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The wobbling motion in even-even nuclei is investigated by means of a collective Hamiltonian constructed
from a semiclassical treatment applied to a triaxial rotor with a rigidly aligned pair of quasiparticles. The limits of
distinct wobbling regimes are discussed in connection to the dynamic evolution of the wobbling excitations and
corresponding electromagnetic properties. Model calculations are performed for the description of transverse
wobbling bands in 130Ba, 134Ce, and 136,138Nd nuclei.
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I. INTRODUCTION

Nuclear wobbling excitation is a unique feature of tri-
axial nuclei. It arises as a consequence of the comparable
distribution of mass and, respectively, of moments of inertia
(MOI) along the body fixed principal axes. Despite favor-
ing rotation around the intrinsic axis with maximal MOI, a
triaxial rigid body will have a more complex motion with
precession and nutation components inferred by the strong
rotational contribution from the other axes. Initially, Davydov
and Filipov [1] showed that the low lying collective states in
some nuclei can be described by the eigenvalues of a triaxial
rigid rotor Hamiltonian. In what concerns wobbling motion,
it was first suggested by Bohr and Mottelson [2] as a possible
manifestation in even-even nuclei at high spin, providing thus
a phenomenological interpretation for the excited states of
the triaxial rigid body Hamiltonian [3]. Unfortunately, the
envisaged purely collective wobbling in even-even nuclei can-
not be sustained because of the low-frequency breaking of
nucleon pairs by the Coriolis force. However, the presence of
an odd nucleon blocks the first low-frequency pair breaking
mechanism, while its angular momentum alignment facilitates
the rigid triaxiality of the core [4]. This phenomenon was con-
firmed by the properties of the strongly deformed bands based
on an aligned i13/2 proton, observed in the 161,163,165,167Lu
[5–8] and 167Ta [9] nuclei.

The more complex particle-rotor system leads to a few
distinct types of wobbling motions. The longitudinal wob-
bling refers to the rotation around the axis with the maximal
MOI and the alignment of the single-particle spin along the
same axis [10,11]. It is the particle-rotor counterpart of the
originally proposed wobbling mechanism [2]. The alignment
of the single-particle spin along a principal axis which is
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perpendicular to the axis with the maximal MOI, enhances
the dynamical MOI along the corresponding axis. This ef-
fect decreases with increasing total angular momentum, up
to a critical angular momentum where the effective dynam-
ical MOI along the alignment axis is counterbalanced by
the maximal MOI of the triaxial rigid core. Before this crit-
ical point, the system’s rotation commences along an axis
which is perpendicular to the body fixed axis with maximal
MOI, and the associated dynamical mode is called transverse
wobbling [10,11]. After the critical angular momentum, the
rotation axis starts to tilt towards the body fixed axis with
maximal MOI. This tilted-axis dynamical mode is not yet well
understood.

The main tool for the study and interpretation of the wob-
bling excitations is the particle-rotor model (PRM) [2,11–20],
whose quantum structure allows the systematization of dis-
crete states in terms of total angular momentum and one of its
projections which is a good quantum number. The drawback
of this description is the lack of information regarding the dy-
namics of the system which is usually described with classical
concepts. Moreover, the PRM Hamiltonian is usually diago-
nalized in a strong coupling basis [2], where the separation
and interplay of the single-particle and the rotor degrees of
freedom are not obvious. Second hand dynamical information
can be extracted by means of quantum averages or semi-
classical mappings [12,17–20]. Alternatively, the tilted axis
cranking (TAC) approaches based on the mean field theory
[21], provide a direct relation between the density distribution
and the total angular momentum direction [11,22], but due to
its semiclassical nature cannot describe consistently the quan-
tum interaction between microscopic configurations. Beyond
the mean field ventures based on random phase approximation
(RPA) [23–28], collective Hamiltonian [29–31] or angular
momentum projection techniques [32–36] are presently em-
ployed in order to incorporate the quantum correlations in the
cranking mean field solutions.
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All wobbling bands observed in A ≈ 160 region exhibit
a longitudinal alignment [12,13]. Recently, these bands have
been instead interpreted as transverse wobbling bands, under
the hypothesis of a frozen orthogonal geometry of the an-
gular momenta of the unpaired nucleon and the core, even
though the bands are observed up to very high spin where the
Coriolis force imposes the parallel geometry [11]. Transverse
wobbling in odd-even nuclei has been recently proposed ad-
ditionally at low spin in 135Pr [22,34], 105Pd [37], and 183Au
[38]. There are also some reports of longitudinal wobbling in
133La [39], 187Au [40], and 127Xe [41]. The wobbling charac-
ter of these low-spin bands is however strongly questioned due
to the inadequacy of the wobbling harmonic approximation
at low spins [3,14,15,42], and the contradictory experimental
data regarding either predominant E2 or M1 nature of the
interband transitions. In this context, alternative interpreta-
tions were put forward, such as the tilted precession mode
[42,43], or the consistent accounting for the γ -softness within
the interacting boson fermion model description of Nomura
and Petrache [44]. On the other hand, in order to contemplate a
wobbling phenomenology at low spins, a consistent treatment
of anharmonicities is needed.

Wobbling in even-even nuclei is possible in the main-
frame of the same blocking mechanism of the pair breaking
which can be realized with two-quasiparticle configurations.
Such bands based on the πh2

11/2 configuration have been re-
cently identified and discussed in 130Ba [35,45,46] and 136Nd
[36,47,48] nuclei. Also the neighboring 134Ce and 138Nd nu-
clei exhibit bands with similar properties which hint at a
wobbling interpretation [48–50]. A νh−2

11/2 band was also ob-

served in 138Nd which is a candidate for the novel wobbling
generated by hole alignments [50].

In order to investigate the wobbling dynamics in such
bands, we perform here a semiclassical analysis on a system
composed of a triaxial core and a rigidly aligned pair of
quasiparticles. For a quantitative description of the wobbling
bands from the four considered nuclei, we constructed a quan-
tum Hamiltonian with a consistent accounting for anharmonic
effects. As all past semiclassical approaches to wobbling ex-
citation were always limited to the harmonic approximation
[11,51–57], this represents the main theoretical novelty of the
study. The solutions of the quantum Hamiltonian are used to
reproduce the experimental energy levels and the associated
electromagnetic properties, offering thus information regard-
ing the deformation and dynamics of the considered nuclei.

II. THEORETICAL FORMALISM

In what follows one will consider that the spins of the
quasiparticles are all rigidly aligned to one of the principal
axes of the intrinsic frame of reference. Let us denote the
resultant spin of the quasiparticles by �j. For a pair of quasi-
particles in the h11/2 orbital, this amounts to | �j| = 10. This
assumption is consistent with the angular momentum distri-
bution for a set of particles in an intruder orbital, which has
a sharp maximum in the maximally allowed value [58]. The
interaction between the two quasiparticles is neglected, due
to the stability of the pair configuration attested for example

in backbending phenomena [59]. Then the rigid or frozen
alignment (FA) is expressed as ĵa ≈ j ≡ const and ĵk �=a =
0, where a denotes the alignment principal axis. With this
approximation, the relevant part of the particle-rotor Hamil-
tonian [2] is reduced to

Halign = HI − Ha
I j (2.1)

with

HI =
3∑

k=1

AkÎ2
k , Ha

I j = 2Aa jÎa, a = 1, 2, 3, (2.2)

where Ai = 1/(2Ji ). Here, we employ hydrodynamic mo-
ments of inertia [2]:

Jk = 4
3J0 sin2

(
γ − 2

3 kπ
)
. (2.3)

With this convention, the axes 1, 2, and 3 correspond to long
(l), short (s), and intermediate (m) semiaxes of the ellipsoidal
shape when γ ∈ (60◦, 120◦). This choice of the γ domain
assures that the third axis which will be further used as a
quantization axis is the one favored by the core’s rotation
and always has the maximal MOI. The different alignments
depend on the quasiparticle nature of the involved nucleons
[11]. Thus, a hole will align its spin along the l axis, a particle
along the s axis, while a nucleon from a half filled orbital
aligns its spin along the m axis.

Using a time-dependent variational principle in conjunc-
tion with a SU(2) coherent state for the total angular
momentum operators [51–53,60], one can define from Halign

a classical energy function

H(x, ϕ) = HI (x, ϕ) − Ha
I j (x, ϕ), a = 1, 2, (2.4)

where

HI (x, ϕ) = I

2
(A1 + A2) + A3I2

+ (2I − 1)(I2 − x2)

2I
(A1 cos2 ϕ+A2 sin2 ϕ−A3),

(2.5)

H1
I j (x, ϕ) = 2

√
I2 − x2A1 j cos ϕ, (2.6)

H2
I j (x, ϕ) = 2

√
I2 − x2A2 j sin ϕ (2.7)

are functions of the azimuth angle ϕ and of the projection
x = I cos θ on the third axis of the total angular momentum
vector. The two variables are canonical conjugates, ϕ being
thus a generalized coordinate, while x a generalized momen-
tum [53,60–62]. The case of an alignment along the medium
axis must be treated separately because it coincides with the
quantization axis. In this situation one cannot treat properly
the fluctuation of the angular momentum vector with the
restraint |x| � I used to parametrize the coherent state. One
option is to relabel the axes by rotating the variational function
as in Ref. [51]. Another option is to redefine the x variable
with a shift in the domain of values for the polar angle. Here,
we use the results (2.6) and (2.7) simply in a different interval
of the triaxial deformation, which makes the alignment to be
along a medium intrinsic axis. This is, e.g., achieved in the
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FIG. 1. Classical energy surfaces for j = 10 and different values
of total angular momentum, as a function of ϕ and x when γ = 90◦,
a = 2 (left column, pair alignment along short axis) and γ = 30◦,
a = 1 (right column, pair alignment along medium axis). The single
or double minima are indicated with crosses, while the difference
between two contour lines is 7 units of 1/J0 for the left column and
25 1/J0 units for the right column.

γ ∈ (0, 60◦) interval, where axis 1 becomes the medium axis
and has the maximum MOI.

The evolution with angular momentum of the classical
energy surface for the two distinct alignment cases is shown
in Fig. 1. In the first rotational regime, where the alignment
is perpendicular to the axis with maximal MOI, the classical
energy function has a single minimum which gradually splits
in two as the angular momentum increases. The same phe-
nomenon is reported in diverse approaches [17,29,30,35,36],
where however the polar and azimuth angles are independent
coordinates. Such a behavior is shown in Figs. 1(a)–1(c) for
short axis alignment. The long axis alignment situation is
similar but with a 90◦ shift in the position of ϕ. The sin-
gle minimum phase before the bifurcation corresponds to
the transverse regime [10,11] with an unexpected rotation
of the system around a principal axis whose MOI is not
the maximal one. The system tends to re-establish the nat-
ural rotation around the axis with the maximal MOI, hence
the emergence of two minima which move asymptotically

FIG. 2. The evolution with triaxial deformation of the classical
critical angular momentum which delimits the transverse wobbling
regime from the tilted-axis regime with double minima in the classi-
cal energy function of the assumed FA geometry along first (a = 1)
and second (a = 2) principal axes.

towards the positive or negative values on the medium axis
as angular momentum increases. The softening of the trans-
verse wobbling and its ulterior transition towards a tilted axis
rotation was first discussed within a cranking model with RPA
[63], where the mechanism was investigated as a function of
triaxial deformation. In the present formalism, the critical an-
gular momentum where the classical energy function acquires
two minima also depends on the triaxial deformation and the
involved alignment as follows:

Ia
c = Aa j

(Aa − A3)
+ 1

2
, a = 1, 2. (2.8)

Its dependence on triaxiality is depicted in Fig. 2. At γ =
90◦(A1 = A2), the critical angular momentum for alignment
along axes 1 and 2 is the same. Nevertheless, decreasing triax-
iality towards prolate shapes γ > 90◦ extends the transverse
phase to higher angular momentum states when the alignment
is along axis 2 (s), and lowers its domain of existence when
the alignment is along axis 1 (l). This result is especially
important for the targeted A ≈ 130 region of the nuclide chart,
where one can have bands built on h11/2 proton particles as
well as h11/2 neutron holes [45,48,49].

When the alignment is along the m axis with the
largest MOI, the classical energy function shown in the
Figs. 1(d)–1(f), exhibits a single deep minimum correspond-
ing to the most favorable direction of the total angular
momentum vector. The minimum deepens when the angular
momentum increases. It reminds of the rotation of the usual
triaxial rigid rotor [2], and therefore is referred to as longitu-
dinal phase.

A quantum Hamiltonian can be obtained from the classical
energy by a correspondence principle between the canonical
variables and their operator realizations. This is achieved by
performing first a harmonic approximation on the variable
which exhibits a single minimum in the classical energy func-
tion. In this way one retains all the information regarding
the other variable responsible for the system’s dynamics. The

014313-3



R. BUDACA AND C. M. PETRACHE PHYSICAL REVIEW C 106, 014313 (2022)

FIG. 3. The quantum wobbling potential as a function of the pro-
jection variable x, for different values of the total angular momentum
and the following alignment geometries: (a) γ = 90◦, j = 10, and
a = 2. The transition from a single minimum (transverse wobbling)
to double minima (tilted-axis wobbling) is noted by change of color;
(b) γ = 30◦, j = 10, and a = 1.

chosen geometries in this study lead to a classical energy
function which always has a single minimum along the az-
imuth angle ϕ. A harmonic expansion in this variable is then
a sensible approximation for the classical energy function:

H̃(x, ϕ) ≈ H(x, ϕ0) + 1

2

(
∂2H
∂ϕ2

)
ϕ0

(ϕ − ϕ0)2, (2.9)

where the ϕ0 minimizes the classical energy function for any
x. In contradistinction to chiral geometry [60–62], ϕ0 is a
constant here, having the value 90◦ for alignment along axis
2 (s) when γ ∈ (60◦, 120◦) and the value 0 for alignment
along axis 1 when it is medium for γ ∈ (0◦, 60◦) and long
for γ ∈ (60◦, 120◦). The quantization of the approximated
energy function (2.9) is realized then in the momentum space
of the projection variable x, by the simple replacement ϕ −
ϕ0 = i d

dx . Then the quantum energies are obtained from the
Hamiltonian

Ĥc = −1

2

1√
B(x)

d

dx

1√
B(x)

d

dx
+ V (x), (2.10)

where

B(x) =
[
∂2H(x, ϕ)

∂ϕ2

]−1

ϕ0

, (2.11)

V (x) = H(x, ϕ0) + B′′(x)

8[B(x)]2 − 9[B′(x)]2

32[B(x)]3 (2.12)

are the coordinate-dependent effective mass and the wobbling
potential. As can be seen from Fig. 3, the wobbling potential
follows the characteristics of the original classical energy
function. Indeed, for the case with transverse alignment the
wobbling potential exhibits the same transition from a single
to double symmetric minima. A similar behavior was found in
the potential of the wobbling collective Hamiltonian discussed
in Refs. [29,30]. For the longitudinal alignment, the potential
presents a single minimum with an increasing confinement
with total angular momentum.

The quantum Hamiltonian is diagonalized in a basis of
particle in the box wave functions, because the problem is
naturally bounded by |x| � I . The wave function determined
from the diagonalization procedure FIs(x) is used to define the
coefficients

AIK p =
[

I∑
K=−I

FI p(K )2

]−1/2

FI p(K ) (2.13)

of the total wave function

|�IM p〉 =
I∑

K=−I

AIK p|IKM〉. (2.14)

This wave function with p indexing the solutions of the
Hamiltonian (2.10) is then used to calculate electromagnetic
transitions. To do this, we use for the E2 transition operator,
its second order expansion [64,65]

T2μ(E2) = t1q2μ + t2[q × q]2μ, (2.15)

in quadrupole moments

q2μ = β

[
cos γ D2

μ0 + sin γ√
2

(
D2

μ2 + D2
μ−2

)]
. (2.16)

It is worth mentioning that the E2 operator form (2.15) is an
indispensable element of the interacting boson approximation
[66]. Using the expression for the second order term [64,67],
one can write the E2 operator as

T2μ(E2) =
√

5

16π

[
Q̃0D2

μ0 + Q̃2√
2

(
D2

μ2 + D2
μ−2

)]
. (2.17)

The redefined quadrupole components are

Q̃0 = Q

(
cos γ − χβ

√
2

7
cos 2γ

)
,

Q̃2 = Q

(
sin γ + χβ

√
2

7
sin 2γ

)
, (2.18)

where Q is an empirical quadrupole moment value, β is the
quadrupole deformation, while χ is an adjustable parameter
of the relative contribution of the two terms from Eq. (2.15).
The relevant expression of the M1 transition operator can be
expressed as

T1μ(M1) =
√

3

4π
μN geff

∑
ν=0,±1

jνD1
μν, (2.19)

where geff = g j − gR is an effective gyromagnetic factor. The
final formulas for the E2 and M1 transition probabilities
are straightforward, with the stipulation that for the B(M1) the
eigenvalues of the spherical components of the quasiparticle
spin operators are approximated to values consistent with FA.

At this point it is opportune to discuss the particular
characteristics of the present model in comparison to the tra-
ditional PRM calculations and other alternative approaches.
The model basically combines the advantages of both PRM
and TAC approaches. On one hand, it is based on the quan-
tum structure of the PRM Hamiltonian. On the other hand
it ascribes to it a classical dynamical description in terms of
the directional angles of the total angular momentum vector
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which is constrained as in TAC by the rigid quasiparticle
alignments. Of course one has the FA approximation to keep
the problem tractable, which at first seems as a drastic ap-
proximation. Nevertheless, the recent analysis of the PRM
results through semiclassical spin coherent state maps showed
that the probability distribution of the quasiparticle alignment
vector remains unchanged for an extended interval of lower
total angular momentum values [19]. At higher spins, in the
vicinity and beyond the transversal wobbling critical point,
it has a different structure but its highest probability is still
closest to the original principal axis alignment. Moreover,
the PRM results within the weak coupling basis [17] showed
that the rotor angular momentum follows closely the evolu-
tion of the total angular momentum vector presented here,
demonstrating thus that the major dynamical features of the
systems are determined by the core’s degrees of freedom and
that FA is a suitable approximation. Note also that the rigid
alignment of quasiparticles cannot be achieved in PRM due
to the quantum fluctuation of the single particle spins, and
therefore cannot be properly investigated and must not be
discarded based on model-dependent criteria. While the PRM
results offer an averaged dynamical picture as an output, the
present model starts with it and one can therefore ascertain
its validity when confronted with experimental data, as will
be shown in the next section. Finally, it is worth to mention
that in comparison to the present model, where the MOI are
constant and of hydrodynamical nature, the reproduction of
data within full PRM often requires cranking MOI [11] or
an empirically induced spin-dependence of the scaling MOI
J0 [14–16,18,20,22,34,37,39,46]. The later artifice is often
overlooked, but it has a clear contamination effect on the spin
dependence of the wobbling excitation energy which is the
most important signature of the distinct wobbling modes.

III. NUMERICAL APPLICATIONS

The final formula for the energy levels is

E (I, n) = Ediag(J0, γ ; I p) + CI (I + 1) + E0, (3.1)

where the first term represents the energy determined from the
diagonalization of Eq. (2.10) and depends only on the triaxial
deformation γ and the scaling factor 1/J0. n is the wobbling
quantum number and its relationship with the solution index p
is n = p − 1. The second term is a rotational correction which
does not change the quantum system, the wave function being
invariant to the Ĵ2 operator. Finally, E0 is a reference energy.
Even spins and n = 0 (p = 1) are considered for the yrast
band and, respectively, odd spins and n = 1 (p = 2) for the
excited band. The wobbling energy excitation is then defined
as

EW (I ) = E (I, 1) − 1
2 [E (I + 1, 0) + E (I − 1, 0)]. (3.2)

A simple calculus shows that the additional rotation term
CI (I + 1) has just a constant contribution to the wobbling
energy. Therefore, the wobbling energy effectively depends
only on the triaxial deformation. A few samples of the angular
momentum dependence of the wobbling energy are shown
in Fig. 4(a) for few values of the triaxial deformation and
alignment along the short axis. It reminds of the evolution

FIG. 4. Evolution with angular momentum of the transverse
(a) and longitudinal (b) wobbling energy (3.2) normalized to a ro-
tational excitation for few values of the triaxial deformation γ . The
wobbling energy is calculated using only the diagonalization results
for alignment j = 10 along axis 2(s), respectively, axis 1(m).

with spin of the energy difference between chiral bands
[60,61], which was also invoked previously in Refs. [53,68].
Before the critical angular momentum, the system’s rotation
axis has a regular fluctuation around the short axis consis-
tent with the transverse wobbling. After the critical angular
momentum, two nonaxial directions become energetically fa-
vorable, and the transverse regime transforms gradually first
into a double-well vibration (energy above barrier) and then
into a tunneling oscillation (energy below barrier). The loss
of tunneling marks the installment of static tilted-axis con-
figurations, and coincides with wobbling energy reaching a
minimum limit defined only by the signature splitting of the
rotational excitations. This change is obviously delayed when
higher excited states with n > 1 are considered, because tun-
neling is still active. This aspect was used in Ref. [63] to
advance the first signature for the transverse wobbling soft-
ening, based on the relative evolution with spin of the one and
two phonon wobbling energies of the 163Lu nucleus.

For the longitudinal alignment case we obtain an invariable
linear angular momentum dependence of the wobbling energy.
Figure 4(b) shows that the only obvious effect of a decreasing
triaxiality is the decreasing magnitude of the wobbling excita-
tions relative to the rotational ones.
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TABLE I. The triaxiality γ with the parameters J0 [MeV−1], E0

[MeV], and C [keV] obtained by fitting the experimental excitation
energies of 130Ba, 134Ce, and 136,138Nd. The corresponding MOI in
h̄2/MeV units obtained from Eq. (2.3) with the listed parameters,
and the resulted classical value of the critical angular momentum are
also given for reference.

Nucl. γ J0 E0 C J1(l ) J2(s) J3(m) Ic

130Ba 101◦ 61.09 4.17 5.96 8.6 35.1 78.5 18.6
134Ce 102◦ 61.95 3.54 8.45 7.9 37.0 79.0 19.3
136Nd 97◦ 46.30 4.45 5.43 9.4 22.4 60.8 16.3
138Nd 97◦ 47.59 4.49 7.96 9.7 23.0 62.5 16.3

The model contains four adjustable parameters, γ , J0, C,
and E0, with only two of them involved nonlinearly. Indeed,
considering excitation energies in reference to the 10+ level,
one can drop the E0 parameter. Similarly, normalizing the
obtained excitation energies to an arbitrary excitation energy,
say E (12+) − E (10+), one will arrive at quantities which
depend only on γ and the relative contribution CJ0. These
two measures represent the intrinsic parameters of the model,
completely determining its spectral characteristics up to a
scaling factor. Nevertheless, for a more direct comparison to
experimental data we adjust all four parameters.

The wobbling bands identified so far in the 130Ba, 134Ce,
and 136,138Nd are built on a πh2

11/2 quasiparticle configuration
and therefore the model is considered with an alignment along
the second axis (s). The parameters defining the total energy
in Eq. (3.1), are obtained by minimizing the sum of the root
mean square values corresponding to the wobbling energy,
and the energies of the levels in the yrast and one-phonon
wobbling bands. In this way, a well balanced fitting procedure
is assured because the excitation energies of the rotational
states are on average three times larger and can thus dominate
the fit in detriment of wobbling effects. The fits are performed
for energy levels up to the highest experimentally observed
states connected through the relation (3.2). Thus one can
ascertain by extrapolation if other members of one of the two
considered bands conforms with the present wobbling model.
Although both bands of 130Ba are quite extended, one limits
the fitting procedure for this nucleus up to I = 24, beyond
which the structure of the bands significantly changes and
the wobbling picture is no longer valid. The resulted param-
eters are listed in Table I, along with other relevant structural
quantities. As can be attested by the graphs of Fig. 5, the
agreement between experiment and theoretical calculations is
quite good.

The triaxiality of the 136,138Nd nuclei is found to be larger
(closer to maximal 90◦ triaxiality) than for the other two
nuclei which have a more axially symmetric shape. 130Ba and
134Ce exhibit a similar behavior in what concerns the energy
levels and wobbling energy. A change in the rotational behav-
ior as in the I > 24 states of 130Ba is observed also in the yrast
band of 134Ce but earlier by few units of angular momentum.
Therefore, its wobbling behavior is justified only for a few
angular momentum states. The moderate triaxiality of 130Ba
and almost maximal triaxiality of 136Nd are in agreement with

calculations made in Refs. [45,47]. This implies a shorter spin
interval for the existence of the transverse wobbling regime in
Nd nuclei, confirmed by the classical critical angular momenta
listed in Table I. The effect of apparently small difference
between the γ values of Nd isotopes and those of the other two
nuclei is evident from the classical critical angular momenta
listed in Table I and from Fig. 5, where the calculated splitting
of the bands is maintained significantly longer for 130Ba and
134Ce. The premature ending of the transverse regime in Nd
nuclei, also suggests that it can also rapidly reach the regime
of static tilted-axis rotation where the two wobbling bands
merge into a single �I = 1 regular sequence. Figures 5(c) and
5(d) shows that this happens at I = 24, and that the higher
spin states observed in the yrast bands conform very well to
this behavior.

It must be mentioned that the theoretical results for the
136Nd nucleus were recently used as a supporting factor for the
wobbling interpretation of the new experimental data reported
in Ref. [69]. The above discussion then serves as a useful
complement for the understanding of the wobbling features
of this nucleus.

As can be inferred from Fig. 2, the high triaxiality of the
Nd nuclei can sustain a transverse regime also built on an
alignment of holes along the long axis, but for a much shorter
range of spins due to Ic = 12.3. This hypothesis is checked
by extrapolating the theoretical results for the πh2

11/2 bands
of 138Nd to the bands L6 and L7 reported in Ref. [50] as
being based on a νh−2

11/2 configuration. This is achieved only
by adjusting E0 = 7.33, which is consistent with the different
rotational contribution A1,2 j2 of the pair. As can be seen in
Fig. 6, this extrapolation excellently reproduces the first few
low-lying states of the yrast band and the general energy
elevation of the excited band. The present results reaffirms the
conclusions of the RPA calculations performed in Ref. [50],
that the L6 and L7 bands of 138Nd can be interpreted in terms
of wobbling excitations, albeit with important anharmonici-
ties. Note however, that the experimental excited band has a
strikingly different behavior of the rotational sequence [50], as
opposing to the theoretical results and the behavior shown in
Fig. 5, which suggests a different effective rotational inertia
relative to the yrast band. Nevertheless, the results of Fig. 6
provides the first possible experimental realization of trans-
verse wobbling constructed on hole alignments and supports
the correct determination of the triaxial deformation of 138Nd
from the πh2

11/2 bands.
For the calculation of E2 transition probabilities, one uses

the available experimental data to fit the additional parameter
χ . Extensive data are available only for the 130Ba nucleus,
for which we performed calculations considering β = 0.195
adopted from [70] in Eqs. (2.18). The obtained value of χ =
3.14 is in a general good agreement with expected relative
contributions [65,67] of the two terms from Eq. (2.15). The
theoretical calculations for 130Ba shown in Table II can be
considered as an acceptable reference for 134Ce predictions,
given their similar deformation. Comparing in Table II the the-
oretical to the experimental values for the B(E2)out/B(E2)in

ratios, one can see that most theoretical values are within the
error bars of the corresponding experimental ones, with the
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BEYOND THE HARMONIC APPROXIMATION DESCRIPTION … PHYSICAL REVIEW C 106, 014313 (2022)

FIG. 5. Calculated energies (minus a common rigid-rotor reference) of the yrast and excited bands for 130Ba, 134Ce, and 136,138Nd, are
compared to experimental data in the left column. Open symbols designate data points which were not considered in the fitting procedure. The
corresponding theoretical and experimental wobbling energies are compared in the right column.

exception of the transition from the I = 21 state, which is un-
derestimated. From the renormalized quadrupole components
(2.18), we can extract an effective triaxial deformation as
tan γeff = Q̃2/Q̃0. The values 83◦ and 85◦ obtained for 130Ba
and 136Nd respectively, are on the oblate side and lead to an
inverted J1 > J2 relationship. This inconsistency was also
reported in Ref. [55].

The other usually sought B(M1)out/B(E2)in ratio is un-
fortunately factorized by the quantity (geff/Q)2 involving

subjective assumptions. For example, the usual quenching of
the free spin gyromagnetic factor and the crude hydrodynamic
estimation of Q lead to theoretical B(M1)out/B(E2)in ratios
which overestimate the experimental values by one order of
magnitude. Alternative quenching mechanisms [37,53,55] are
usually adopted in order to match the experimental values and
which in principle can account for the missing effects such as,
e.g., the coupling of the wobbling and scissor-like excitations
[28]. We chose here to fix the quantity geff/Q by fitting the
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FIG. 6. Comparison between experimental [50] and predicted
energies of the yrast band (L6) and excited band (L7) of 138Nd.

experimental �I = 1 mixing ratios which usually accompany
the data on B(M1)out/B(E2)in with the theoretical formula
[71]. The experimental and predicted values for both mixing
and B(M1)out/B(E2)in ratios are listed in Table II for 130Ba.
The theoretical values reproduce the correct experimental be-
havior of δ as well as B(M1)out/B(E2)in. This includes the
increase of the later at high spin, an aspect which was not
reproduced by the PRM calculations performed in Ref. [46].

IV. CONCLUSIONS

The dynamical features of a nuclear system composed of
a triaxial core and a rigidly aligned pair of quasiparticles are
investigated in a semiclassical approach. The main result of
the present study refers to the construction of a Schrödinger
equation for a variable associated with the angular momentum
projection, whose potential retains the maximal information

TABLE II. Experimental and theoretical mixing ratios δI→I−1,
transition probability ratio B(M1)out/B(E2)in in (μN/eb)2 units and
the dimensionless B(E2)out/B(E2)in ratio, between the excited and
yrast quasiparticle bands of 130Ba [45,46].

δ B(M1)out
B(E2)in

B(E2)out
B(E2)in

I Exp. Th. Exp. Th. Exp. Th.

13 −0.58(13) −0.59 0.36+19
−13 0.34 0.32+18

−15 0.39
15 −0.62(10) −0.61 0.38+61

−16 0.31 0.36+70
−19 0.33

17 −0.62(10) −0.62 0.23+22
−9 0.30 0.22+27

−10 0.29
19 −0.60 −0.61 0.25+23

−8 0.29 0.22+21
−7 0.25

21 −0.60 −0.59 0.43+35
−13 0.30 0.41+34

−13 0.23
23 −0.55 0.33 0.22

regarding its wobbling motion. The model is successfully
applied for the description of wobbling excitations proposed
in the two-quasiproton bands of 130Ba, 134Ce, and 136,138Nd.
Moreover, the extension of the corresponding model calcula-
tions to the two-neutron hole bands from 138Nd, supports their
earlier wobbling interpretation [50].

As a future application of the proposed model, we intend
a revisiting of the wobbling excitations in odd mass nuclei.
While for its further development, one plans the introduction
of a tilt in the frozen alignment for a more realistic represen-
tation of the quasiparticles which are generally not of pure
hole or particle nature and therefore are not perfectly aligned
to the body-fixed principal axes. This extension is expected to
describe a true tilted-axis wobbling motion.
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