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Examination of nuclear chirality with a magnetic moment measurement
of the I = 9 isomeric state in 128Cs
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The g factor of the isomeric I = 9+ bandhead of the yrast states in 128Cs is obtained from the time differential
perturbed angular distribution measurement performed with the electromagnet at IPN Orsay. An external
magnetic field of 2.146 T at the target position was attained with GAMIPE reaction chamber surrounded by
four high-purity germanium detectors, of which two were low-energy photon spectrometer type. The results
are in accordance with πh11/2 ⊗ νh−1

11/2 I = 9+ bandhead assignment and are discussed in the context of chiral
interpretation of the 128Cs nucleus as a composition of the odd proton, odd neutron, and even-even core with their
angular momentum vectors. The obtained g-factor value was compared with predictions of the particle-rotor
model. The experimental g factor corresponds to the nonchiral geometry of the isomeric bandhead. This
observation indicates the existence of the chiral critical frequency in 128Cs and may explain the absence of
the chiral doublet members for I < 13h̄.
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I. INTRODUCTION

The 128Cs nucleus studied in this paper belongs to a group
of nuclei around A ≈ 130 in which the phenomenon of nu-
clear chirality [1] has been reported through the observation
of chiral doublet states [2] and specific selection rules for the
gamma transitions between these states [3–6].

The chiral partner bands in the 128Cs nucleus are described
as the coupling of three components: an even-even core with
angular momentum jR and two odd nucleons in πh11/2 ⊗
νh−1

11/2 configuration with angular momenta jp and jn, respec-
tively. The reported observables serve as an indirect sign of
the chiral geometry formed in the 128Cs nucleus, where the
three angular momentum vectors span the three-dimensional
space.

In the ideal geometry the jR, jp, and jn vectors are mutually
perpendicular and build either a right- or left-handed reference
frame corresponding to left-handed |L〉 or right-handed |R〉
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intrinsic nuclear states. The mechanism of the spontaneous
chiral symmetry breaking in a nuclear system occurs when an
excited nucleus cools down and at some point chooses spon-
taneously one of the two intrinsic states. The nucleus does
not stay in the chosen intrinsic configuration since it is not
its eigenstate. Tunneling between |L〉 and |R〉 configurations
takes place with a period much shorter than the time required
for the gamma quantum emission to occur from the excited
states of the nucleus. This is why the intrinsic states with
specified handedness cannot directly be observed in gamma
spectroscopy experiments. Instead of the |L〉 and |R〉 intrinsic
configurations their projections onto the eigenstates of the
nucleus, i.e., chiral doublets, are seen through observation of
the emitted gamma rays. Therefore, the handedness of the
three angular momentum vectors is fundamentally hidden for
nuclear spectroscopy investigations where chiral doublets and
other associated observables indicate the existence of sponta-
neous chiral symmetry breaking.

Even though the handedness cannot be observed directly,
the magnetic dipole moment allows one to study the nuclear
chirality regardless of the handedness of the nucleus. It turns
out that the value of the magnetic dipole moment and the
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corresponding value of the g factor are functions of the geom-
etry formed by the three angular momentum vectors through
their scalar products. These products are symmetric with re-
spect to handedness, giving nonzero values in the symmetric
eigenstates with mixed handedness. Therefore, the value of
the g factor may give information on whether the three angular
momentum vectors span a three-dimensional space (chiral
configuration) or lie in one plane (planar or nonchiral configu-
ration) regardless of the handedness of the intrinsic dynamical
state.

In this paper, the g-factor value of the isomeric I = 9+
bandhead of the yrast states in 128Cs was measured with
the classical time dependent perturbed angular distribution
(TDPAD) method. It is the lowest lying state in the rota-
tional yrast band, being one of the chiral partners built on
the πh11/2 ⊗ νh−1

11/2 configuration. The chiral character of the

partner bands in 128Cs has been observed in states with sig-
nificant nuclear rotation corresponding to spins higher than
13h̄ [3]. With decreasing nuclear rotation the yrare band is
not observed, leaving room for two hypotheses, one of which
assumes that the nuclear chirality persists at low rotational
frequency although low spins of the yrare band are not fed by
fusion reaction mechanism. In such a case the g-factor value
of the bandhead should correspond to a chiral geometry of
the three-component system. The other hypothesis states that
there is a phase transition suppressing the chiral geometry at
low rotational frequency. This may happen below the chiral
critical frequency [7] predicted by the tilted axis cranking
model. Existence of this critical frequency may prevent the
chiral geometry from developing in energy favored nuclear
states. Thus a nonchiral or planar character of the bandhead is
expected. This article details the experimental as well as the
theoretical methods for the magnetic moment measurement
and its interpretation, the brief results of which were published
in [8]. The principle of the measurement and methods of the
data analysis are described in Secs. II and III. Sections IV
and V contain analytical considerations of the magnetic mo-
ment as formed by single coupling schemes of two or three
angular momentum vectors, while Secs. VI and VII present
detailed calculation and interpretation in the frame of the
many-particle–many-hole particle rotor model.

II. EXPERIMENTAL SETUP

The 128Cs nucleus was produced in the 122Sn(10B,
4n) 128Cs fusion-evaporation reaction at 55 MeV beam energy.
A pulsed 10B beam with 1 ns bursts and 400 ns repetition
period was developed by the Tandem accelerator at IPN Or-
say. Single gamma quanta were registered by two low-energy
photon spectrometer (LEPS) detectors placed at ±45◦ with re-
spect to the beam axis. The decay of the I = 9+ isomeric state
was studied using off-beam sorted coincidences of gamma
quanta registered between beam pulses [9]. The relevant part
of the level scheme is shown in Fig. 1, where 14 prompt
gamma transitions follow the I = 9+ isomeric state decay.

These transitions were subject of the TDPAD measurement
with an external magnetic field produced by an electromagnet
at IPN Orsay. Interaction of the external magnetic field and
the magnetic moment associated with a nuclear state leads to

FIG. 1. Relevant part of the level scheme of 128Cs obtained in
Ref. [9]. The decay of the isomeric state is reconstructed from coin-
cidences collected between beam pulses and from prompt-delayed
gamma coincidences. The two transitions represented by dashed
lines, 18 and 5 keV, are below the sensitivity threshold of the ex-
periment due to high electron-conversion decay mode.

precession of the nuclear angular momentum vector. To get
the g-factor value with high precession at least half circum-
volution of the nuclear spin should occur in the period of the
isomeric level lifetime. The Larmor frequency of precession
ωL = −gBμN/h̄ is proportional to the nuclear g factor and
the external magnetic field. The half-life of the isomeric state
T1/2 = 56 ns [9] together with theoretical estimates of its g
factor g ≈ 0.5 [10] gave the required magnetic field B ≈ 2 T
for a half circumvolution within a 50 ns period. The magnetic
field of around 0.7 T attainable at the electromagnet was
magnified with the help of the GAMIPE reaction chamber of
NIPNE (National Institute for Physics and Nuclear Engineer-
ing, Romania); see Fig. 2.

The GAMIPE chamber equipped with cone-shaped iron
poles allowed us to focus the magnetic field, that reached
2.146 T in the target position. In Fig. 2 the uniformity of
the magnetic field is presented as a plot of the B field vs

FIG. 2. GAMIPE reaction chamber, the B field uniformity, and
the beam spot.
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FIG. 3. Experimental geometry and timing resolution.

horizontal distance from the center of the chamber. One can
see that the magnetic field changes about 1.2% within the
±5 mm distance that is the target diameter. This change had
to be taken into account since the projectiles were deflected
from the center point of the target by the applied magnetic
field. The final position of the 1 mm2 beam spot in the target
plane was determined by burning a beam fleck in a paper
layer placed instead of the target foil (cf. Fig. 2). This allows
precise measurement of the magnetic field B = 2.146 T at the
beam spot before and after the experiment. Figure 3 shows the
geometry of the experimental setup.

The 122Sn(10B, 4n) 128Cs reaction populated the aligned
states of 128Cs recoils that stopped in the Sn target of 22
mg/cm2 thickness. Small initial velocity v ≈ 0.01c [3] as well
as short stopping time tstop ≈ 1 ps of recoils ensures that the
decay of the isomeric state happens mostly from 128Cs nuclei
at rest. Therefore, both the spin alignment and the distribution
of the gamma radiation had a mirror symmetry with respect to
the plane perpendicular to the beam direction, which is shown
schematically in Fig. 4. Precession of the angular distribution

FIG. 4. Experimental setup arrangement.

with a frequency ωL was observed by an intensity modulation,
whose frequency was twice higher as a result of the mirror
symmetry. The modulation period of around 50 ns was reg-
istered by two low-energy photon spectrometers (LEPS) of
Laboratori Nazionali di Legnaro. As shown in Fig. 4, the two
LEPS detectors were placed at angles ±45◦ with respect to the
beam axis, forming a beam-detection plane with the magnetic
field perpendicular to it.

The excellent time resolution of LEPS detectors vs γ -
quanta energy, shown in Fig. 3, is gained at the expense of
detection efficiency of high-energy electromagnetic radiation.
Therefore two other Ge-spectrometers—standard HPGe (high
purity Ge) detectors with beryllium window and 35% relative
efficiency—were placed at angles ±135◦ with respect to the
beam axis in order to increase the detection efficiency for
high-energy gammas. Neither of the four Ge detectors was
equipped with ACS (anti-Compton shielding). Figure 3 shows
that the time resolution of LEPS detectors in the present exper-
iment is around 8 ns for Eγ ≈ 120 keV and drops to around
6 ns for Eγ ≈ 1700 keV. Signal-processing electronics, i.e.,
spectroscopic amplifiers, TAC (time-to-amplitude converter),
CFD (constant fraction discriminator), TFA (timing filter am-
plifier), and two HPGe detectors with 35% efficiency were
delivered by the Heavy Ion Laboratory of the University of
Warsaw while event signals readout in a single gamma mode
was done using the Orsay data acquisition system.

For a single gamma quantum, information on its energy
(taken from the spectroscopic amplifiers) and registration time
with respect to beam pulse (taken from TAC) were collected.
For an individual Ge detector the associated CFD logic output
signal was used as the TAC start input while the logic signal
from the unit forming the pulsed beam structure of the TAN-
DEM accelerator was used as the TAC stop input.

Single gamma quanta were collected during 5 days the
beam time. The energy gated time spectra for the g-factor
evaluation were then constructed in off-beam mode using HIL
(Heavy Ion Laboratory) sorting software.

III. DATA ANALYSIS AND RESULTS

The I = 9+ isomeric state decays via 167 and 159 keV
transitions which are followed by emission of another 12
gamma quanta [9]. Modulated intensity was observed for
all transitions below the isomer except 18 and 5 keV lines
which are below the sensitivity threshold of the experiment
due to high electron-conversion decay mode. The intensity
modulation of the Compton background can mimic the mod-
ulation effect for the given transition. Therefore, background
subtracted time spectra were produced where a time spectrum
gated on the background was subtracted from the time spec-
trum gated on a gamma-ray peak.

Figure 5 illustrates the time spectrum gated on the E =
152 keV peak with and without background subtraction to-
gether with the time spectrum of the Compton background.
The modulated intensity follows a straight line on a log-
arithmic scale, indicating proper background subtraction.
Background subtracted oscillation spectra were found for 11
gamma lines associated with the isomeric state decay.
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FIG. 5. Background subtraction from the time spectrum of
152 keV peak.

A rotating angular distribution inherits the symmetry of
the rotating spin alignment, giving intensity modulations of
opposite phase observed by the LEPS detectors placed at a
right angle in the beam-detection plane. All oscillation spectra
observed in the present experiment are shown in Fig. 6, where
the spectra were normalized by multiplying the −45◦ LEPS
spectra by a factor of 2.4.

One can see that oscillation of the 114 keV transition in the
first 70 ns after the beam pulse is disturbed by an overlapping
unidentified 115 keV peak. The 115 keV line is observed in
coincidence with a 122 keV gamma which presents much
shorter half-life than the 56 ns half-life of the I = 9+ isomeric
state. Therefore, the analysis of the 114 keV oscillations was
performed for gammas registered after the 70 ns decay of
the overlapping transition. Rotation of the angular distribution
leads to the modulation of the gamma intensity observed by a
detector in the beam detection plane according to the formula

I (θ, t ) = I0e−t/τ {1 + α2(t )Q2A2P2[cos(θ − ωLt )]

+ α4(t )Q4A4P4[cos(θ − ωLt )]}, (1)

where A2, A4 are the gamma angular distribution coefficients,
Q and α(t ) the attenuation factors due to the finite detector
size and time dependent spin alignment, τ the I = 9+ isomeric
state lifetime, and ωL the Larmor frequency of precession.
Only even Legendre polynomials P2 and P4 are present in the
formula (1) as a result of the mirror symmetry of the initial
gamma angular distribution. With an assumption of identical
detector properties one gets the same Q attenuation factors for
both detectors. This allows one to get a precise value of the
Larmor frequency by constructing a modulation ratio spectra.
A modulation ratio of the detectors placed at a right angle is
defined as

R(t ) = I (−45◦, t ) − I (+45◦, t )

I (−45◦, t ) + I (+45◦, t )
, (2)

where the numerator becomes

FIG. 6. Intensity oscillation spectra registered by LEPS detec-
tors. Black lines shows the intensity registered at +45◦ with respect
to beam axis while red lines show the intensity seen at −45◦. The
intensity curves were normalized by multiplying the −45◦ spectrum
by factor of 2.4.

I (−45◦, t ) − I (+45◦, t )

= I0e−t/τ

[
3

2
α2(t )Q2A2

+ 10

16
α4(t )Q4A4

]
cos[2(−45◦ − ωLt )] (3)

while the denominator simplifies to

I (−45◦, t ) + I (+45◦, t )

= I0e−t/τ

[
2 + 1

2
α2(t )Q2A2

+ 1

16
α4(t )Q4A4{35 cos2[2(−45◦ − ωLt )] − 13}

]
. (4)

For the assumption of identical detectors and small A4

coefficients, one gets an approximate modulation ratio of the
form

R(t ) ≈ −3α2(t )Q2A2 sin(2ωLt − φ)

4 + α2(t )Q2A2
, (5)
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FIG. 7. Observed oscillating ratios R(t )

where an additional parameter, the phase φ, was introduced to
account for possible timing offsets of the detectors. Figure 7
shows modulation spectra constructed by means of Eq. (2)
with least-squares fits of formula (5) shown as solid lines. The
approximate modulation formula describes the experimental
data very well, indicating that the assumption of small A4

coefficients and identical detectors is a sufficient approxi-
mation for the Larmor frequency to be measured. However,
this approximation may not be correct for gamma angular
distribution coefficients determination that may be sensitive
to spectra normalization and summation.

One can see in Fig. 7 attenuated oscillation amplitudes,
which may come from the hyperfine interaction between the
nuclear magnetic moment of Cs recoils and the magnetic
moments of the electronic shells in Sn target causing a spin
deorientation effect. The relaxation time of the spin deorien-
tation and the corresponding oscillation attenuation is around
τrel ≈ 300 ns. The deorientation effect was included in the fit-
ted formula by the spin alignment coefficients α(t ) taken as an
exponential function of time, α2(t ) = α2 exp(−t/τrel ). Thus
the final approximate function for the observed modulation
ratio becomes

R(t ) ≈ −3 exp(−t/τrel )A sin(2ωLt − φ)

4 + A exp(−t/τrel )
, (6)

where A = α2Q2A2 was assigned as the value related to the
initial modulation amplitude.

All excited states above the isomer belong to collective
bands with picosecond lifetimes [3] so they do not contribute

TABLE I. Parameters of the oscillation function given by Eq. (6)
resulting from the fitting procedure.

Eγ (keV) A ωL (109 s−1) φ (deg) τrel (ns)

114 −0.243(9) 0.0625(1) 7.9 ± 2.0 334 ± 34
152 −0.296(4) 0.0622(1) 19.7 ± 0.7 279 ± 12
159 −0.172(3) 0.0620(1) 23.6 ± 1.0 255 ± 15
167 −0.35(2) 0.0618(4) 20.7 ± 3.4 360 ± 101
169 +0.193(6) 0.0631(2) −3.7 ± 1.6 373 ± 53
188 −0.153(7) 0.0625(2) 3.3 ± 2.5 277 ± 36
230 −0.51(7) 0.062(1) 25.6 ± 9.5 123 ± 31
266 −0.12(1) 0.061(2) 24.2 ± 14.7 300a

495 +0.19(3) 0.062(2) 28.1 ± 23.3 300a

aFixed during fitting.

to the modulation of the intensity ratio R(t ). This is partic-
ularly important information, since the experiment discussed
here is a γ -distribution measurement and not the γ -correlation
measurement. The oscillation frequency observed in all tran-
sitions can therefore be attributed to the g factor of the I = 9+
band.

The A, τrel, ωL, and φ parameters were kept free for the
least-squares fits of the formula (6), giving the results listed
in Table I. One can see that the Larmor frequency ωL in all of
the oscillation functions is nearly the same (Table I, column
3). This suggests that the intensity ratio R(t ) comes from fast
(compared to the studied magnetic moment precession period)
γ transitions below the I = 9+ isomer.

Individual properties of excited states below the isomer,
i.e., their lifetimes (on the order of a few nanoseconds) and
the values and signs of their g factors, may influence the value
of the phase φ. Short-term precession of the magnetic moment
in each of these states may slightly increase or decrease (de-
pending on the sign of the g factor) the value of the phase φ.
This fact may explain the differences in the values of the phase
observed in the presented measurement (see Table I, column
4).

The average value of the Larmor frequency ωL =
0.0621(4) × 109 s−1 leads to precise value of the g factor g =
0.59(1) and the deorientation relaxation time τ = 3.43(8) ×
10−7 s [8], which are the final experimental results. The ob-
tained g-factor value is about 20% larger than that expected
theoretically in frame of core particle hole coupling (CPHC)
calculations with γ -rigid as well as γ -soft core [10,11].

IV. πh11/2 ⊗ νh−1
11/2 I = 9+ BANDHEAD CONFIGURATION

The measured value of the g factor for the I = 9+ bandhead
allows to verify whether the total angular momentum vector of
the 9+ bandhead is built chiefly by the two angular momen-
tum vectors of the odd πh11/2 ⊗ νh−1

11/2 nucleons or a third
component coming from significant even-even core rotation
is required to reproduce the value observed experimentally.

In case where only two angular momentum vectors of the
two odd nucleons contribute to the total spin of the isomeric
state (no core rotation), there is only one coupling scheme
giving the required total angular momentum J = 9h̄. The g
factor of such a two-component state can be calculated using
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TABLE II. Estimation of the g-factor value of I = 9+ in 128Cs based on pure theoretical calculations (first raw) and on experimental data
taken from neighboring nuclei (second and third raw) with comparison to the experimentally obtained g factor. Column 1: Orbitals from which
the input values are taken. Column 2: Isotopes from which the input data are taken. Columns 3 and 4: Values of single-particle proton and
neutron g factors as the input data [12]. Columns 5 and 6: Values of spin gyromagnetic factors of proton and neutron calculated from proton
and neutron single-particle g factors. Columns 7 and 8: Single-particle g factors for proton and neutron expected in the h11/2 orbital from
corresponding spin gyromagnetic factors. Column 9: Values of the g factor in the πh11/2 ⊗ ν−1h11/2I = 9+ state of 128Cs expected for the
two-component model (no core rotation). Column 10: Value of the g factor obtained experimentally.

Orbital Isotope gj gj gs gs gp gn g gexperiment

proton neutron proton neutron

h11/2
128Cs 1.21 −0.21 3.31 −2.31 1.21a −0.21a 0.50a 0.59(1)

theoretical (experimental)
h11/2

129Cs(proton)/ 1.191(18) −0.1619(2) 3.10(2) −1.781(2) 1.191(18) −0.1619(2) 0.515(9)
129Xe(neutron)

s1/2
127Cs(proton)/ 2.98(2) −1.555953(15) 2.98(2) −1.555953(15) 1.1802(15) −0.1414502(15) 0.519(2)
129Xe(neutron)

aGyromagnetic factors of proton gp and neutron gn estimated from the free-particle values using the attenuation factor 0.6 for the nucleon spin
gyromagnetic factors.

the additivity formula [13]

g = 1

2J (J + 1)
{gp[J (J + 1) + jp( jp + 1) − jn( jn + 1)]

+ gn[J (J + 1) − jp( jp + 1) + jn( jn + 1)]}, (7)

where gp and gn are g factors of the odd proton and odd
neutron, respectively.

For the πh11/2 ⊗ νh−1
11/2 configuration, the angular mo-

mentm of the proton, jp, and the neutron, jn, equals 11/2h̄
and the above formula simplifies to

g = 1
2 (gp + gn). (8)

To find the values of gp and gn one can use theoretical
estimations [14–16] or adopt them from experimental data of
magnetic moments measured in the neighboring single-odd
nuclei. For a single nucleon occupying the j = l ± s orbital,
its g-factor value can be written as

gj = (2 j − 1)gl + gs

2 j
for j = l + 1

2
, (9)

gj = (2 j + 3)gl − gs

2( j + 1)
for j = l − 1

2
. (10)

These two equations allow one to express the gp and gn values
for any nuclear orbital provided that the spin-gyromagnetic
factors gs of these particles are known, or conversely, for the
known g-factor value of a specified orbital it is possible to get
the gs values. By taking the orbital gyromagnetic factor gl = 1
for the proton and gl = 0 for the neutron together with the
measured magnetic moments of states in neighboring nuclei,
one can get an estimation of the associated gs values.

128Cs is a doubly-odd nucleus with 73 neutrons and 55
protons. In a single-odd neighbors, one can get either the
features of the proton states from 129Cs data (74 neutrons,
55 protons) or the features of the neutron states from 129Xe
data (75 neutrons, 54 protons). In both neighboring nuclei,
the magnetic moments (that is the g factors) in the h11/2 as
well as s1/2 states have been measured [17]. The measured
magnetic moments of these specified states allow, by using

Eq. (9), getting the experimental values of the spin gyromag-
netic factor gs associated with odd proton and odd neutron.
The obtained theoretical and experimental gs values for pro-
ton and neutron are summarized in Table II and are used in
further calculations for other orbitals. The gs values listed in
Table II were used to calculate gp and gn values for particle
configurations possibly involved in the structure of the I = 9+
isomeric state. The obtained gp and gn values were then used
to calculate the expected g factor of the isomeric bandhead for
the πh11/2 ⊗ νh−1

11/2 configuration; see Eq.(8). All those values
are listed in Table II.

By taking the gp and gn from theoretical estimates for
h11/2 orbitals in 128Cs, one gets a purely theoretical expec-
tation of the g-factor value for the I = 9+ isomeric state.
Another possibility is to take the gp and gn values from
magnetic moments measured for h11/2 states in single-odd
neighbors. Since the same orbitals are involved in πh11/2 ⊗
νh−1

11/2 chiral configuration in 128Cs, the expected g-factor
value should have the best correspondence to g = 0.59(1)
reported here. Finally, one can use the experimental g-factor
values available for s1/2 states in single-odd neighbors that,
according to Eq. (9), are equivalent to spin-gyromagnetic
factors gs of the odd proton and of the odd neutron. These
spin-gyromagnetic factors together with Eqs. (9) and (10)
give the single-particle gp and gn values for the h11/2 orbital
needed to obtain the g-factor value of the isomeric state. The
three discussed scenarios give three expectation values of the g
factor around 0.51 for each tested particle configuration within
the simplest two-component model where the core rotation is
excluded.

The discrepancy of the g-factor value g = 0.51 expected
theoretically and the experimental value g = 0.59(1), see Ta-
ble II, shows that the total spin of the I = 9+ isomeric state
cannot be built chiefly by two angular momentum vectors
of the odd nucleons. A significant core rotation component
needs to be present in order to drive the g factor from
g = 0.51 towards the experimental value g = 0.59(1). Thus,
in the following we introduce a three-component model which
is appropriate for chiral geometry analysis.

014318-6



EXAMINATION OF NUCLEAR CHIRALITY WITH A … PHYSICAL REVIEW C 106, 014318 (2022)

V. CHIRAL GEOMETRY IN A THREE-COMPONENT
MODEL OF THE g FACTOR

In the chiral scenario the odd-odd 128Cs nucleus studied
here is built of three components contributing to the total
magnetic moment of the isomeric state: the even-even core,
the odd proton, and the odd neutron with angular momentum
vectors jR, jp, and jn respectively.

For the sake of simplicity, we calculate first the g-factor
value using an additivity formula for the nuclear magnetic
moment generalized to the three-component system. In such a
system, the total angular momentum vector of an excited state
J is a sum of angular momentum vectors of the components,
which in the case of the 128Cs nucleus are the angular mo-
menta of odd proton jp, odd neutron hole jn, and even-even
core jR,

jp + jn + jR = J. (11)

Thus the magnetic moment of a three-component system be-
comes

μ = gJμN = 〈JJ|gJz|JJ〉μN

= 〈JJ|gp jpz + gnJnz + gRJRz|JJ〉μN , (12)

where Jz, jpz, jnz, and jRz are the angular momentum pro-
jection operators on the quantization axis of the total spin
and the spins of the proton, neutron, and core, respectively.
With the use of the generalized Landé formula [13], the above
equation can be expressed by the scalar product operators
jp · J, jn · J, and jR · J,

μ = 〈JJ|gpjp · J + gnjn · J + gRjR · J|JJ〉
J (J + 1)

× 〈JJ|Jz|JJ〉μN . (13)

The g factor is thus given by the formula

g = 〈JJ|gpjp · J + gnjn · J + gRjR · J|JJ〉
J (J + 1)

. (14)

By using the relation

J2 = j2
p + j2

n + j2
R + 2jp · jn + 2jp · jR + 2jn · jR, (15)

one can write the final form of the g-factor expression, where
only the scalar product operators of components are used,

g = 1

2
(gp + gn + gR)

+ 1

J (J + 1)

1

2
jp( jp + 1)(gp − gn − gR)

+ 1

J (J + 1)

1

2
jn( jn + 1)(gn − gp − gR)

+ 1

J (J + 1)

1

2
jR( jR + 1)(gR − gp − gn)

− 1

J (J + 1)
(gp〈jn · jR〉 + gn〈jp · jR〉 + gR〈jp · jn〉). (16)

Comparing the above generalized equation with the one de-
rived from the coupling of only two angular momentum
vectors [the additivity formula (7)], one can see that, apart

FIG. 8. Core angular momentum jR may be coupled at different
precession angles about the resultant jpn of proton and neutron angu-
lar momentum to form the specified spin of the isomeric state. The
planar geometry where jR tends toward jp gives the highest possible
value of the g factor. The second planar geometry where jR tends
toward jn gives the lowest possible value of the g factor. Aplanar
geometry corresponding to chiral configuration gives the g-factor
value in between.

from the combinations of j2
p, j2

n , and j2
R quantities related

to lengths of angular momentum vectors, an additional part
that contains scalar products of the angular momentum vector
pairs has appeared and thus is sensitive to their mutual orien-
tation. The occurrence of this part has a geometrical physical
explanation.

In case of the coupling of only two angular momentum
vectors, the value of the total spin determines unambiguously
their mutual orientation and the resulting magnetic moment.
This does not hold for the coupling of three angular momen-
tum vectors, where the same value of the total spin J can
be attained at different angles between each pair of them,
giving different g factors. The last part of Eq. (16) vanishes for
the ideal chiral geometry with all the vectors being mutually
perpendicular, therefore the first four parts correspond to the
g-factor value with maximum chirality gchiral and Eq. (16)
takes the simple form

g = gchiral − 1

J (J + 1)
(gp〈jn · jR〉 + gn〈jp · jR〉 + gR〈jp · jn〉).

(17)

Semiclassical sequential coupling of the three angular mo-
mentum vectors explains the dependence of the g-factor value
on their mutual angles.

Figure 8 shows the angular momentum of the proton jp

and of the neutron jn coupled to their resultant spin jpn.
The angular momentum of the core jR may then be coupled
to jpn at various precession angles to get the desired total
spin J . In general, there are three characteristic cases given
by this precession degree of freedom. The first case is the
maximum aplanarity of the three angular momentum vectors,
where the jR vector goes as far as possible off the plane
spanned by jp and jn, giving a g-factor value corresponding
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FIG. 9. The g-factor value expected for coupling of πh11/2 ⊗
νh−1

11/2 and core angular momenta jR = 2h̄ (upper panel) and jR = 4h̄
(lower panel) to the total spin I = 9h̄ of the isomeric state. Ex-
perimental values of gp and gn estimated from the h11/2 orbital in
single-odd neighboring nuclei were used.

to the maximum chirality. In the ideal chiral geometry, the
g factor takes the value gchiral. The next characteristic case
is the planar geometry, where the angle between jR and jp

attains a minimum value while the angle between jR and jn is
the highest. Then, the scalar product jp · jR has its maximum
and the jn · jR product its minimum. These scalar products are
multiplied in Eq. (16) by gn and gp factors of opposite sign.
Thus, in this scenario the part sensitive to the orientation of
the three angular momentum vectors becomes maximally pos-
itive, giving the highest g-factor value. The last characteristic
case is an opposite planar geometry where jR and jn vectors
become closest and the angle between jR and jp is highest,
leading to the maximum negative value of the part sensitive
to angular momentum vector geometry in Eq. (16). Such a
geometry leads to the lowest value of the g factor. The two
planar cases determine the limits of possible g-factor values
for a given jp and jn coupling.

By making a plot of possible g-factor values versus the
angle between proton and neutron angular momentum vectors
one gets a droplike shape containing all possible coupling
schemes of the three components jp, jn, and jR to the total
spin J . Figure 9 shows two such plots for the coupling of
πh11/2 ⊗ νh−1

11/2 configuration with two main non-zero core

angular momentum values jR = 2h̄ and jR = 4h̄ to the total
spin I = 9h̄ of the isomeric state. Contours shown in the
plots present the absolute value of the normalized orientation
parameter [18]

o = (jp × jn) · jR

|jp||jn||jR| , (18)

calculated for each coupling scheme inside of the droplike
shape. The values of this parameter which are close to the
zero correspond to planar |P〉 configuration where all three
angular momenta are in one plane. One can see that the planar
configuration gives the outer border of the plot. Conversely,
the values located in the middle of the plot which are close to
unity correspond to the ideal chiral configurations |L〉 and |R〉,
where the three spins are perpendicular to each other.

According to Ref. [19], the existence of the chiral critical
frequency would result in the planar orientation of the three
angular momentum vectors for the I = 9h̄ isomeric bandhead.
From the two opposite planar geometries, the one with proton
angular momentum jp tending towards the momentum of the
core jR is energy favored by Coriolis interaction. Therefore,
the expected planar geometry should have the highest g-factor
value for a given angle θpn between jp and jn. This may
lead to the g-factor values g ≈ 0.5, g ≈ 0.65, and g ≈ 0.8
for the proton and the neutron coupled to the core state
with jR = 0h̄ (two-component model), jR = 2h̄, and jR = 4h̄
(three-component model), respectively. The wave function
of the isomeric state is a composition of several core rota-
tional states. Contributions of jR = 2h̄, jR = 4h̄, and higher
(not discussed here) core rotations may drive the g factor
from g = 0.51 expected for jR = 0h̄ to the experimental value
g = 0.59(1) provided there is planar geometry in the isomeric
bandhead.

The above analysis shows that the two-component model
where the total spin of the isomeric state is built chiefly by the
angular momentum vectors of the two odd nucleons cannot
reproduce the experimental g-factor value. The composition
of the wave function with the nonzero core rotation (the three-
component model) is needed to reproduce the measured g
factor within the pure πh11/2 ⊗ νh−1

11/2 configuration, where
a nonchiral geometry of the isomeric bandhead is expected.
The wave function composition is discussed in a quantum-
mechanical approach in the following sections.

VI. QUANTUM MECHANICAL CALCULATION
OF THE g FACTOR OF A THREE-BODY SYSTEM

In the semiclassical models discussed above, the angular
momentum vectors j were taken as classical vectors with
three spatial components well defined and the length j( j + 1).
Except for triangularity, these models do not impose any
condition on the mutual angles between these three coupled
vectors. In general, the idea of nuclear chirality requires that
all three spatial components of the coupled spins be well
defined, which seems to contradict the quantum approach,
where only the length and the projection on the quantization
axis are defined for an angular momentum vector. It is there-
fore essential to begin with principles of the chiral geometry
emerging in quantum systems.
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The nuclear state of a definite spin, |JM〉, can be expressed as a product of the states of proton | jp〉, neutron | jn〉, and core
| jR〉 coupled to the total angular momentum as follows: jp, jn coupled to a vector jpn = jp + jn, which, in turn, is coupled with
jR to J = jpn + jR,

|( jp jn) jpn jR; JM〉 =
∑

mp,mn,mpn,mR

〈 jpmp jnmn| jpnmpn〉〈 jpnmpn jRmR|JM〉| jpmp〉| jnmn〉| jRmR〉. (19)

There are several possible jpn quantum numbers, indicating that the total spin state |JM〉 may be formed in several ways, here
called coupling schemes. A single coupling scheme given by Eq. (19) defines a unique set of expected mutual angles between
each pair of the angular momentum vectors. For the total spin state |JM〉 resulting from a single coupling scheme, its g factor can
be calculated analytically using angular momentum algebra. The matrix elements of the squares and scalar products in Eq. (16)
for a single coupling scheme are given by

〈( j′p j′n) j′pn j′R; J ′M ′|j2
p|( jp jn) jpn jR; JM〉 = δJ ′JδM ′Mδ j′p jpδ j′n jnδ j′R jRδ j′pn jpn jp( jp + 1), (20)

〈( j′p j′n) j′pn j′R; J ′M ′|j2
n|( jp jn) jpn jR; JM〉 = δJ ′JδM ′Mδ j′p jpδ j′n jnδ j′R jRδ j′pn jpn jn( jn + 1), (21)

〈( j′p j′n) j′pn j′R; J ′M ′|j2
R|( jp jn) jpn jR; JM〉 = δJ ′JδM ′Mδ j′p jpδ j′n jnδ j′R jRδ j′pn jpn jR( jR + 1), (22)

〈( j′p j′n) j′pn j′R; J ′M ′|jp · jn|( jp jn) jpn jR; JM〉 = δJ ′JδM ′Mδ j′p jpδ j′n jnδ j′R jRδ j′pn jpn (−1) jp+ jn+ jpn

×√
jp( jp + 1)(2 jp + 1) jn( jn + 1)(2 jn + 1)

{
jp jn jpn

jn jp 1

}
, (23)

〈( j′p j′n) j′pn j′R; J ′M ′|jp · jR|( jp jn) jpn jR; JM〉
= δJ ′JδM ′Mδ j′p jpδ j′n jnδ j′R jR (−1) jR+ jp+ jn+J+1

×
√

(2 jpn + 1)(2 j′pn + 1)
√

jp( jp + 1)(2 jp + 1)
√

jR( jR + 1)(2 jR + 1)

{
jp jpn jn
j′pn jp 1

}{
jpn jR J
jR j′pn 1

}
, (24)

〈( j′p j′n) j′pn j′R; J ′M ′|jn · jR|( jp jn) jpn jR; JM〉
= δJ ′JδM ′Mδ j′p jpδ j′n jnδ j′R jR (−1) jR+ jp+ jn+J+1+ jpn+ j′pn

×
√

(2 jpn + 1)(2 j′pn + 1)
√

jn( jn + 1)(2 jn + 1)
√

jR( jR + 1)(2 jR + 1)

{
jn jpn jp

j′pn jn 1

}{
jpn jR J
jR j′pn 1

}
, (25)

where nonzero values of the six- j symbols give all possible coupling schemes. One can calculate the set of the g-factor values
corresponding to possible coupling schemes by substituting the matrix elements (20)–(25) together with the values of gp, gn, and
gR into Eq. (16). Two such sets, one for jR = 2h̄ and one for jR = 4h̄, are presented in Fig. 9 as small crosses connected with
dotted lines. This analytical approach shows that the idea of nuclear chirality, with three well defined angles between the pairs
of three spins, does not contradict the quantum angular momentum algebra.

In general, the state with definite spin |JM〉 is a superposition of many coupling schemes (below only the angular momentum
quantum numbers are shown)

|JM〉 =
∑

jp, jn, jpn, jR

cJ ( jp, jn, jpn, jR)|( jp jn) jpn jR; JM〉. (26)

Then, the geometry defined by the mean values of the squares and scalar products of the three angular momentum vectors is also
given by the superposition coefficients cJ ( jp, jn, jpn, jR). Indeed, the expectation values in question take for the wave packet the
forms

〈JM|j2
p|JM〉 =

∑
jp, jn, jpn, jR

|cJ ( jp, jn, jpn, jR)|2 jp( jp + 1), (27)

〈JM|j2
n|JM〉 =

∑
jp, jn, jpn, jR

|cJ ( jp, jn, jpn, jR)|2 jn( jn + 1), (28)

〈JM|j2
R|JM〉 =

∑
jp, jn, jpn, jR

|cJ ( jp, jn, jpn, jR)|2 jR( jR + 1), (29)

〈JM|jp · jn|JM〉 =
∑

jp, jn, jpn, jR

|cJ ( jp, jn, jpn, jR)|2〈( jp jn) jpn jR; JM|jp · jn|( jp jn) jpn jR; JM〉, (30)
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〈JM|jp · jR|JM〉 =
∑

jp, jn, jpn j′pn, jR

c∗
J ( jp, jn, j′pn, jR)cJ ( jp, jn, jpn, jR)〈( jp jn) j′pn jR; JM|jp · jR|( jp jn) jpn jR; JM〉, (31)

〈JM|jn · jR|JM〉 =
∑

jp, jn, jpn j′pn, jR

c∗
J ( jp, jn, j′pn, jR)cJ ( jp, jn, jpn, jR)〈( jp jn) j′pn jR; JM|jn · jR|( jp jn) jpn jR; JM〉. (32)

Such superpositions can be analyzed with available nuclear models which give the superposition coefficients cJ ( jp, jn, jpn, jR).

VII. PARTICLE ROTOR MODEL CALCULATIONS

In the present section, the g factor is calculated in the
framework of the triaxial particle rotor model (PRM), whose
formalism in detail can be found in Refs. [1,20–27].

In the present work, a many-particle–many-hole
PRM [22,23] is used. The total Hamiltonian of PRM is
expressed as

ĤPRM = Ĥcoll + Ĥintr, (33)

with the collective rotor Hamiltonian

Ĥcoll =
3∑

k=1

ĵ2
Rk

2Jk
=

3∑
k=1

(Ĵk − ĵpk − ĵnk )2

2Jk
, (34)

where the indices k = 1, 2, and 3 refer to the three prin-
cipal axes of the body-fixed frame. The ĵRk and Ĵk denote
the angular momentum operators of the core and of the to-
tal nucleus, respectively, and the ĵpk and ĵnk the angular
momentum operator of the valence protons and neutrons. Mo-
ments of inertia of the irrotational flow type are adopted, i.e.,
Jk = J0 sin2(γ − 2kπ/3), with γ the triaxial deformation
parameter. In addition, the intrinsic Hamiltonian is written as

Hintr =
∑
i=p,n

∑
ν

εi,νa†
i,νai,ν , (35)

where εp,ν and εn,ν are the single-particle energies provided
by the single- j shell

hsp = ±1

2
C

{
cos γ

(
j2
3 − j( j + 1)

3

)
+ sin γ

2
√

3
( j2

+ + j2
−)

}
.

(36)

Here, the plus or minus sign refers to particle or hole, and the
coefficient C is proportional to the quadrupole deformation
β [28],

C =
(

123

8

√
5

π

)
2N + 3

j( j + 1)
A−1/3β. (37)

The single-particle state and its time reversal state are ex-
pressed as

a†
ν |0〉 =

∑
α


cν
α
|α, j
〉, (38)

a†
ν̄ |0〉 =

∑
α


(−1) j−
cν
α
|α, j − 
〉, (39)

where 
 is the projection of the single-particle angular mo-
mentum j along the three-axis of the intrinsic frame and is
restricted to . . . ,−3/2, 1/2, 5/2, . . . due to the time-reversal
degeneracy, and α denotes the other quantum numbers. For
a system with

∑
i=p,n Ni valence nucleons (Ni denotes the

number of the protons or neutrons in the valence shell), the
intrinsic wave function is given as

|ϕ〉 =
∏

i=p,n

(
ni∏

l=1

a†
i,νl

)⎛
⎝ n′

i∏
l=1

a†
i,μ̄l

⎞
⎠|0〉, (40)

with ni + n′
i = Ni and 0 � ni � Ni.

The total wave function can be expanded into the strong
coupling basis

|JM〉 =
∑
Kϕ

cKϕ|JMKϕ〉, (41)

with

|JMKϕ〉 = 1√
2(1 + δK0δϕ,ϕ̄ )

[|JMK〉|ϕ〉

+ (−1)I−K |JM − K〉|ϕ̄〉], (42)

where |JMK〉 is the Wigner function
√

2J+1
8π2 DJ

MK . The basis
states are symmetrized under the point group D2, which leads
to K − 1

2

∑4
i=1(ni − n′

i ) being an even integer.
After obtaining the wave functions of PRM, the reduced

transition probabilities B(M1) and B(E2) and the expecta-
tion values of the angular momentum of the system can
be calculated [22,23]. For the g-factor calculation, one uses
Eq. (14) [8,25,26].

In the PRM calculation, the configuration πh11/2 ⊗ νh−5
11/2

with the corresponding deformation parameters β = 0.23
and γ = 24◦, according to the adiabatic and configuration-
fixed constrained covariant density functional theory (CDFT)
calculations [8,29], are used with the PC-PK1 density func-
tional [30]. The moment of inertia J0 = 20 h̄2/MeV is
adjusted to fit the energy spectra of the yrast band. For the
electromagnetic transitions, the empirical intrinsic quadrupole
moment Q0 = (3/

√
5π )R2

0Zβ, and the g factors of proton gp

and neutron gn given in Table II (see footnote a there) were
adopted along with the core g-factor value gR = 0.41 taken
from 128Xe 2+ experimental data [31].

In Fig. 10, the energy spectra, the intraband B(E2) and
B(M1), and the interband B(M1) of the doublet bands in
128Cs calculated by PRM in comparison with the experi-
mental data available [3] are shown. The observed energy
spectra are reproduced well, as shown in Fig. 10(a), including
the energy difference between the partner bands. The trend
of the calculated B(E2) results deviates from the data due
to the frozen nuclear shape. The staggering of the intraband
and the interband B(M1) can be seen in both the data and the
calculated results, as shown in Figs. 10(c) and 10(d). Their
strengths are reproduced reasonably. All of these agreements
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FIG. 10. (a) The energy spectra, (b) the intraband B(E2), (c) the
intraband B(M1), and (d) the interband B(M1) of the doublet bands
in 128Cs calculated by the PRM approach in comparison with the
experimental data available [3].

support the correct assignment for the valence nucleon con-
figuration.

The g factor is sensitive to the configuration and the triaxial
deformation parameter. To further check the configuration
assignment, we display in Fig. 11 the g-factor values for
the 9+ yrast bandhead as a function of triaxial deforma-
tion calculated by PRM with configurations πh11/2 ⊗ νh−5

11/2,

πh11/2 ⊗ νh−3
11/2, and πh11/2 ⊗ νh−1

11/2. In these calculations,
the triaxial deformation parameter is varied. For the neutron
configuration, −5 denotes that there are five holes located in
the h11/2 shell and four of them are paired (occupying the time
state and time-reversal state). One notices that if the triaxial
deformation parameter is equal to that obtained from the

FIG. 11. The g-factor values for the 9+ yrast bandhead as a func-
tion of triaxial deformation calculated by PRM with configurations
πh11/2 ⊗ νh−5

11/2, πh11/2 ⊗ νh−3
11/2, and πh11/2 ⊗ νh−1

11/2.

FIG. 12. The g-factor values as functions of spin expected for
πh11/2 ⊗ νh−5

11/2 yrast band levels with triaxial deformation parame-
ters γ = 0◦, 24◦, 30◦, and 38◦.

constrained CDFT calculations, the calculated g factor with
the configuration πh11/2 ⊗ νh−5

11/2, which is also predicted by
the constrained CDFT calculations, is closest to the experi-
mental value.

By keeping the quadrupole deformation and decreasing
the parameter γ → 0◦ the nuclear shape becomes axially
symmetric with prolate deformation. This is the second char-
acteristic case of the nuclear orientation as discussed above,
i.e., planar geometry with the angle between jR and jp attain-
ing a minimum value while the angle between jR and jn is the
highest, and gives the highest g-factor value. The nonchiral
g-factor values obtained with axially symmetric core for con-
figurations πh11/2 ⊗ νh−5

11/2 (g ≈ 0.60) and πh11/2 ⊗ νh−3
11/2

(g ≈ 0.59) agree very well with the experimental g factor
g = 0.59(1). When increasing the parameter γ → 60◦, the
nuclear shape becomes oblately deformed. For the config-
urations πh11/2 ⊗ νh−3

11/2 and πh11/2 ⊗ νh−1
11/2, the neutron

angular momentum jn aligns mainly along the long axis and
becomes close to the jR, while the angle between jR and jp

is highest. This is the third characteristic case of the nuclear
orientation and leads to the lowest g-factor value. For the
configuration πh11/2 ⊗ νh−5

11/2 with lower neutron Fermi sur-
face, the situation become complicated. The lowest g-factor
value does not appear at γ ≈ 60◦, but γ ≈ 38◦. This might be
due to the fact that the neutron angular momentum has large
intermediate axis component at γ ≈ 38◦ and becomes close
to the core angular momentum jR.

Figure 12 presents g-factor values as functions of spin
expected for πh11/2 ⊗ νh−5

11/2 yrast band levels with triaxial
deformation parameters γ = 0◦ (axial symmetric limit), 24◦
(obtained from constrained CDFT), 30◦ (maximal asymmetric
deformation), and 38◦ (gives lowest g-factor value at band-
head) in comparison with the available experimental data.
For the triaxially deformed core γ = 24◦ the g-factor value
g = 0.57 is obtained for the calculated 9+ bandhead. This
value decreases with spin and reaches g ≈ 0.42 for spin I =
20h̄.
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FIG. 13. The absolute values of angular momentum of proton jp,
neutron jn, and core jR as functions of spin expected for πh11/2 ⊗
νh−5

11/2 yrast band levels with triaxial deformation parameters γ =
24◦.

One can see in Fig. 12 that the g factors of the yrast
states for the triaxial shapes of the nucleus are systematically
smaller than the corresponding values for the axial deforma-
tion γ = 0◦. It indicates that the geometry of the three angular
momentum vectors evolves from the planar limit toward the
chiral one.

As mentioned above, a two-component model without in-
cluding the core angular momentum contribution gives a large
discrepancy in comparison with the experimental data. To
check this in the framework of PRM, we plot in Fig. 13 the
absolute values of angular momentum of core jR together with
proton jp and neutron jn as functions of spin for πh11/2 ⊗
νh−5

11/2 yrast band levels with the triaxial deformation parame-
ter γ = 24◦. In the calculations, the angular momentum value
j is determined by

j =
√

〈 j2
1〉 + 〈

j2
2

〉 + 〈
j2
3

〉 + 1/4 − 1/2. (43)

Note that the proton angular momentum is a good quantum
number, while the angular momenta of five neutron holes
and core are not. One can see that jn does not change much

with increasing spin. However, jR increases from jR ≈ 4.2h̄ at
I = 9h̄ to jR ≈ 11.3h̄ at I = 20h̄, which indicates that the an-
gular momentum of the rotor plays gradually more important
roles than those of the proton particle and neutron holes. Thus,
although the rotor angular momentum at the bandhead of
128Cs yrast band is smaller than those of proton and neutron,
it cannot be overlooked.

VIII. SUMMARY

Spontaneous chiral symmetry breaking in the 128Cs nu-
cleus was previously reported through observation of two
nearly degenerated rotational bands with specific selection
rules of the gamma transitions. These features were observed
for significant nuclear rotation corresponding to I > 13h̄ of
the excited states. For lower spins the rotational band which
is partner to the yrast band is not seen experimentally, sug-
gesting the existence of the critical frequency of the chiral
rotation. Below the critical frequency the chiral geometry of
the three angular momentum vectors is prevented, possibly
canceling the degeneration of the yrast and yrare bands. The
hypothesis of the critical frequency was explored through g-
factor measurement of the yrast bandhead within the TDAPD
method. The experimental results were discussed in the frame
of quantum angular momentum algebra and semiclassical cal-
culations, and in the framework of PRM.

The experimental g-factor value of the isomeric I = 9+
bandhead of the yrast states is well reproduced by PRM with
the planar geometry of the three spins obtained in the limit
of axially symmetric deformation. This result may explain the
absence of the low spin yrare states and is the first indication
of the existence of the chiral critical frequency.
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