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Nuclear spectra from low-energy interactions
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A method to describe spectra starting from nuclear density functionals is explored. The idea is based on
postulating an effective Hamiltonian that reproduces the stiffness associated with collective modes. The method
defines a simple form of such an effective Hamiltonian and a mapping to go from a density functional to the
corresponding Hamiltonian. In order to test the method, the Hamiltonian is constrained using a Skyrme functional
and solved with the generator-coordinate method to describe low-lying levels and electromagnetic transitions in
48,49,50,52Cr and 24Mg.
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I. INTRODUCTION

A starting point for the description of nuclei is the as-
sumption that low-energy properties can be described using a
combination of two- and three-body interactions. This sought
after Hamiltonian should be applicable to all nuclei and give
reliable predictions for properties that are not yet measured.
A possible route for finding such an interaction comes from
Skyrme’s expansion in the relative momenta of interacting nu-
cleons [1]. This expansion can be carried out to higher orders
[2,3] and recently the first applications of such higher-order
interactions has emerged [4].

For essentially all applications, such as descriptions of
fission and for systematic descriptions of nuclei and reac-
tions, the method has to be numerically efficient in order to
be useful. This leads to approximations where, for example,
finite-range three-body interactions can not be treated ex-
plicitly and the three-body part is conveniently described as
a density-dependent two-body interaction. The resulting ap-
proximations are known as nuclear energy density functionals
[5] (EDFs). When used in connection with Hartree-Fock-
Bogoliubov (HFB) approximations they describe ground-state
masses with an error of around 0.7 MeV [6]. When used
in other approaches such as the quasiparticle-random-phase
approximation (QRPA) they describe many observables such
as low-lying excitations and strength functions [7,8]. This in-
dicates that the original assumption of a common low-energy
interaction applicable to all nuclei is not that far fetched.

Nuclei have a tendency towards spontaneous symmetry
breaking, in particular pertaining to their shapes. Therefore,
in order to capture physical effects the description with EDFs
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is based on the breaking of symmetries. This leads to intu-
itive and rather accurate descriptions in terms of deformed
nuclei with broken quantum numbers. However, in an exact
treatment, the nuclear wave functions should be eigenstates
of operators corresponding to conserved quantities, such as
the squared total angular momentum operator. Methods that
restore the symmetries give corrections to binding energies
and allow a direct comparison of observables, such as energy
levels, to experiment. Restoration of symmetries can be done
in several ways but a common theme is to reduce the degrees
of freedom of the system in order to keep the efficiency and
applicability of the methods.

Several such approaches have been developed that do not
introduce any free parameters but rather determine the pa-
rameters from the response of the EDFs to external fields.
Examples of such approaches include; the particle(s)-rotor
model [9], where the system is divided into a collective rotor
part and a particle part; the Bohr Hamiltonian, where also
vibrations of the shape of the rotor are included [10]; the
interacting boson-fermion model [11], where the degrees of
freedom are mapped into interacting effective particles; as
well as methods to construct effective simpler Hamiltonians
from underlying EDFs [12].

One of the most promising directions for symmetry
restoration is based on the generating coordinate method
(GCM) where the problem of choosing degrees of free-
dom is converted into choosing an appropriate subspace of
nonorthogonal many-body basis states. The degrees of free-
dom are instead selected by choosing external fields for
sampling of the space. Its microscopic nature and the possi-
bilities for systematic convergence are part of the appealing
features of the GCM. In principle it can be applied using a
full low-energy interaction with finite range two- and three-
body terms. However, to construct an efficient and applicable
approach it would be very convenient to be able to apply it
together with the already developed EDFs.

In this respect, one issue is that models for the low-
momentum part of the interaction also contain a high-
momentum part that may not give physical results if it is
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not constrained. In Hartree-Fock type of calculations, the
high-momentum part of the interaction is never probed. How-
ever, extensions that attempt to sum up correlation energies
may require momentum cutoffs in order to avoid ultravi-
olet divergencies [13]. A second issue is how to treat the
density-dependent part of the interaction. There are various
approaches for obtaining approximate matrix elements be-
tween many-body states that should represent the physics
contained in the density-dependent part of the interaction.
However, a difficulty in finding consistent approaches is that
approximations that violate the Pauli principle lead to poles
that can cause nonphysical contributions to the energy [14,15].

In this paper we use a Skyrme-based EDF to constrain a
simple effective Hamiltonian that is based on the fundamental
nuclear degrees of freedom of quadrupole deformation and
pairing. The Hamiltonian may be considered to be composed
of the first terms in a series where degrees of freedom are
chosen through the selected multipole operators and the pre-
cision of the expansion is determined by the number of terms
included. This Hamiltonian is used in GCM calculations,
restoring the broken symmetries, to obtain the ground-state
binding energies, nuclear spectra, and transitions for even and
odd nuclei. We take particular care to include all exchange
terms in order to avoid any spurious pole contributions and
make use of recent developments in the calculation of over-
laps of Bogoliubov states [16]. We recently applied the same
approach to describe excitations in superheavy nuclei [17].
Here we provide a more detailed description of the formal-
ism and present results for several lighter nuclei, including
electromagnetic transition probabilities.

In Sec. II we detail the structure of the Hamiltonian and
the procedure to link it to the EDF. In sec III we apply the
method to several nuclei and compare spectra and transitions
with experiment. In Sec. IV we summarize our conclusions
from the study. Further details on the many-body formalism
are given in the Appendix.

II. MODEL

A. Effective Hamiltonian

The starting point is the definition of an effective Hamilto-
nian. This will eventually be solved in a basis of HFB states
using the GCM approach. In order to have an efficient and
applicable method, the Hamiltonian is chosen as:

Ĥ = Ĥ0 + ĤQ + ĤP. (1)

H includes three components to capture the most im-
portant physical effects: a spherical single-particle (SP)
potential H0 that averages the interaction among nucleus, a
quadrupole-quadrupole interaction HQ that takes into account
the quadrupole deformation, and finally, a pairing term HP to
consider neutron-neutron and proton-proton pairing correla-
tions.

The SP potential is written as

Ĥ0 =
∑

i

eia
†
i ai + E0, (2)

where i ≡ (qinili jimi ) denotes an orbital in a spherical ba-
sis labeled with its particle species qi (=p or n), principal

quantum number ni, angular momentum li, total angular mo-
mentum ji, and its projection mi. The ei are the single-particle
energies and E0 is a constant. For convenience, a separable
form is chosen for both ĤQ and ĤP.

The quadrupole-quadrupole separable interaction is
given by

ĤQ = −1

4
χ

∑
i jkl

∑
μ

[
Q̃2μ

ik Q̃2μ∗
l j − Q̃2μ

il Q̃2μ∗
k j

]
a†

i a†
j alak, (3)

where χ is the interaction strength and Q̃2μ
i j are the matrix

elements of a modified quadrupole operator with a radial form
factor. In this case, the form factor is based on a Woods-Saxon
potential from [18] (cf. Sec. II B).

For the pairing part we adopt the seniority pairing interac-
tion [19]

ĤP = −1

4

∑
i jkl

GikPi jPkl a
†
i a†

j al ak, (4)

where Gik = Gpδqi,pδqk p + Gnδqi,nδqk ,n is the pairing strength
and

Pi j = (−1) ji−miδ(qnl j)i,(qnl j) j δmi,−mj , (5)

indicates the coupling of time-reversal pairs only. The se-
niority pairing is the simplest form of pairing interaction,
which nonetheless enables a quantitative account of pairing
phenomena and many-body correlations [20–22]. We fix the
pairing strength G according to the uniform spectra method
[19] (see Sec. II B).

The resulting Hamiltonian contains the monopole, pair-
ing, and quadrupole components. These are the well known
dominant contributions responsible, e.g., for the behavior of
isotopic chains and the shell evolution until the drip lines [23].
The Hamiltonian preserves symmetries, such as exchange,
rotational invariance, and parity. Isospin is violated by the
quadrupole interaction that has a Coulomb part in the form
factor. The translational symmetry is also broken both by the
introduction of a single-particle potential, and by the decom-
position of the interaction into a finite number of separable
terms. This is, however, the case with any interaction repre-
sented on a grid of basis functions.

B. Determination of coupling constants

The H0 part of the Hamiltonian is taken as the spherical
Hartree-Fock (HF) potential from a Skyrme functional that
will be the reference for the effective Hamiltonian. The con-
stant E0 is taken to reproduce the corresponding spherical HF
binding energy. The quadrupole part is also constructed to
agree with the Skyrme results.

For neutrons, the quadrupole operator in ĤQ is taken from
the modified quadrupole force in Ref. [18],

Q̃2μ
i j = 〈i|Q̃2μ

p | j〉δqi,pδq j ,p + 〈i|Q̃2μ
n | j〉δqi,nδq j ,n, (6)

where

Q̃2μ
n = Y2μ

(
− RnWn

∂ fn(r)

∂r
+ Wnvsoλ

2

2

∂2 fn(r)

∂r2
�l · �s

)
, (7)
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TABLE I. Parameters defining the quadrupole interaction. For
W the upper sign is associated with protons and lower sign with
neutrons.

Quantity Definition

Rq = 0.9
√

5
3 〈r2〉q

a = 0.9 fm
W p/n = V0(1 ± κ N−Z

N+Z )
V0 = −49.6 MeV
κ = 0.86
vs.o. = 32 (MeV s)−2

λ = h̄
Mc (1 + A−1)

M = 939 MeV/c2

and

fn(r) = 1

1 + e(r−Rn )/a
. (8)

The proton part of the quadrupole operator

Q̂2μ
p = Y2μ

(
− r

∂Hc

∂r
(9)

− RpWp
∂ fp(r)

∂r
+ Wpvsoλ

2

2

∂2 fp(r)

∂r2
�l · �s

)
, (10)

has an additional dependence on the Coulomb potential

Hc = Ze2

4πε0

(
1

r
θ (r − Rp) + 1

Rp

(
3

2
− 1

2

(
r

Rp

)2

θ (Rp − r)

))
.

(11)

The quadrupole operators depend on the two radius param-
eters Rp and Rn for the proton and neutron densities. These
are determined from the expectation value of r2 calculated
from the spherical Hartree-Fock solutions of the reference
functional.

All the parameters of the interaction are in Table I. We
keep the spin-orbit strength of [18] but we use universal
parametrization [24] for the other values. The diffuseness
constant is taken to be larger than in Ref. [24] since in our
initial tests we found that a larger value generally gives more
accurate reproduction of the EDF energy as a function of
deformation.

The strength of the quadrupole interaction χ is determined
by fitting the cost of deforming. Thus we fix the quadrupole-
quadrupole strength χ in the following manner: (i) for several
values of the deformation parameter β2 we compute the en-
ergy EHF (β2) obtained with the functional within a Skyrme
HF calculation with constraints on the quadrupole moment;
(ii) χ is then fitted such that the HF energies obtained with
the effective Hamiltonian Ĥ (1), reproduces EHF (β2). As
seen in Fig. 1 the cost of deforming can be reproduced in a
reasonable way. The approximation of only having a single
quadrupole term limits the range of deformations that can
be described. Thus the agreement is expected to deteriorate
for larger deformations where more complex shapes become
important.
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FIG. 1. HF energy versus deformation β for 48,50,52Cr using a
basis of 12 spherical oscillator shells (Nmax = 11). Experimental
binding energies are shown with dashed lines. The SLy4 EDF results
are obtained with the code [25] and the results abbreviated SLy4-H
are obtained with the effective Hamiltonian (1).

For the pairing part of the Hamiltonian HP [Eq. (4)] the
interaction strength is determined applying the uniform model
of Ref. [19]. This treatment of pairing is similar to the one in
the Cranked-Nilsson-Strutinsky-Bogoliubov model (CNSB)
[26]. First we assume the empirical estimate of the average
gap, �̃0 = 0.7 × 12/

√
A [27]. The reduction factor of 0.7

comes from compensating for the effect of particle-number
projection [28,29]. Then, the strength Gq(�̃0) is found by
solving the uniform model [19]. For each nucleus we obtain
different strengths Gq by solving separately for protons and
neutrons,

(�̃0 − Gq) = 2Se− 1
Gqρ , (12)

where the pairing window is set to S = 30 MeV in the spher-
ical basis. Here ρ denotes the level density averaged in the
energy window taken from the spherical HF solution. Note
that the left-hand side is modified to take into account the
contribution of the exchange term in the pairing. The full
treatment of the exchange term is needed to avoid the singular-
ities when applying the projection operator and gives an extra
contribution when breaking a pair (see Appendix of Ref. [26]).

In the way described in this section, all the coupling
constants of the effective Hamiltonian becomes determined
from the underlying reference functional. In this paper we
consistently apply the SLy4 parametrization of the Skyrme
interaction [30] as a reference functional and denote the re-
sulting Hamiltonian SLy4-H.

014314-3



J. LJUNGBERG et al. PHYSICAL REVIEW C 106, 014314 (2022)

C. Collective coordinates

In the previous sections, we defined the effective Hamil-
tonian and its parameters. In the following, we define the
many-body basis within which the Hamiltonian is solved. Our
basis states consist of HFB vacua obtained with the effective
Hamiltonian for several values of the deformation located on a
grid. This grid is constructed by solving the HFB equations for
the Hamiltonian in Eq. (1) with constraints on

βx = 4π

5

〈Q̂20〉
〈r2〉 , (13)

βy = 4π

5

√
2
〈Q̂22 + Q̂2−2〉

〈r2〉 , (14)

with 〈•〉 the expectation value of the operator respect to the
deformed HFB states and Q̂2μ = r2Y2μ. From this, one ob-

tains the familiar β =
√

β2
x + β2

y , which defines the degree of
quadrupole deformation, and γ = arctan( βy

βx
), which defines

the triaxiality. We also use the cranking method with a con-
straint on

jx = 〈 ĵx〉. (15)

In addition, we also include a variation of the pairing strengths
Gp(�̃0) and Gn(�̃0) by scaling the pairing gaps �̃0 = gq�0.
The many-body basis states are obtained as the lowest-energy
solutions to the HFB equations in a grid of β, γ , jx, gp, and
gn values. The grids are generated by sampling a region of the
(β, γ ) plane. Each point of the plane can be associated with a
certain value of ( jx, gp, gn). We have allowed a few different
values of each of these variables and randomly assigned one
of these values for each (β, γ ) point. Only HFB states below
a certain cutoff energy are kept and accepted as basis states.

This choice of generating coordinates attempts to account
for the most important collective degrees of freedom namely:
collective vibrations in the quadrupole degrees of freedom,
rotations, and pairing correlations. In order to improve the
accuracy for a larger class of states in the spectrum one would
need to enlarge the basis further by, for instance, including
states built through quasiparticle (QP) excitations. Another
way of introducing such noncollective particle-type excita-
tions is to act on the basis states with an excitation operator:

|φ1〉 = N eẐ |φ0〉
= N (

1 + Ẑ + 1
2 Ẑ2 + . . .

)|φ0〉, (16)

where N is a normalization constant and Ẑ is a two-
quasiparticle creation operator:

Ẑ =
∑
k<k′

zk,k′β
†
k β

†
k′ . (17)

The zk,k′ elements are chosen as

zk,k′ = e−(Ek+Ek′ )/(kBT ) × p, for k′ > k, (18)

with zk,k′ = −zk′,k , for k′ < k to make z skew symmetric. This
ensures that the new state |φ1〉 can be expressed as a single
HFB determinant [31]. For each many-body state and for each
matrix element, p is randomly taken as ±1. The value of kBT
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FIG. 2. Calculated positive parity and even spin spectra for 48Cr,
(a) without temperature excitations and in (b) with inclusion of
single-particle type excitations using the temperature method (16)
with b = 0.45. In both panels we used the SLy4-H Hamiltonian with
11 oscillator shells (Nmax = 10) for the single-particle basis and a
grid consisting of Nφ = 191 HFB vacua for the many-body basis.
Experimental data taken from Ref. [32]. The Hamiltonian for each
spin has been diagonalized using the number of natural states found
from the Hill-Wheeler equation (28) considering the yrast state.

is obtained from a parameter b as,

kBT = −(E1 + E2)/ ln (b). (19)

The smallest value of the sum of the lowest QP energies; E1 +
E2 for either protons or neutrons are used for both particle
species in this relation.

The operator acts separately on neutron and proton parts
of the states with the result that the lowest two-quasiparticle
excitations are added to the states with weights determined
by the parameter b. Multiquasiparticle excitations will also be
added due to the structure of the series but with diminishing
weights. The random sign ensures that even if the energy
surface is oversampled the states will still have orthogonal
components allowing for the extraction of more indepen-
dent solutions. The quasiparticles are taken to have preserved
parity and signature (rxφ=e−iπ ĵx φ) quantum numbers. The
quasiparticle pairs in Eq. (17) are restricted to belong to the
group with positive parity and signature (π, rx ) = (1, 1) so
that when acting on an HFB state, the generated excitations
do not change the symmetry of the state. That is, the matrix
elements zk,k′ can be characterized by the quantum numbers
of the quasiparticle pairs and these are restricted to have
positive signature and parity and to be of the same nucleon
species. After acting on one of the basis states, the new state
obtained contains a mixture of multiquasiparticle excitations
with random signs that reduces overcompleteness of the ba-
sis. In this way, this temperature-inspired method introduces
particle-type excitations into the basis in order to complement
the more collective excitations introduced through the gener-
ating coordinates.

An example is shown in Fig. 2. As seen from this figure
the application of the excitation operator allows for a much
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larger number of eigenstates to be found and an improved
convergence of the yrast band.

D. Efficient symmetry restoration

After generating the many-body basis, the following step
consists in computing the matrix elements for the projected
overlap and Hamilton operator. By construction, the HFB
vacua do not have either a good number of nucleons or angular
momentum. As a consequence, it is necessary to introduce
projection operators to restore symmetries and evaluate states
with definite values for quantum numbers. The matrix ele-
ments read,

OIK,JK ′ = 〈φI |P̂I†
MK P̂I

MK ′ P̂Z P̂N |φJ〉
= 〈φI |P̂I

KK ′ P̂Z P̂N |φJ〉 (20)

=
∑

i

wi〈φI |R̂i|φJ〉 (21)

HIK,JK ′ = 〈φI |P̂I†
MK ĤP̂I

MK ′ P̂Z P̂N |φJ〉
= 〈φI |Ĥ P̂I

KK ′ P̂Z P̂N |φJ〉
=

∑
i

wi〈φI |ĤR̂i|φJ〉, (22)

where P̂ are projection operators for neutron, proton num-
ber, and angular momentum. R̂i = R̂(αi, βi, γi, θ

Z
i , θN

i ) are the
rotations over the gauge and Euler angles, with the corre-
sponding weights wi (see, e.g., Refs. [33,34]). From each HFB
state one can often project out several many-body states with
different K projections. The final energies are invariant with
respect to the orientation in the laboratory frame, so these
matrix elements do not depend on the M quantum number.

The computation of the matrix elements above is time
consuming due to the projection operators, which involve an-
gular integrations over angles in space and gauge space. As a
consequence, it is essential to be able to perform accurate and
systematic truncations in the computations of these matrix el-
ements. Our truncation scheme is based on the Bloch-Messiah
decomposition, which allows us to rewrite the Bogoliubov
matrices U and V as U = DŪC, V = D∗V̄C where D and C
are both unitary matrices and D defines the so-called canoni-
cal basis associated with the Bogoliubov vacuum [31]. Ū and
V̄ can be chosen as diagonal and skew symmetric, respec-
tively. The matrix V̄ is written in terms of blocks of dimension
2 × 2 with elements (vi, -vi) where v2

i is the occupation proba-
bility of the canonical basis state i (the matrix elements ui of Ū
are such that u2

i + v2
i = 1). Our truncation criteria is defined

by first sorting the N occupation numbers v2
i in descending

order (see Ref. [16]) and then truncating the canonical basis,
that is we consider a smaller size n � N where n is such that

∑
i

v2
i −

n∑
i

v2
i < 0.01. (23)

The occupation numbers differ for each state so each
state is thus truncated differently and stored in the smaller
representation before calculation of the matrix elements. The
truncated states thus define our new basis states where long
tails and numerical noise have been removed. Using these

truncated states, the overlaps of rotated Bogoliubov states are
computed and all the calculations are reduced to the minimal
occupied subspace using the Bloch-Messiah transformation
(see Refs. [16,31,35] and Appendix A).

An unpaired HFB vacua will have a dimension n corre-
sponding to the number of particles and exact zeros outside
of this space. Paired vacua will have varying dimension de-
pending on the pairing distribution. It is thus essential to be
able to calculate overlaps of states having very different sizes.
While the applied overlap formula allows the calculations of
overlaps when states have vis exactly equal to zero it also
allows us to reduce the dimension by keeping only nonzero
vis thus keeping only the essential information and therefore
greatly reducing the computational time [16].

E. Odd numbers of nucleons

The computation for nuclei with an odd number of nucle-
ons proceeds similarly to the even-even case. In this paper,
we consider the case of even-odd nuclei. Having generated
the set of HFB vacua as described in the previous section,
the odd-state basis is generated as a set of one quasiparticle
creation operators acting on the HFB states, namely:

|�odd〉 ≡ β†
a |�even〉. (24)

The corresponding Bogoliubov matrices U odd and V odd are
easily obtained by replacing the ath column in U and V by
the corresponding column in V ∗, U ∗ [31]. Obviously, as in
the case of even nuclei, the ability to truncate in a systematic
manner is also critical for an efficient computation in the odd
case. In this context, the computation of the overlap for odd
system is performed using the truncated formula in Ref. [16].
The application of the Bloch-Messiah decomposition allows
us to rewrite the odd vacua as a product of three matrices

U odd = DoddŪ oddCodd, (25)

V odd = Dodd∗V̄ oddCodd, (26)

where Dodd and Codd are unitary matrices and,

Ū odd =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 1 0 0 0
0 0 u2 0 0
0 0 0 u2 0

0 0 0 0 . . .

⎞
⎟⎟⎟⎟⎠,

V̄ odd =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 0 0 0 0
0 0 0 v2 0
0 0 −v2 0 0

0 0 0 0 . . .

⎞
⎟⎟⎟⎟⎠. (27)

The structure of ¯U odd and ¯V odd is almost identical to the even-
even case except for the odd particle, which is unpaired. This
unpaired particle is, by convention, placed in the first position
in both matrices. The truncations of matrices can then proceed
similarly as in the even case. That is, the truncation is dictated
by the values vi of the paired particles. After decomposing the
matrices in this form the calculation of projected Hamiltonian
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matrix elements proceeds similarly as in the even case (see
Appendix A).

F. Hill-Wheeler equation

The spectra are obtained by solving the Hill-Wheeler (HW)
equation [31]. The state solutions of the HW equations are, by
construction, eigenstates of the parity and angular momentum
operators I2 and Iz.

In matrix form the Hill-Wheeler equation reads,

Hh = EOh, (28)

with H from Eq. (22), O from Eq. (20), and where h and E
are the resulting eigenvector and eigenvalue solutions. This
equation can be solved separately for each total angular mo-
mentum I giving energies EI

n and corresponding eigenstates
as expansions in terms of the projected HFB states:

|IM, n〉 =
Na∑

a=1

I∑
K=−I

hI
aK,nP̂I

MK P̂N P̂Z |φa〉. (29)

In this equation, |φa〉 are the Na HFB basis states and the op-
erators P̂ are projection operators for proton number, neutron
number, and angular momentum. The coefficients hI

aK,n are
found from the Hill-Wheeler equation in the basis of projected
HFB states and scaled such that |IM, n〉 becomes normalized.

G. Transitions and quadrupole moments

Because angular momentum projection is performed, the
model gives eigenstates in the laboratory system as output.
This makes it natural and straightforward to calculate ob-
servables avoiding the process of extracting them from the
internal system, which inevitably contains approximations.
Furthermore, since the model allows for calculations in large
model spaces there is no need for effective charges.

1. Reduced transition probability

Because of the interaction between the charged nucleus
and the electromagnetic field, it is possible to have transitions
between eigenstates of the nuclear Hamiltonian by emitting
(or absorbing) a photon. Those transitions can be classified
into electromagnetic multipoles. For a given multipole of or-
der λ the emitted (absorbed) photon will carry a total angular
momentum of λh̄.

The transition rate T (the lifetime is given by τ = h̄/T )
from an initial to a final nuclear eigenstate for an electrical
multipole is given by Ref. [31], in SI units

T λμ

f i = 2

ε0 h̄

λ + 1

λ[(2λ + 1)!!]2

(
Eγ

h̄c

)2λ+1

|〈� f |Q̂λμ|�i〉|2, (30)

where Eγ is the energy of the emitted photon. This expres-
sion is derived from Fermi’s golden rule up to first order in
perturbation theory.

Due to the fact that quadrupole deformations are the
dominant shape degrees of freedom for atomic nuclei, the
quadrupole mode is the most prominent one for the radiation.
Hence, here we will consider E2 transitions.

A nuclear eigenstate has definite values for the total angu-
lar momentum I and its projection M. Often one does not want
to distinguish between different M values; neither for final nor
initial states. Therefore one averages over initial M (assuming
an equal distribution of initial M values) and sum over final
M (the final M value is not important). This type of rate is
therefore given by (for λ = 2)

T λ=2
f i = 1

2Ii + 1

∑
M f Miμ

T 2μ

f i

= 1

75ε0 h̄

(
Eγ

h̄c

)5 1

2Ii + 1

∑
M f Miμ

|〈I f M f |Q̂2μ|IiMi〉|2

≡ 1

75ε0 h̄

(
Eγ

h̄c

)5

B(E2; Ii → I f ), (31)

where the reduced transition probability B has been defined.
The B(E2) values do not contain the large γ -ray energy de-
pendence of the transition rate. Therefore, calculations of the
reduced transition probability are more easily compared to
experiment than the transition rate.

2. Projection and GCM

In the model presented in this paper, projections onto good
particle number and angular momentum are performed. In this
approach, the nth state for given I and M can be written as in
Eq. (29).

With those states, the matrix element for the reduced tran-
sition probability becomes,

〈I ′M ′, n′|Q̂2μ|IM, n〉 =

=
Na∑

a′,a=1

I ′∑
K ′=−I ′

I∑
K=−I

hI ′∗
a′K ′,n′hI

aK,n

× 〈φa′|P̂I ′†
M ′K ′Q̂2μP̂I

MK P̂N P̂Z |φa〉,
(32)

where it has been used that Q̂2μ conserves particle number. In
Ref. [33] it is stated that

P̂I ′†
M ′K ′Q̂2μP̂I

MK = CI ′M ′
IM2μ

∑
ν

CI ′K ′
I,K ′−ν,2νQ̂2ν P̂I

K ′−ν,K , (33)

where the C:s are Clebsch-Gordan coefficients with notation
such that the two angular momenta in the subscript couple to
the angular momenta in the superscript. Hence, in total we get

〈I ′M ′, n′|Q̂2μ|IM, n〉 = CI ′M ′
IM2μ

Na∑
a′,a=1

I ′∑
K ′=−I ′

I∑
K=−I

hI ′∗
a′K ′,n′hI

aK,n

×
∑

ν

CI ′K ′
I,K ′−ν,2ν

× 〈φa′ |Q̂2νP̂I
K ′−ν,K P̂N P̂Z |φa〉. (34)

In the expression for the B(E2) value, Eq. (31), the
summations over M ′, M, and μ only involves the first
Clebsch-Gordan coefficient in the above matrix element.
Using orthogonally relations for the Clebsch-Gordan coeffi-
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cients, the sum reduces to∑
M ′Mμ

∣∣CI ′M ′
IM2μ

∣∣2 =
∑
M ′

1 = 2I ′ + 1. (35)

The final expression for the reduced transition probability is
then

B(E2; I → I ′) = 2I ′ + 1

2I + 1

∣∣∣∣∣
Na∑

a′,a=1

I ′∑
K ′=−I ′

I∑
K=−I

hI ′∗
a′K ′,n′hI

aK,n

×
∑

ν

CI ′K ′
I,K ′−ν,2ν〈φa′ |Q̂2ν P̂I

K ′−ν,K P̂N P̂Z |φa〉
∣∣∣∣∣
2

.

(36)

In the cases where measurements exists, we also compare the
spectroscopic quadrupole moment, defined as:

Qspec =
√

16π

5
〈IM = I|Q̂20|IM = I〉. (37)

This Qspec is defined in the laboratory frame and becomes
identically zero for I < 1.

III. RESULTS

To test the developed model, calculations have been per-
formed for five nuclei: four even-even nuclei, the three
chromium isotopes 48,50,52Cr, 24Mg, and the even-odd 49Cr.
The formalism of extracting the B(E2) transitions and the
quadrupole moment has been implemented only for even-even
nuclei. The results are compared both with experiment and
with other theoretical calculations. The chromium isotopes
have been chosen in order to test the model when going from
the deformed 48Cr to the more spherical 52Cr.

The experimental values for energies and transitions are
taken from Ref. [32] if not otherwise stated. Experimental val-
ues for the spectroscopic quadrupole moments are rare but the
few found are from Ref. [36]. Some of the transition rates have
not been explicitly given in Ref. [32], but are instead extracted
from γ energies and lifetimes according to Eq. (31). In the
case where the state decays in several channels, the lifetime
for channel a, τa, can be calculated from the γ intensity, I (γ ),
with the expression

τa = τ

∑
i Ii(γ )

Ia(γ )
, (38)

where the sum goes over all channels.

A. Generation of collective subspace for the different nuclei

The points in the grid are defined by starting at spherical
shape. For each new point the γ angle is increased with the
golden angle θ 
 137.508. The radial distance β is increased
with the square root of the number of points. This generates
a rather homogeneously sampled circular area in the (β, γ )
plane. With cranking included, the surface will have mirror
symmetry in the y axis. An example for 48Cr with jx = 0 is
shown in Fig. 3. As seen from this figure 48Cr has a prolate
minimum centered around γ = 0◦ with β ∼ 0.25.

FIG. 3. HFB energy versus deformation for 48Cr with the
SLy4-H Hamiltonian. Twelve oscillator shells are used for the single-
particle basis (Nmax = 11), jx = 0 and the pairing interaction strength
is kept fixed (gp, gn) = (1, 1). The (β, γ ) plane is drawn with the
standard Lund convention with γ = 60◦ along the positive y axis.

As jx is increased this minimum will move towards γ =
60◦ where the rotation eventually becomes noncollective since
the shape is then rotationally symmetric around the cranking
axis (x axis).

For the pairing we use a grid in two variables gp and gn.
These grids are constrained to four values: {0.6, 1.0, 1.4, 1.8}.
These values specify scaling of the pairing � values. A value
of 1.0 would imply generating the surface with only the self-
consistent pairing. While a value of 1.4 implies generating
basis states with a stronger interaction that gives 1.4 times
larger pairing gaps.

For the cranking frequency ω we choose a grid of three dif-
ferent jx values {0, 4, 8} and the ω values needed for each state
to obtain those jx values are estimated as ω = 1

2J (β,γ ,�) (2 jx +
1) [19]. The moment of inertia is estimated as in Ref. [37],
where for simplicity we used � = 0.1 MeV for all points.
For each point in the (β, γ ) plane values of gp, gn and jx are
randomly drawn from the allowed sets in order to create states
that sample the relevant many-body space. For the even-even
nuclei we have used basis states with signature rx = 1 and for
the odd 49Cr we compare the use of both rx = ±i.

In the numerical calculation of the excitation operator
[Eq. (16)] we have used b = 0.45 [see Eq. (19)]. This implies
that for the particle species that is easiest to excite the lowest
two-quasiparticle excitation within the considered symme-
try group is added to the state with a weight of 0.45. See
Appendix B for a discussion over how this specific value for
b has been selected.

For all even-even chromium isotopes, the same calcula-
tion parameters have been used (values for 49Cr and 24Mg
are given below). That is, 12 major shells in the harmonic
oscillator basis generated by an updated version of the
code HOSPHE [38]. The (β, γ ) plane has been sampled with
300 states within β � 0.5 and −30◦ � γ � 150

◦
. Since we

are interested in the low-energy part of the spectra it is suffi-
cient to consider basis states up to a given cutoff. Therefore
only states within 12 MeV from the state with the lowest
calculated energy has been kept, which is sufficient to cover
the energy range of the experimental yrast states. This resulted
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FIG. 4. Positive parity and even spin spectra including B(E2)
transitions for 48Cr. Theory to the left and experiment to the right.
The experimental values for the yrast band are also shown together
with theory for easier comparison. The strengths for the transitions
are indicated by the thickness of the lines and are explicitly given in
e2fm4 for the yrast band.

in basis sizes of 198, 217, and 206 for the 48Cr, 50Cr, and 52Cr
isotopes, respectively. For the numerical computation of the
projections, 10 points have been used in the number projec-
tions for both types of nucleons and (9, 18, 36) points in the
(α, β, γ ) angles for the angular momentum projection. These
number of points for the angular momentum projection are
obtained after applying symmetries to reduce the integration
interval and corresponds to (36, 36, 36) points in the full
space, see, e.g., Refs. [33,34].

The B(E2) values are calculated for every transition that
differ with two or zero units of spin. However, with few
exceptions discussed, only transitions over 10 W.u are plotted
in the spectra.

B. 48Cr

The spectra for 48
24Cr24, both the calculated and the ex-

perimental values, together with the strongest transitions, are
shown in Fig. 4. The calculation shows the characteristic of a
rotor, Erot ∝ I (I + 1), for the yrast band up to spin 10h̄ where
the first back bending happens.

The general behavior of a deformed and rotating nu-
cleus approaching a terminating states has been discussed
in Ref. [39]. For a low angular momentum the rotation is
of a collective nature with the rotation axis perpendicular to
the symmetry axis of the nucleus. With increasing angular
momentum the valence nucleons tend to align their spins with
the rotation axis. This continues until all valence nucleons are
fully aligned with the rotation axis. Then no further angular
momentum can be built and one has reached the terminating
state. In that state the rotation axis is parallel with the sym-
metry axis and therefore the rotation is of a single-particle
nature.

In 48Cr, the termination is expected to happen at I = 16.
This can be understood from the fact that 48Cr has four protons
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FIG. 5. B(E2) transitions (I → I − 2) and spectroscopic
quadrupole moments for the yrast band in 48Cr. No experimental
data has been found for Qspec.

and four neutrons in the f7/2 subshell. Aligning all valence
nucleons within this subshell results in spin 16h̄.

The evolution of the internal structure of 48Cr with angular
momentum up to its terminating state has been investigated in
Ref. [40] within the cranked Nilsson-Strutinsky (CNS) model.
The conclusion in that paper is that the intrinsic deformation
goes from axially symmetric prolate over triaxial shapes to
end up in a slightly oblate shape when the terminating state is
reached.

Comparisons of transitions and quadrupole moments be-
tween results from our model and results obtained from CNS
is shown in Fig. 5. Also three shell-model (SM) calculations
for three different interactions in the full f p space are included
[41–43].

The results from our Hamiltonian, denoted SLy4-H, are in
agreement with the previous CNS and SM calculations. Both
the B(E2) and the Qspec curves resembles the ones for a rigid
rotor up spin 6h̄. For higher angular momentum, the B(E2)
values are approaching zero; showing that the states are in-
deed of a single-particle nature rather than a mixed collective
one. There is also a good agreement for the prediction of
the properties of the spectroscopic quadrupole moment (37).
All the models predict a quite drastic change in the shape
associated with the back bend at I = 10 − 12 and that the
nucleus becomes close to spherical at the terminating state.

In a N = Z nucleus, as for 48Cr, it is expected that neutron-
proton pairing should play an important role. This is because
both the protons and the neutrons occupy the same valence
space. Thus, they have maximal spatial overlap, cf. Ref. [44]
for a discussion of neutron-proton pairing, the different types
from the different isospin channels and their possible effects.
Even though our model does not include neutron-proton pair-
ing, it is interesting to compare the back bending from the
calculations with experiment.

It can be seen in Fig. 6 that the back bending in SLy4-H
occurs at the same spin and have the same magnitude as in
experiment. However, the γ energies are consistently lower
for all angular momenta (except at the back bending). This is
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FIG. 6. Released γ -ray energies for transitions I + 2 → I for the
yrast band of 48Cr. The back bending at I = 10h̄ indicates a change
in the internal structure.

in line with Refs. [41,45]. In both those papers they separate
out the neutron-proton pairing in the isospin T = 0 channel
from the rest of the pairing to see its effect. They both find
that, without this pairing, the spectra becomes suppressed.
This would imply a shift to the left for the back-bending curve
in Fig. 6 with around 0.2–0.5 MeV.

C. 49Cr

We now focus on the even-odd 49
24Cr25 isotope. Shell-model

calculations in the p f shell have shown a good reproduc-
tion of the ground-state (GS) band and its rotational patterns
at low spin can be described by the particle-rotor model
as a Kπ = 5/2− band based on the ν [312]5/2- Nilsson orbital
[46].

Figure 7 shows the computed energies of states in the GS
band of 49Cr in several bases. The results in Fig. 7(a) are
obtained, without cranking, in a basis of 116 states whereas
for the results in Figs. 7(b), 7(c) the cranking is included
and the number of basis states is 114 and 156, respectively.
Without cranking, the states in the odd basis with opposite
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-

FIG. 7. Energies of the GS rotational band in 49Cr computed in
different bases. In (a) the basis includes 116 states and the cranking
is switched off. In (b) and (c), respectively, 114 and 156 states are
included in the basis and the cranking is switched on. Results on the
left (right) side of (b) and (c) are obtained in a basis with signature
rx = i (−i).

signature are related by time reversal and consequently the
computed energies are identical whether the basis states have
a signature rx = i or rx = −i. This is not the case anymore
when the cranking is included and we show in Figs. 7(b), 7(c)
results for both signatures. All parameters are the same as for
48Cr and for each calculation, the basis is formed by blocking
the QP [see Eq. (24)] with the lowest energy.1

A general property is that states with I = 1/2, 5/2, 9/2 . . .

are best described within a basis with signature rx = −i and
states with I = 3/2, 7/2, 11/2 . . . are best described within
a basis with rx = i [47]. However, from Fig. 7 one notices
that the difference in the energies computed with the different
signatures diminishes when the basis increases. It is then
more natural to consider as the most precise energy for a
state of angular momentum I , the lowest energy among the
two energies computed in the largest basis with rx = i and
rx = −i. As one can see in Fig. 7, the difference in the GS
energy obtained with rx = i and rx = −i is ∼700 keV for the
basis made of 114 states [Fig. 7(b)] and decreases to less than
150 keV in the larger basis [Fig. 7(c)]. It is also worth noting
that the difference between the lowest computed GS energies
with cranking [Figs. 7(b) and 7(c)] and the GS energy without
cranking [Fig. 7(a)] is ∼100 keV.

Taking the lowest state in the bigger basis we obtain a
binding energy Bth = −426.395 MeV [that is, the energy of
the GS Iπ = 5/2− in Fig. 7(c) in the basis with rx = −i],
which is slightly lower than the experimental binding energy
Bexp = −422.051 MeV. In order to gain some insights into the
amount of correlations included beyond the mean field, it is
instructive to compare Bth with the lowest mean-field energy
among the basis states. For each odd state |�a,i〉 ≡ β†

a |�i〉, we
can assign a mean-field energy E (a,i)

0 = Ei
0 + ea, with Ei

0 the
HFB energy of the even-even vacuum |�i〉 and ea the energy
of the QP a. In that particular case, the lowest mean-field
energy among the basis states is −420.560 MeV, which im-
plies that the beyond mean-field effects included in the theory,
lower the energy by ≈5.8 MeV.

We show in Fig. 8, a comparison between the computed
excitation energies and the experimental data. As one can see,
the data are well reproduced by the calculation. In particular,
our calculations reproduce the occurrence of a back bend-
ing for spin 19/2h̄. The GS rotational band splits into two
branches corresponding to sequences of states �I = 2. As one
can see in Fig. 8 at low spin, the two branches are close to each
other and start to diverge for larger I .

D. 50Cr

The spectrum for 50
24Cr26 is given in Fig. 9. We calculated

up to spin 14h̄, which is expected to be the terminating spin
of the ground-state configuration.

1Due to the application of the excitation operator (16) on the HFB
vacua, the QPs are no longer eigenstates for a finite value of kT .
Nevertheless, the QP with the lowest energy computed before the
application of the operator (16), is selected to construct the odd state
basis. This is justified by the fact that for low kT value, the ordering
of the average QP energy is not dramatically affected.
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The calculations reproduce the two lowest 10+ states that
are very close in energy and that are also seen in experiment.
In fact, the calculations suggest that the ground-state band,
which starts from the first 0+ state, continues up to I = 14 via
the 102

+ state. The yrast states for I = 10, 12, and 14 seem
to originate from a different band. This is further confirmed
from the spectroscopic quadrupole moments in Fig. 10. At
I = 10 they change sign, indicating a change in the internal
structure.

Experiments also show a stronger B(E2) transition from
the 102

+ state than from the 101
+ state. Unfortunately, there

are no data of transition strengths for higher spin states above
the yrast band.
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FIG. 9. Same as Fig. 4 for the spectra and B(E2) transitions in
50Cr.
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FIG. 10. B(E2) transitions and spectroscopic quadrupole mo-
ments for the yrast band in 50Cr.

For the purpose of this paper, CNS calculations for 50Cr
have been performed. The results from those calculations can
be used to interpret the internal structure of the states. It was
found that the 102

+ state indeed gets its angular momentum
from collective rotation; in the same way as the lower part of
the yrast band does. Whereas the 101

+ state is predicted to be
prolate with the symmetry axis parallel to the rotational axis.
This implies that the rotation is built up by single-particles
spins.

Furthermore, the CNS calculations predict two more bands
with positive parity. One band is located around 2.2 MeV
above the yrast band and is built upon a 1p − 1h excitation
of the neutrons. This band is in fact divided into two nearly
degenerated bands with opposite signature. Another excited
band is found around 3.7 MeV above the yrast band and is
built upon a 2p − 2h neutron excitation.

As seen in Fig. 9, our model produce the same band struc-
ture as the CNS calculations. Hence, for this nucleus, the two
methods are consistent with each other. In experiments no
excited bands with positive parity and even spins have yet
been identified.

In Fig. 10 our results for the transitions and spectro-
scopic quadrupole moments are compared with experiment
and shell-model calculations for three different interactions
[43,45,48]. It is interesting to note the discrepancy between
experiment and all of the shown theoretical calculations for
the B(E2; 4 → 2) value. Also, the experimental value is not
what one would expect from a rotational model. In fact,
the transitions for 48Cr also do not follow a rotor descrip-
tion for low angular momenta. But for that nucleus it is the
B(E2; 2 → 0) value that is high. So, for both 48Cr and 50Cr
the ratio B(E2; 4 → 2)/B(E2; 2 → 0) is less than 1. This
in contrast of the rotational model where the ratio is 1.43,
which is in more agreement with the calculations. This dis-
crepancy has been pointed out before [49]. In Ref. [50] it
is suggested the that unusual ratio can be understood in a
collective picture with the inclusion of appropriate three-body
forces. This is shown explicitly for 170Os in the interacting
boson model.
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FIG. 11. Same as Fig. 4 for the spectra and B(E2) transitions in
52Cr. The two identified experimental bands are indicated with thin
lines when there are no measured B(E2) values.

E. 52Cr

In 52
24Cr28 the eight valence neutrons fill up the f7/2 orbit and

therefore the nucleus is expected to be less deformed and close
to a spherical shape. And, indeed, both experiment and our
calculations show a spectra in which the yrast band is more
similar to a linear vibrational one than to a quadratic rotational
one, see Fig. 11.

The calculated energies for the yrast band fits well with
experiment up to the expected termination at I = 8h̄. In con-
trast, the model does not agree with experiment for the yrast
states with larger angular momenta; too high energies are
obtained. However, the angular momenta, which are assigned
to those states from experiment, are considered uncertain.
Our calculations support the possibility that these states have
a different angular momenta than the ones they have been
attributed.

In experiment, two rotational bands with positive parity
and even spins have been identified. The ground-state band
up to spin 10h̄ and a second band built from the 43

+ state,
which goes up to spin 12h̄. And as seen from the transitions
in Fig. 11, our model indeed predicts a rotational band just
above the yrast band. The calculated second band starts at the
02

+ state and passes over the 22
+ and 42

+ states. For I � 6h̄
the calculated transitions between the bands are strong. This
indicates a similar internal structure of the two bands for low
angular momenta.

Those two bands, the shell closure yrast band and the
excited rotational band have been investigated by Caurier
et al. [51]. They found that the yrast band indeed is com-
posed mainly by the closed-shell configuration. In contrast,
the excited rotational band is built upon the 02

+ state with an
internal structure dominated by two neutrons above the f7/2

orbital. In addition, they calculate Qspec and B(E2) values
for the excited band, which are compared in Fig. 12 with
our results. Also, in Fig. 12, the results for the yrast band
is compared with a SM calculation [52]. While there is a
good overall agreement between theory and experiment our
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FIG. 12. Transitions and quadrupole moments for 52Cr. The
dashed lines are for the second band.

calculations predict the bands slightly closer in energy and
more mixed than in experiment for I = 0 − 4.

F. 24Mg

The main reason to test the model on the nucleus 24
12Mg12 is

to compare the results with the ones presented in Refs. [53]
and [54]. In those references they use a similar procedure
as the one given in this paper. That is, a mean-field basis of
HFB states with different constraints on the βγ deformations,
projections onto good quantum numbers, and mixing using
the GCM.

The main difference is that those works use the same in-
teraction throughout the whole calculation; SLy4 in Ref. [53]
and Gogny D1S in Ref. [54]. Since those forces are density
dependent it is not well defined how to perform the mixing
of states. Therefore, the density is replaced with the transi-
tion density to overcome this problem. It has been pointed
out that this procedure can lead to poles in the energy for
some deformations [15]. This issue is absent in our model
since we postulate a Hamiltonian, which can be used in a
straightforward way in the mixing. Our results, together with
experiment, are shown in Fig. 13 and in Fig. 14 B(E2) values
and quadrupole moments are compared both with experiments
and the previous calculations.

The parameters of the calculation for 24Mg are the same
as for the chromium isotopes except for the following: 10
major shells in the harmonic oscillator single-particle basis,
300 states to sample the βγ plane within β � 0.8 and −30◦ �
γ � 150

◦
. Keeping states below 25 MeV in excitation energy

resulted in 133 basis states. The number of points for the
projections are 10 for the particle numbers of both types of
nucleons and (6, 12, 24) for the (α, β, γ ) angles of the angular
momentum [corresponding to (24, 24, 24) points in the full
space]. The cutoff value for the displayed B(E2) transitions is
7 W.u.

For the spectra, the Gogny force succeeds to reproduce ex-
perimental values in an excellent way, at least up to I = 6. To
the advantage of our model is that it reproduces the yrast 81

+
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FIG. 13. Same as Fig. 4 for spectra and transitions in 24Mg.
The experimental values for the I = 8 states, both energies and the
transitions, are taken from Ref. [55].

state below the rotational band, which is seen in experiment.
This state is not reported in Ref. [54].

The 81
+ state has also been reproduced in SM calculations

and in the CNS method; both presented in Ref. [56]. In that
paper, using the CNS method, it is found that this state is
maximally aligned with its symmetry axis parallel to the axis
of rotation. Hence, it is predicted to be a noncollective state.
Indeed, this is expected to happen at I = 8, which is the max-
imal spin that can be produced for the four valence particles
confined to the orbits of d5/2 character. In contrast, the 82

+

state, which belongs to the ground-state band, is of a collective
nature with the axis of rotation perpendicular to the symmetry
axis. This ground-state band continues until it terminates at
I = 12 [56]. Note the similarity with 50Cr where the aligned
state is yrast for I = 10, while the ground band terminates for
I = 14.

Also for the transitions the results from Refs. [53] and
[54] fit well with experiment. Again at least up to I = 6.
But the trend that the B(E2) values increase with higher spin
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FIG. 14. Transitions and quadrupole moments for 24Mg.

seems questionable. It is not what one would expect; neither
from experiment nor from experience for rotational bands
approaching a terminating state. Our model agrees more with
shell-model calculations and have the expected decrease with
spin.

IV. CONCLUSIONS

The method introduced works surprisingly well for the
description of both spectra and transitions. Both transitions
and delicate structure information such as back bending are
correctly reproduced for all nuclei considered. Defining a
Hamilton operator allows the many-body calculations to be
carried out in a straightforward manner, without any need for
additional assumptions to treat the density-dependent parts of
the functional. In this work, the postulated separable Hamil-
tonian is constrained to reproduce the energy surface of a
reference EDF. Correctly describing the detailed landscapes
of energy minima and corresponding shapes is one of the
basic components needed in order to reproduce the exper-
imental spectra. We have chosen the effective Hamiltonian
as simple as possible, while still capable of producing real-
istic results. The simplicity of the interaction, together with
the reduction to the smallest space using the Bloch-Messiah
method, allows for advanced many-body calculations. We
have incorporated both collective and single-particle-type ex-
citations using around 200 HFB vacua in the basis. The
number of points needed in the angular momentum projection
increases rapidly when considering higher angular momen-
tum states [57] and in this work the calculations have been
carried out to spin 16 while maintaining the refined many-
body mixing of the states. This allowed us to cover the
spin range up to the terminating states seen in these nuclei.
Thus, to obtain in the complete space a fully symmetry re-
stored description of the gradual transition from collective
rotation to the noncollective terminating states based on the
GCM.

The present results give encouraging prospects for the fu-
ture. Any nuclear interaction can be expressed in terms of
sums of separable terms, through, e.g., a singular value de-
composition or more refined physically motivated expansions
[58,59]. Thus, the simple expansion explored here can be
fully developed into a converging expansion. The question in
this respect is the applicability and efficiency of the method.
The present study demonstrates the numerical efficiency of
the approach. The effective Hamilton operator employed here
may still be extended with more terms while keeping the cal-
culations feasible. The first such terms to consider could be an
improved pairing part, hexadecapole terms in the particle-hole
part, and a refined treatment of Coulomb.
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APPENDIX A: COMPUTATION OF MATRIX ELEMENTS

The Hamiltonian matrix elements in Eq. (22) can be ex-
pressed [31],

〈a|Ĥ |b〉 = 〈a|b〉 1
2 [Tr(ρ�) − Tr(�κ∗

01)]. (A1)

The contribution of the two-body interaction in Eq. (1) to the
particle-hole fields � becomes

�i j = −χ
∑

μ

Q̃2μ
i j Tr(ρ(Q̃2μ)T ) + χ

∑
μ

[Q̃2μρ(Q̃2μ)T ]i j

+ Gi j[PρT P]i j (A2)

and the contribution to the particle-particle fields � becomes

�i j = 1

2
Pi j

∑
k

Gik[κ10P]kk − χ
∑

μ

[
Q̃2μκ10Q̃2μ

]
i j . (A3)

In order to speed up the calculations it is important to reduce
the dimensions to the minimal occupied subspace [35,60]. We
choose a block size that is the maximum value of na and nb

[see Eq. (23)] to denote the size of the top left block in the
equations below. The BM transformation is used to transform
the (U,V ) matrices of the vacua. As an example for the |b〉
vacua we obtain Ub = DbŪbCb and Vb = D∗

bV̄bCb with

V̄b =
(

vb 0
0 0

)
and Ūb =

(
ub 0
0 1

)
.

The transitional densities ρ, κ10, and κ∗
01 [31] can then be

transformed and expressed:

D†
bρDa = ρ̄ =

(
ρ̄11 0
0 0

)
(A4)

D†
bκ10D∗

a = κ̄10 =
(

(κ̄10)11 (κ̄10)12
0 0

)
(A5)

DT
b κ∗

01Da = κ̄∗
01 =

(
(κ̄∗

01)11 0
(κ̄∗

01)21 0

)
(A6)

with

ρ̄11 = v∗
bU

−1vT
a (A7)

(κ̄10)11 = v∗
bU

−1uT
a (A8)

(κ̄10)12 = (κ10)11d−1
11 d12 (A9)

(κ̄∗
01)11 = −u∗

bU
−1vT

a (A10)

(κ̄∗
01)21 = d21d−1

11 (κ̄∗
01)11, (A11)

where

U−1 = (
vT

a dT
11v

∗
b + uT

a d−1
11 u∗

b

)−1
(A12)

and

DT
b D∗

a =
(

d11 d12

d21 d22

)
. (A13)

For the blocks of the transformed interaction we introduce the
notation:

Q̄2μ = (D†
aQ̃2μDb)11 (A14)

P̄1 = (D†
aPD∗

a )11 (A15)
P̄2 = (D†

bPD∗
b )11 (A16)

P̄11 = (D†
aPD∗

b )11 (A17)

P̄12 = (D†
aPD∗

b )12 (A18)

P̄21 = (D†
aPD∗

b )21. (A19)

If we furthermore decompose the all matrices into proton
and neutron parts and use q to label the proton or neutron
blocks we obtain the full expression for the matrix elements in
the optimal space and with proton and neutron parts explicitly
written out as:

〈a|ĤQ + ĤP|b〉 = −〈a|b〉χ
2

∑
μqq′

(−1)μTr
(
ρ̄

q
11Q̄2μ,q

) × Tr
(
ρ̄

q′
11Q̄2(−μ),q′) + 〈a|b〉χ

2

∑
qμ

(−1)μTr
(
ρ̄

q
11Q̄2μ,qρ̄

q
11Q̄2(−μ),q

)

+ 〈a|b〉1

2

∑
q

GqTr
(
ρ̄

q
11P̄q,1(ρ̄q

11)T P̄∗
q,2

) − 〈a|b〉1

4

∑
q

GqTr

([(
κ̄

q
10

)
11,

(
κ̄

q
10

)
12

][P̄∗
q,11

P̄∗
q,21

])

× Tr

(
[P̄q,11, P̄q,12]

[
(κ̄∗q

01 )11
(κ̄∗q

01 )21

])
+ 〈a|b〉χ

2

∑
μq

Tr

(
Q̄2μ,q

[(
κ̄

q
10

)
11,

(
κ̄

q
10

)
12

]
(D†

aQ2μ,qDb)∗
[

(κ̄∗q
01 )11

(κ̄∗q
01 )21

])
, (A20)

where in addition we have used the symmetries of our inter-
action:

Q2μ

kl
∗ = Q2μ

kl

Q2μ

kl = (−1)μQ2−μ

lk

Pkl = −Plk

P∗
kl = Pkl .

In the code, this expression is further optimized by moving
as many operations as possible outside the loops of gauge
and Euler angles. The effect of symmetry restoration does not
change the canonical occupation numbers but only leads to
a matrix multiplication acting on the Db matrix. Expression
(A20) becomes the same for HFB states with odd number
parity, the only modification being the application of the
Bloch-Messiah decomposition for odd states as described in
Sec. II E.
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FIG. 15. Calculated low-energy spectra for 24Mg as a function of
the parameter b (19). The energies E are relative to the ground-state
energy for b = 0.45. The states shown in the plot are the yrast states
(filled lines) and the first two excited states (dashed lines) that have
excitation energy below 9 MeV. The used values for b are distributed
between 0.01 and 0.95.

APPENDIX B: HOW THE TEMPERATURE AFFECTS
THE SPECTRA

In this Appendix, we investigate how different amount of
temperature in the excitation operator (16) affects the spectra.
In particular, we want to find an appropriate value for the

parameter b (19) to be used in our calculations. This parameter
determines the weights of the multiquasiparticle states that are
added to each HFB vacua in the many-body basis.

In order to find an optimal value for b we perform a series
of calculations for 24Mg using different values of b. These
calculations use ten oscillator shells in the single-particle ba-
sis, the (β, γ ) plane is sampled with 119 HFB vacua within
β � 0.8 and −30 deg � γ � 150 deg. The nucleus 24Mg is
further investigated in Sec. III F.

In the temperature method each HFB vacua is promoted
to a superposition of multiquasiparticle states through the
excitation operator. According to Thouless’ theorem [31], and
because the matrix z (16) is chosen to be skew symmetric, the
superposition is ensured to be a HFB state. The 119 promoted
HFB states are then used as a new many-body basis in the
framework of GCM, together with symmetry restoration, in
order to obtain the nuclear spectra.

In restoring the symmetries, we use 10 points over the
gauge angle for the particle number projection for both types
of nucleons; and (6, 12, 24) points over the Euler angles
(α, β, γ ) for the angular momentum projection.

In Fig. 15 it is shown how the energies, for some of the
lowest-energy states in 24Mg, are affected by the temperature.
For the yrast band the energies are rather constant up to b =
0.7. They fluctuate within approximately ±0.1 MeV. This is
in agreement with the interpretation that the yrast band is of
a collective nature. Hence, the quasiparticle excitations do not
improve the HFB-basis for those states.

However, as seen in Fig. 15, the first and second excited
states are more dependent on the temperature. Indeed, those
states are expected to involve quasiparticle excitations on
top of the yrast states. The excited states have an improved
convergence in the range b = [0.3, 0.6]. Therefore, we have
chosen the value in the middle: b = 0.45.
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