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The Gamow-Teller (GT) transitions in four magic nuclei, 48Ca, 90Zr, 132Sn, and 208Pb, are studied using a self-
consistent Hartree-Fock (HF) plus charge-exchange subtracted second random-phase approximation (SSRPA)
model with several Skyrme energy density functions (EDFs). These calculations show that SSRPA improves
systematically the description of main GT strength distributions in terms of the excitation energy and the peak
height. The quenching factors are evaluated to be 13–20% of the Ikeda sum rule for 48Ca, 90Zr, and 132Sn,
due to the couplings to two-particle–two-hole (2p-2h) configurations. Also examined are the effects of tensor
interactions on the excitation energies and the quenching factors of GT strength distributions.
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I. INTRODUCTION

Nuclear spin-isospin excitations are collective oscillations
of a nucleus with spin and isospin degrees of freedom. They
provide an unique opportunity to study the spin-isospin cor-
relations in nuclei [1–3]. The GT excitation is the most well
known spin-isospin mode with Jπ = 1+, and is closely linked
to the electron capture and β decay rates. The GT excitation
has a strong impact on the r-process nucleosynthesis together
with the photonuclear cross sections [4]. In addition, the GT
resonance is also associated with double-β decay processes,
especially the two-neutrino double-β decay which take places
through two GT-type transitions [5,6]. Microscopically, the
GT transition is related to the spin-isospin component of the
nucleon-nucleon interaction, and the precise description of the
GT strength distribution is a significant mission for nuclear
theories.

The theoretical studies of giant resonances in nuclei have
made successful progress in the last two decades. Particu-
larly, the microscopic models, such as the HF+(quasiparticle)
random-phase approximation (RPA or QRPA) [7,8], which are
based on the self-consistent mean-field approximation with
the EDFs, have been largely developed over these years. The
Skyrme EDFs [9–12] or Gogny [13–15] effective interactions
are often adopted in these studies as well as the relativis-
tic covariant effective Lagrangians [16–18]. Undoubtedly,
(Q)RPA has achieved significant success in predicting the
excitation energy of giant GT resonances with these effective
Hamiltonians.

However, the (Q)RPA model including only one-particle–
one-hole (1p-1h) configurations cannot provide a good
account of the width of the giant resonance, such as the
spreading width due to the coupling to the many-particle–

many-hole configurations [19–22]. Moreover, in the study of
GT transitions, a large quenching of the sum rule value was
found experimentally in the giant GT excitation energy region
lower than 20 MeV [23].

In order to obtain a better description, models beyond
the (Q)RPA approximation were proposed. The RPA plus
particle-vibrations coupling (PVC) model was applied for
charge-exchange excitations, in both nonrelativistic [24] and
relativistic theoretical frameworks [25]. It was shown in
Ref. [24] that the sum rule strength and the spreading width
of GT state calculated by the PVC model are much better than
the ones obtained by the RPA. Then, it was confirmed that the
coupling with phonons can produce an appreciable quenching
effect on the main GT resonances, but there are still some
missing effects, such as the inclusion of tensor force and the
coupling with high-energy 2p-2h configurations.

Very recently, the self-consistent HF+SSRPA model with
Skyrme EDF, which takes into account the 2p-2h config-
urations reasonably, was applied to the GT transition in
medium-light nucleus 48Ca [26]. It was reported that the main
GT strength distribution obtained by the SSRPA model shows
a reasonable agreement with the experimental data in terms
of the excitation energy. On top of that, the SSRPA model
gives a quenching factor of about 25% due to the including
of 2p-2h configurations. It was also reported in Ref. [27]
that the SSRPA model incorporates the necessary correlations
to provide an effective description of the quenching of GT
spectra.

The spin-dependent excitations are in general affected by
the tensor interactions more than the spin-independent ones
[28]. The effect of the tensor force on the GT strength distri-
bution of 90Zr involved with 2p-2h coupling was reported in
Ref. [29], which presented the result that the tensor force plays
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an important role in shifting substantial amount of GT strength
to a higher excitation energy region beyond the main GT
resonance. Self-consistent HF+RPA calculations with tensor
terms of Skyrme EDF were done in Refs. [30,31] for closed
shell nuclei 90Zr and 208Pb. It was reported that the Skyrme-
type tensor force shifts the GT main peaks downwards by
about 2 MeV, and shifts about 10% of total GT strength to
the high energy region.

In this work, self-consistent HF+SSRPA calculations
based on the Skyrme EDFs are applied for the GT excitations
of four closed shell nuclei, 48Ca, 90Zr, 132Sn, and 208Pb, to
study the systematic trend of SSRPA for the description of
GT strength distributions with respect to the excitation energy
and the width. The effects of tensor force on the GT strength
distribution and quenching problem will be also studied. The
article is organized as follows. In Sec. II, a short summary
of the formalism and some numerical details are presented.
Results of the GT strength distributions calculated without the
tensor force by RPA and SSRPA are shown for nuclei 48Ca,
90Zr, 132Sn and 208Pb in Sec. III. The effects of the tensor
force on the GT strength distribution and the quenching in
the HF+SSRPA model will be given in Sec. IV. A summary
is given in Sec. V.

II. FORMALISM AND NUMERICAL DETAILS

The operator for GT transitions is defined as

ÔGT ± =
A∑

i=1

σ (i)t±(i), (1)

where σ is the spin operator and t± = tx ± ity are the isospin
raising and lowering operators, respectively. The total GT
strength obeys the model independent Ikeda sum rule [32],

S− − S+ = 3(N − Z ). (2)

The present research is focused on the GT− strength distribu-
tions, owning to the fact that the GT+ transition is suppressed
in nuclei with a significant neutron excess.

The quenching factor for the transition strength in our
discussion is defined as

Q = 3(N − Z ) − ∑
0<Ex<Emax

B(GT : Ex )calc

3(N − Z )
. (3)

As the charge-exchange SRPA and SSRPA models are well
described in Refs. [21,33], we give only few necessary for-
mulation about our numerical implementation. We start by
solving the HF equations in coordinate space with a radial
mesh extending up to 20 fm in a step of 0.1 fm. When the
Skyrme HF potential is calculated, the single-particle energies
and wave functions of the occupied and unoccupied levels
can be solved by using the harmonic oscillator basis. This
basis is large enough to ensure that our results are stable.
For the truncation of configurations, the energy cutoff on
the 1p-1h configurations is set as 100 MeV. For the 2p-2h
configurations, to make the problem tractable, the truncations
of 2p-2h configurations are set as 40 MeV for 48Ca and 90Zr,
30 MeV for 132Sn. It has been checked that the results do
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FIG. 1. The strength distributions and corresponding cumulative
sums of 208Pb calculated by SSRPA with SGII for 2p-2h energy
cutofsf 30 and 32 MeV. The red line represents cutoff = 30 MeV
and the blue dashed line represents cutoff = 32 MeV.

not change significantly when the cutoff is raised beyond that
level. In addition, the cutoff for 208Pb is set as 30 MeV, due
to the huge configuration number. The cutoff 32 MeV is also
tested for 208Pb, and the results are shown in Fig. 1. In this
work, the discrete GT strength distributions are smoothed
with a Lorentzian weighting function having 1 MeV width.
As shown in the figure, the excitation energy of the giant
resonance is changed within 0.1 MeV due to the change of the
cutoff from 30 to 32 MeV, and the cumulative sums are almost
the same below Ex = 25 MeV, but the quenching factor is en-
larged by about 3% in the case of Emax = 32 MeV. Therefore,
we will hereafter mainly discuss the strength distributions of
208Pb below Ex = 25 MeV. For the quenching in 208Pb, it
looks insufficient to set the cutoff even at 32 MeV, but a higher
cutoff will be beyond our computing power, so the present
results are of value for the description of giant GT resonance.

We performed two SSRPA calculations in the four nuclei
with SGII EDF: one is the full calculation without further
approximation, and another is the diagonal approximation of
the coupling matrix elements A22 between 2p-2h configura-
tions applied only in the subtracted procedure. It has been
confirmed that the result obtained with the diagonal approxi-
mation used in the subtraction procedure is almost the same as
the one produced by the full calculation for medium-heavy nu-
clei. For a simple example, Fig. 2 shows the results of the full
calculation and the one obtained with the diagonal approxima-
tion in the subtraction procedure for 90Zr. The figure shows
that the strength distributions of the two calculations differ
only less than 0.1 MeV in the excitation energy, and the
quenching factors are kept unchanged, which is consistent
with what was reported in Ref. [27]. Therefore, hereafter, the
diagonal approximation of A22 is adopted in the subtraction
procedure for 90Zr, 132Sn, and 208Pb, and the full calculations
are always performed for 48Ca. More details about our SSRPA
calculations can be found in Ref. [34].

In the present calculations, Skyrme EDFs SGII [35], SAMi
[36], SAMi-T [37], and several ones from the TIJ family
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FIG. 2. The strength distributions and corresponding cumulative
sums of 90Zr calculated by SSRPA with SGII for the full calculation
and the diagonal approximation used in the subtraction procedure
one. The red line represent the result obtained with the diagonal ap-
proximation used in the subtraction procedure, labeled SSRPAD, and
the blue dashed line represents the full calculation, labeled SSRPAF .

[38] are employed. The SGII and SAMi-T EDFs are able
to well reproduce the excitation energies of the GT reso-
nances in magic nuclei in RPA or RPA+PVC calculations
[24,39], which means better spin-isospin characters of the
nucleon-nucleon interaction in these EDFs. In order to study
in a sense simply the effects of tensor force with different
strengths but the central part kept unchanged, the SGII+Te1,
SGII+Te2, and SGII+Te3 EDFs are also applied in the cal-
culations, which take into account the excitation energies of
the GT and charge-exchange spin-dipole resonances in 90Zr
and 208Pb through the HF+RPA calculations [40]. Since one
of the main motivations of this work is the effect of tensor
interactions, which contribute to the EDF in terms of J2,
the J2 terms are included in both HF and residual interac-
tion in order to keep consistency in all the calculations. In
addition, as the SGII EDF was fitted without J2 terms, we
also will perform the calculations in which J2 terms from
the central part of the interaction (the momentum dependent
terms of Skyrme EDF) are excluded in both HF and residual
interactions for SGII, but the tensor terms are included in
J2 terms. The results will be discussed at the last part of
Sec. IV.
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FIG. 3. GT− strength distributions of 48Ca [panel (a)], 90Zr [panel (b)], 132Sn [panel (c)], and 208Pb [panel (d)] calculated with the SGII
and SAMi EDFs by RPA (dashed lines) and SSRPA (solid lines). The results obtained by SGII and SAMi are shown by the red and blue lines,
respectively. The experimental data of 48Ca [41],90Zr [42], 132Sn [43], and 208Pb [44] are shown by the black filled circles. The calculated
discrete strength distributions are smoothed by a Lorentzian weighting function of 1 MeV width. See the text for more details.
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FIG. 4. Cumulative GT− strengths up to 25 MeV for 48Ca [panel (a)] and 90Zr [panel (b)], 23 MeV for 132Sn [panel (c)], and 25 MeV for
208Pb [panel (d)] calculated with SGII and SAMi by RPA (dashed lines) and SSRPA (solid lines). The results obtained by SGII and SAMi are
shown by the red and blue lines, respectively. The experimental data of 48Ca [41],90Zr [42], 132Sn [43], and 208Pb [44] are shown by the black
filled circles.

III. SPREADING OF GT STATES IN SSRPA

Figure 3 shows the strength distributions of 48Ca [panel
(a)], 90Zr [panel (b)], 132Sn [panel (c)], and 208Pb [panel (d)]
calculated with SGII (red lines) and SAMi (blue lines) by
RPA (dashed lines) and SSRPA (solid lines), together with
the experimental data. As shown in the figure, in RPA cal-
culations, the excitation energies of the main peaks are well
reproduced by SAMi, and SGII gives the main peak about
1–2 MeV higher than that of SAMi. Moreover, RPA obtain
strengths in the main peaks much larger than the experimental
ones by a factor of 5 to 7, which is the typical defect of the
RPA model. In the results calculated by SSRPA, quantitative
improvements for the description of GT strength distribution
are observable. One can observe that the strengths in the
main peaks are expanded in a wide energy region due to
the spreading effect of the 2p-2h coupling. As a result, the
strengths of the main peaks are about 1.5 times those of the
experimental ones in 48Ca, 132Sn, and 208Pb, and about 3–4
times those in 90Zr. Moreover, in the SSRPA model, the main
peak may be shifted downwards. When calculated with SGII,
the main peaks are shifted downward by about 1 to 1.5 MeV
in the four nuclei, which well reproduces the experimental

data, while in the case of SAMi the main peaks are shifted
downwards by about 1 and 1.5 MeV respectively in 48Ca
and 90Zr but are almost kept unchanged in 132Sn and 208Pb.
The corresponding cumulative sums are shown in Fig. 4. The
results calculated with SGII and SAMi are labeled by red
and blue lines, respectively. As extracted from the figure, the
experimental quenching factors are about 36.7%, and 34.9%
with Emax = 25 MeV, respectively, for 48Ca and 90Zr, 44.5%
for 132Sn with Emax = 23 MeV, and 38.6% for 208Pb with
Emax = 25 MeV. These maximum energies are selected by the
limit of available experimental data of each nucleus without
large uncertainty. One can see that the cumulative sums ob-
tained by the RPA model evolved very steeply at the main
peak energy regions, and reach the sum rule limit. In the
SSRPA model, the cumulative sums increase gradually, and
the quenching factors obtained with SGII (SAMi) are respec-
tively about 20.7% (14.4%) for 48Ca, 19.2% (15.2%) for 90Zr,
16.4% (12.5%) for 132Sn, and 14.7% (10.0%) for 208Pb in the
energy region corresponding to the experimental results. For
these nuclei, the SGII EDF gives about 5% larger quenching
than that of SAMi. About a half of the experimental quenching
factor is obtained by the calculated results of SSRPA with
SGII for 48Ca and 90Zr, and about 40% for 132Sn and 208Pb.
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FIG. 5. The same as Fig 3, but for the SAMi-T EDF with or without tensor terms. Red lines represent SAMi-T without tensor terms,
labeled w/o, and blue lines represent the SAMi-T EDF with tensor terms, labeled w/i.

The quenching factor might be further changed by the tensor
force [29]. We will study this point in the next section.

In the SSRPA calculation with SGII and SAMi, the spread-
ing effects on the GT strength produce the shape of giant GT
resonances close to the experimental ones. The giant reso-
nances might be shifted downward by about 1 to 1.5 MeV due
to the 2p-2h coupling in SSRPA. As a result, the GT strength
distributions of the four nuclei can be well described by the
present SSRPA model, particularly with the SGII EDF.

IV. EFFECTS OF TENSOR FORCE

As was reported in the literatures [30,31,39], the tensor
correlations in the RPA model have strong influence on GT
resonances. In this section, we discuss the effect of tensor
terms of the Skyrme EDF in the SSRPA model. As the
strength of the tensor force of Skyrme EDF is not well op-
timized for the spin-isospin excitations, we do the calculation
first with the Skyrme EDFs whose parameters are optimized
with tensor terms to reproduce a set of experimental observ-
ables, i.e., SAMi-T and three other ones from TIJ family. It
should be noticed that one of the ingredients of optimiza-
tion procedure of the SAMi-T EDF is the Landau-Migdal
parameter for the spin-isospin channel. Second, in order to

find a particular role of tensor force on the GT states, we
select different choices of tensor terms on top of the existing
Skyrme EDF parameters. To this end, we do the calculations
with SGII+Te1, Te2, and Te3, in which the central part of
the EDF is kept unchanged and the tensor forces are varied in
an acceptable region to describe well the GT and spin-dipole
excitations, as far as the excitation energies of main peaks in
several nuclei are concerned [40]. In the end of this subsec-
tion, the effects of J2 terms originating from the momentum
dependent terms of the Skyrme EDF will be discussed, since
both the momentum dependent terms and the tensor force
make contributions to the J2 terms of EDF.

Figure 5 shows the strength distributions calculated with
the SAMi-T EDF with and without tensor terms in RPA
and SSRPA models. The red and blue lines represent the
calculations without and with tensor force, respectively. As
shown in this figure, in RPA calculations without the tensor
force, the excitation energies of the main peaks appear about
1–2 MeV higher in energy than those with the tensor force
in all nuclei. In SSRPA calculations, the tensor force shifts
the main peaks downwards by about 1 to 1.5 MeV and the
peak heights are reduced to be almost the same as the ex-
perimental ones in 48Ca, 132Sn, and 208Pb. Particularly, in
48Ca, the inclusion of the tensor terms reproduces well not
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FIG. 6. The same as Fig 4, but for the SAMi-T EDF with or without tensor terms. Red lines represent SAMi-T without tensor terms,
labeled w/o, blue lines represent SAMi-T with tensor terms, labeled w/i.

only the main peak at Ex = 11 MeV, but also the shoulder
at around Ex = 7.5 MeV. We can see also better descriptions
of main peaks in 132Sn and 208Pb in terms of the excitation
energy and the peak heights. On the other hand, in 90Zr, the
excitation energy of the main peak is almost unchanged by the
tensor force, and the agreement with the experimental data is
modest.

The corresponding cumulative sums are shown in Fig. 6.
The gross feature of RPA and SSRPA calculations is similar
to that of SAMi shown in Fig. 4, i.e., the SSRPA calculations
show gradual increase of the sum until Ex = 15 MeV, showing
a trend similar to the experimental ones, while those of RPA
show abrupt increase at the main GT peak energies. The
quenching factors obtained by the SSRPA model give just
few-percent changes after including tensor terms. This might
be due to the weak strength of the tensor force in SAMi-T.
In order to explore the effect of tensor terms with different
strengths on the quenching problem, T21, T44, and T55 EDFs
from the TIJ family are adopted in the SSRPA calculations.
The strength distributions and corresponding cumulative sums
of 48Ca, 90Zr, 132Sn, and 208Pb calculated with T21, T44, and
T55 by SSRPA are shown in Fig. 7. In general, the TIJ family
give poor results for the descriptions of GT states since the
spin-isospin excitations are not included in the optimization
procedure of the EDF parameters. Nevertheless, these param-

eter sets might be useful to explore how different strengths of
tensor terms affect the properties of GT strength distributions.

In 48Ca, T21 and T55 EDFs give main peaks lower in
energy by 10 and 3 MeV, respectively, compared with the
experimental peak, while T44 EDF successfully produces the
main peak. In 90Zr, T44 and T55 EDFs give acceptable results
for the main peak, slightly underestimating the excitation en-
ergy by about 1 MeV, but these EDFs show a low energy peak
at around Ex = 5 MeV with strength comparable to the main
peak, which is quite different from the experimental data. For
132Sn and 208Pb, all of the three EDFs fail to describe the
strength distributions.

The quenching factors of the four nuclei calculated by the
three EDFs, as well as the corresponding strength of the tensor
force are listed in Table. I. As shown in the table, the strength
of triplet-even tensor term T in the three EDFs is around
500 MeV fm5, while the strength of the triplet-odd tensor
term U is quite different even in the sign. One can notice
that, for T55 with positive U , the quenching factors are large:
about 30% in 48Ca, 25% in 90Zr, 27% in 132Sn, and 19% in
208Pb. For 208Pb, the quenching factors are smaller in Table. I,
which might be related to the insufficient energy cutoff, as
was discussed in Sec. II. These results indicate that the tensor
term U with the certain strength has a stronger effect on
the quenching. For TIJ family, the tensor terms are changed
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FIG. 7. Strength distributions (upper panels) and corresponding cumulative sums (lower panels) of 48Ca [panels (a), (b)], 90Zr [panels (c),
(d)], 132Sn [panels (e), (f)], and 208Pb [panels (g), (h)] calculated with the T21, T44, and T55 EDFs by SSRPA. The results obtained by T21,
T44, and T55 are labeled by red solid lines, blue solid lines, and green dash-dot-dot lines, respectively. The experimental data are shown by
the black filled circles.

and the central terms of Skyrme EDFs are also changed.
Therefore, we further pursue the effect of tensor force to
change the strength of the tensor terms, keeping the central
part unchanged.

The role of the Skyrme tensor terms in the RPA calcu-
lations of Gamow-Teller and spin-dipole states, varying the
signs and magnitude of tensor terms, was discussed exten-
sively in the literature [40], in which different strengths of
the tensor force are added on top of the same SGII EDF.
We employ three parameter sets, SGII+Te1, SGII+Te2, and
SGII+Te3, whose tensor parameters are listed in Table II,
which give reasonable descriptions of GT and spin-dipole
excitations.

The strength distributions and corresponding cumulative
sums of 48Ca, 90Zr, 132Sn, and 208Pb calculated with SGII,

TABLE I. The quenching factor calculated by SSRPA with the
T21, T44, and T55 EDFs. The strengths of tensor terms are also
given. The cumulative sums are taken up to Emax = 25 MeV for 48Ca
and 90Zr, 23 MeV for 132Sn, and 25 MeV for 208Pb, consistent with
those of Fig. 7.

Force (T,U ) 48Ca 90Zr 132Sn 208Pb

T21 (476.9, −369.4) 23.6% 23.3% 23.8% 18.9%
T44 (521.0, 21.5) 24.5% 22.0% 20.8% 14.6%
T55 (564.6,129.3) 29.7% 25.3% 26.9% 19.1%

Expt. 36.7% 34.9% 44.5% 38.6%

SGII+Te1, SGII+Te2, and SGII+Te3 by the SSRPA model
are shown in Fig. 8. As shown in this Figure, the SGII+Te1
EDF reduces the peak height of the main GT peak, but the
excitation energy is not much changed compared with the
results of SGII. Thus the SGII+Te1 EDF reproduces well the
main GT peaks in 48Ca, 132Sn, and 208Pb in terms of both the
excitation energy and the peak height, but underestimates the
energy by about 1.5 MeV in 90Zr. The SGII+Te2 EDF gives a
good account of the main peak energy in 48Ca, but underesti-
mates the peak energies by about 2.5 MeV in 90Zr, 132Sn, and
by about 1 MeV in 208Pb. The peak heights of the main GT

TABLE II. The same as Table I, but calculated with
SAMi, SAMI-T, SGII, SGII+Te1, SGII+Te2, SGII+Te3, SGIIO,
SGIIO+Te1, SGIIO+Te2, and SGIIO+Te3 EDFs.

Force (T,U ) 48Ca 90Zr 132Sn 208Pb

SAMi (0,0) 14.4% 15.2% 12.5% 10.0%
SAMi-T (415.5, −95.5) 18.6% 16.3% 14.2% 12.7%
SGII (0,0) 20.7% 19.2% 16.4% 14.7%
SGII+Te1 (500, −350) 28.7% 26.6% 28.7% 27.3%
SGII+Te2 (600, 0) 23.8% 22.1% 23.3% 19.0%
SGII+Te3 (650,200) 22.9% 24.1% 27.6% 23.6%

SGIIO (0,0) 34.4% 29.4% 31.4% 33.2%
SGIIO+Te1 (500, −350) 39.8% 35.0% 42.8% 43.2%
SGIIO+Te2 (600, 0) 37.9% 31.0% 35.8% 31.7%
SGIIO+Te3 (650,200) 34.8% 32.6% 40.6% 35.0%

Expt. 36.7% 34.9% 44.5% 38.6%
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FIG. 8. Strength distributions (upper panels) and corresponding cumulative sums (lower panels) of 48Ca [panels (a), (b)], 90Zr [panels (c),
(d)], 132Sn [panels (e), (f)], and 208Pb [panels (g), (h)] calculated with the SGII, SGII+Te1, SGII+Te2, and SGII+Te3 EDFs by SSRPA. The
results obtained by SGII, SGII+Te1, SGII+Te2, and SGII+Te3 are shown by red solid lines, blue solid lines, green dash-dot-dot lines, and
violet dashed lines, respectively. The experimental data are shown by the black filled circles.

peaks are overestimated by the SGII+Te2 in 90Zr, 132Sn, and
208Pb. The SGII+Te3 EDF is poorer than the other two EDFs,
underestimating the excitation energies by about 5 MeV in
48Ca and 90Zr and by about 3 MeV in 132Sn and 208Pb. For
the widths of the main peaks, the SGII+Te1 EDF gives strong
effects in the four nuclei, i.e., the strengths are distributed in
wide energy regions and the main peaks are fragmented, while
the SGII+Te2 EDF gives some fragmentations of the main GT
peaks in 48Ca and 90Zr, but merges the strengths to one peak in
132Sn and 208Pb. The SGII+Te3 EDF has no effect of making
larger widths of the main peaks compared with the SGII EDF
without the tensor terms.

The quenching factors for the four nuclei 48Ca, 90Zr, 132Sn,
and 208Pb together with the strengths of tensor forces of
SAMi, SAMi-T, SGII, SGII+Te1, SGII+Te2, and SGII+Te3
are listed in Table II. In general, the tensor interactions
give more quenching than those without the tensor force.
One interesting point to observe from the table is that the
SGII+Te1 and SGII+Te3 with the triplet-odd tensor U term
give more quenching than the one without the U term, which
is consistent with the results of the TIJ family. Especially,
the quenching factors calculated with the SGII+Te1 EDF are
systematically increased by about 10% in comparison with the
SGII EDF in the four nuclei. This indicates that the tensor
forces with stronger strengths give larger quenching factors,
being close to the experimental data, and are consistent with
the calculated results in Ref. [29].

In the above calculations the J2 terms are included in
both HF and SSRPA, but in the original SGII they were

not included in the HF level. For this reason, we perform
calculations in which the J2 terms from the momentum de-
pendent part of the Skyrme interactions are excluded in both
HF and SSRPA for SGII. The results are labeled by SGIIO

in order to distinguish from the ones with J2 terms. Figure 9
shows the strength distributions and corresponding cumula-
tive sums of 48Ca, 90Zr, 132Sn, and 208Pb calculated with
SGIIO, SGIIO+Te1, SGIIO+Te2, and SGIIO+Te3. Compared
with the results with all the J2 terms, those in Fig. 9 reduce
substantially the strengths of main peaks in all nuclei, as can
be seen also in the quenching factors in Table II. The results
of SGIIO irrespective to the tensor interactions give additional
10–20 % quenching in Table II. In the strength distributions,
the SGIIO EDF without tensor terms reproduces well the
main peaks of 48Ca and 90Zr, but results are not so good
for those of 132Sn and 208Pb. On the other hand, SGIIO+Te2
and SGIIO+Te3 give good accounts of main peaks of 132Sn
and 208Pb, but underestimate the peak energy of 90Zr. Thus,
SGIIO EDFs have an advantage to give a large quenching
factor, especially the SGIIO+Te1 EDF. However, there is no
improvement in describing the peak energies systematically
compared with those obtained using SGII EDFs with all the
J2 terms.

V. SUMMARY

In summary, we studied the GT transitions in four magic
nuclei, 48Ca, 90Zr, 132Sn and 208Pb, using a self-consistent
HF+SSRPA model with different Skyrme EDFs. The
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FIG. 9. Same as Fig. 8 but calculated without J2 terms both in HF and SSRPA, and the results are labeled by SGIIO, SGIIO+Te1,
SGIIO+Te2, and SGIIO+Te3, respectively.

SSRPA model describes systematically and quantitatively the
GT strength distributions in the four nuclei better than the
RPA model. Particularly the SGII and SAMi-T EDFs repro-
duce well the strength distributions of the main GT peaks in
terms of the excitation energy and the peak height in com-
parison with the experimental data, except for 90Zr, in which
the calculated peak height is about a factor 2 larger than the
experimental one. We examined the effect of tensor terms in
the SAMi-T EDF and found that they shift the main peaks
downwards by about 1 MeV in 48Ca, 132Sn, and 208Pb, but
have almost no effect in 90Zr. The quenching factors are in-
creased by about few percent, but these values with the tensor
interactions are still about a half of the experimental quench-
ing factors. We explored whether or not the tensor force with
different strengths further increases the quenching factor of
GT strength. To this end, we adopt the T21, T44, and T55
EDFs from the TIJ family with quite different values of of the
tensor terms. We realized that none of these three parameter
sets provide a good description of the strength distributions,
either in the excitation energies or in the peak heights. How-
ever, the T55 EDF produces large quenching factors: 30% for
48Ca, 25% for 90Zr, 27% for 132Sn, and 19% for 208Pb. In
208Pb, the quenching factors are smaller, which may be related
to the insufficient cutoff energy of 2p-2h configurations.

We studied further the role of tensor interactions on the
quenching with the parameter sets SGII+Te1, SGII+Te2,
and SGII+Te3, keeping the central part unchanged, but vary-
ing only the strength of the tensor interaction. With these
parameter sets, we found that the tensor interactions affect

substantially the strength distributions of GT peaks; i.e., they
have a strong effect on the spreading of the strength dis-
tribution and the shift of the excitation energy. Among the
three different tensor parameters, SGII+Te1 reproduces at the
best the GT strength distributions in the four nuclei as far
as the excitation energy and the peak height are concerned.
The SGII+Te1 and SGII+Te3 EDFs, in which the strengths
of the triplet-odd tensor term are quite different even in the
sign, produce large quenching factors similar to those of T55.
In addition, as SGII is optimized excluding J2 terms, we did
the calculations in which the J2 terms are excluded in both
HF and SSRPA for the SGII EDF. The calculations show
that the exclusion of J2 terms of the momentum dependent
interactions gives larger quenching factors, close to exper-
imental data. However, the systematical description of the
strength distributions in the four nuclei is not much improved
compared to those with all the J2 terms. It is still a future
challenge to describe realistic strength distributions and the
larger quenching factors with optimized Skyrme EDFs for the
spin-isospin excitations including tensor terms.
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