)

�̄ = (Jf − Ji ) (Jf + Ji + 1) − (l f − li ) (l f + li + 1), (B21)
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κ2
νls = 2π

ν!

[(
2

3

)ν

− 2

(
1

6

)ν

+
(

−1

3

)ν]
ενl , (B22)

κ̃2
νls = 2π

ν!

[
2

(
2

3

)ν

−
(

1

6

)ν

−
(

−1

3

)ν]
ενl , (B23)

ενl =
⎧⎨
⎩

2 l+1ν![(ν + l )/2]!

(ν + l + 1)![(ν − l )/2]!
, l � ν, l + ν − even,

0, in other cases,
(B24)

and
{a b c

d e f

}
is the 6 j symbol. The reduced matrix elements (B9)–(B14) are related to the ordinary ones by the Wigner-

Eckart theorem [100].
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