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Nuclear collective motion of heavy nuclei with axial quadrupole and octupole deformation
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A quadrupole-octupole axially symmetric model is constructed for the unified description of alternate parity
bands corresponding to octupole vibration or a stable deformation. The model depends on two parameters whose
clear physical meaning allows a systematic description of the rotation-vibration dynamics of alternate parity
bands analyzed for isotopic sequences of Ra, Th, U, and Pu nuclei. A critical point is identified in the A =
224–228 mass region of the Ra and Th nuclei marking different stages of the transition between static and
dynamic octupole deformation. Model predictions are performed for energies of unobserved states of the yrast
sequence and of the excited bands as well as for the E1, E2, and E3 transition rates, which reproduce the
available experimental data and exhibit a specific spin dependence for the transitional nuclei.
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I. INTRODUCTION

Atomic nuclei are predominantly axially symmetric in their
ground state [1]. Most notable exceptions from axial sym-
metry include triaxial and reflection asymmetric (pear-like)
shapes. The reflection asymmetric nuclei imply a sizable
odd multipolarity component of the deformation. The most
important one is the octupole deformation, whose micro-
scopic origin is the strong coupling between single-particle
states, which differ in orbital and total angular momentum by
�l,� j = 3. The restoration of reflection symmetry generates
two rotational bands of opposite parity with equal angular mo-
mentum projection K on the symmetry axis. The observation
of a negative-parity band with levels Lπ = 1−, 3−, 5−, . . .,
lying close to the ground-state band, is thus considered as a
clear signature of octupole deformation in even-even nuclei.
Such doubled bands are notably reported in light rare earth
and actinide nuclei [2–4]. If the intrinsic states with opposite
values of octupole deformation are isolated from each other,
then the observed bands are simply constructed on symmetric
and antisymmetric superpositions of them. This is the case
of static octupole deformation, where the two opposite parity
bands merge into a single regular rotational band with alter-
nating parity [5]. More often, the two intrinsic states interact,
such that the restoration of the reflection symmetry in the lab-
oratory frame is realized by the quantum tunneling between
the intrinsic states. From the quantum mechanics point of
view, the negative parity state will always be higher in energy,
such that their experimental observation is an indication of the
so-called octupole vibration [6].

In general, octupole degrees of freedom are superposed
with the quadrupole ones. The problem of quadrupole-
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octupole collectivity is not easy to treat, neither microscop-
ically, because of the breaking of reflection symmetry, nor
geometrically, due to the difficulty in determining the total
inertia tensor of the system. However, by preserving the axial
symmetry or by considering an adiabatic decoupling of the
degrees of freedom, the description of reflection asymmetric
shapes is possible within a variety of microscopic, geomet-
ric, and algebraic approaches [7,8]. The nuclear shape can
be ascertained from any mean field [9,10] or a microscopic-
macroscopic approach [11], by the deformation parameters of
the energy surface minimum. Nevertheless, the microscopic
description of alternate parity bands is usually based on a
mean field with a static octupole deformation or very stabi-
lized equilibrium shape fluctuations, combined with beyond
mean-field approaches such as random phase approximation,
generator coordinate model, or interacting boson model map-
pings [3,7,8]. An alternative description of alternate parity
bands comes from the assumption that the reflection asymmet-
ric shape is a consequence of clustering. An example of such
an approach is the spdf extension of the interacting boson
model [12,13], where the standard quadrupole bosons s and
d , are complemented by the odd parity octupole boson f and
the dipole boson s, the later being essential for the description
of cluster configurations. The same phenomenology was used
in the conception of the binary cluster model, which uses a
radial equation for the description of alternate parity bands
[14], whose variable is related to the distance between clusters
with an a priori fixed mass asymmetry. This template was also
used to define a cluster model with a variable associated in-
stead with the mass asymmetry [15]. All these approaches use
clustering for the explanation of the emerging negative parity
bands, disregarding to some extent the actual deformation of
the nucleus.

The Bohr geometrical approach is one of the few mod-
els which deals with the interplay between the octupole and
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quadrupole degrees of freedom [1]. The usually complex
quadrupole-octupole Bohr Hamiltonian [16] is significantly
simplified within axial symmetry [17–20], and can be even
exactly separated between the rotation degrees of freedom, a
generalized deformation coordinate, and an angular variable
responsible for the coherent superposition of the octupole
and quadrupole deformations. The method is valid even for
higher order multipolarity and can be analytically solved in
certain conditions [21,22], leading even to a parameter free
model [23]. The parity splitting mechanism is contained in
the angular variable potential having two symmetrical min-
ima. The associated problem is usually approximated with
symmetric harmonic oscillators with [18,19,24], or without
[22,23,25] a constant energy shift which is empirically intro-
duced to account for the tunneling between the two potential
minima. The tunneling mechanism is rarely treated consis-
tently, being considered usually for adiabatically decoupled
octupole deformation [20,21] or simulated within an alterna-
tive parity splitting scenario [26]. We propose in this study
to treat exactly the angular equation corresponding to the
relative quadrupole-octupole interplay. This is achieved with
a suitably chosen analytical form of the double well poten-
tial evolving with increasing spin from a single minimum
to a double minimum structure with an increasing barrier
height and width and more separated minima. The lowest
energies will then incorporate a spin-dependent parity split-
ting contribution emerging solely due to the geometry of the
quadrupole-octupole coupling. The program is aimed for the
description of yrast alternate parity bands in Ra and light
actinide nuclei.

II. THEORETICAL FORMALISM

A. Hamiltonian and separation of variables

For quadrupole (β2) and octupole (β3) deformation vari-
ables constrained to axial symmetry, the overly complex
general Bohr Hamiltonian [1] reduces to [18,19]

H = −
∑
λ=2,3

h̄2

2Bλ

1

β3
λ

∂

∂βλ

β3
λ

∂

∂βλ

+ h̄2L̂2

6
(
B2β

2
2 + 2B3β

2
3

) + U (β2, β3), (2.1)

where B2 and B3 are the corresponding mass parameters. The
solutions of the above Hamiltonian are of the form

�±
LMK (β2, β3, θ ) = (β2β3)−3/2	±

L (β2, β3)|LMK,±〉. (2.2)

M and K are the eigenvalues of the angular momentum pro-
jection operators on the z axis of the laboratory and intrinsic
reference frames related through the Euler angles θ . The ±
assignment of the rotation function [18,19,22,25] refers to its
symmetry or antisymmetry with respect to reflection in the
plane perpendicular to the intrinsic symmetry axis. In what
follows, we concern ourselves only with the K = 0 case.

With the notations

β̃2 = β2

√
B2

B
, β̃3 = β3

√
B3

B
, B = B2 + B3

2
,

FIG. 1. The original potential uL (φ) Eq. (2.8) for L = 0 and
L = 8 with an infinite barrier at φ → 0 is presented along with its
modified inner part v(φ) Eq. (2.9), represented by an inverted (red
curve) and a normal parabola (purple curve) when |φc| = 10◦ and,
respectively, |φ′

c| = 70◦. The corresponding conjunction points of the
exact and modified potential regions are marked by horizontal dashed
lines.

ε = 2B

h̄2 E , u = 2B

h̄2 U, (2.3)

and the change to polar coordinates

β̃2 = β̃ cos φ, β̃3 = β̃ sin φ, β̃ =
√

β̃2
2 + β̃2

3 , (2.4)

L

W
L

FIG. 2. Comparison between the harmonic approximation [23]
and the diagonalization results for WL when the barrier is infinite.
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TABLE I. Parameters resulted from the fitting procedure with the best model are listed along with the resulted σ value, the excitation
energy of the experimental 2+ state, the last positive parity L+

max and negative parity L−
max experimental states considered in the fit as well as

the critical angular momentum Lp
c marking the emergence of double minima in the ũL (φ) potential. The (∗) denotes experimental bands with

missing low-lying states, see Figs. 5 and 7.

L+
max Eexp(2+)

Nucl. /L−
max pot. |φc| Lp

c w0 σ [keV]

224Ra 24+/23− ISW 30◦ 0+ −1.491 0.188 84.37
226Ra 24+/23− ISW 54◦ 1− 2.137 0.187 67.67
228Ra 22+/19− HO 69◦ 22+ 34.468 0.572 63.82
224Th 18+/17− ISW 29◦ 0+ −2.851 0.223 98.10
226Th 20+/19− ISW 45◦ 6+ 4.147 0.169 72.20
228Th 22+/19− ISW 65◦ 15− 10.129 0.375 57.77
230Th 24+/21− HO 72.6◦ >24+ 68.702 0.747 53.20
232Th 24+/23− HO 78.2◦ >24+ 141.177 0.519 49.37
234Th 24+/23−∗ HO 75.9◦ >24+ 111.429 0.556 49.55
230U 22+/17− HO 70.2◦ 24+ 64.324 0.292 51.73
232U 24+/21− HO 76.8◦ >24+ 123.407 0.203 47.60
234U 24+/11− HO 80.5◦ >24+ 260.121 0.189 43.50
236U 24+/19− HO 78.6◦ >24+ 179.246 0.358 45.24
238U 24+/23− HO 77.9◦ >24+ 155.626 0.764 44.92
240U 24+/21−∗ HO 79.1◦ >24+ 198.176 0.814 45.00
236Pu 16+/5− HO 79.3◦ >24+ 210.496 0.064 44.63
238Pu 24+/23− HO 76.7◦ >24+ 165.180 0.897 44.07
240Pu 24+/23− HO 76.5◦ >24+ 148.866 1.068 42.82

Eq. (2.1) can be written, after integration on the Euler angles,
as

[
− ∂2

∂β̃2
− 1

β̃

∂

∂β̃
+ L(L + 1)

3β̃2(1 + sin2 φ)
− 1

β̃2

∂2

∂φ2

+u(β̃, φ) + 3

β̃2 sin2 2φ
− εL

]
	±

L (β̃, φ) = 0. (2.5)

The newly introduced β̃ > 0 variable plays the role of a
generalized deformation, while the angle −π/2 < φ < π/2
mediates the measure of interplay between quadrupole and
octupole deformations. For example, one has pure quadrupole
deformation for φ = 0, and pure octupole deformation ±β3

for φ = ±π/2 [18,19,22,25]. The above equation can be
exactly separated if one considers a potential of the form
u(β̃, φ) = u(β̃ ) + u(φ)/β̃2 and a factorized total wave func-
tion 	±

L (β̃, φ) = ψ±
L (β̃ )χ±

L (φ). The radial-like equation is
then defined as

[
− ∂2

∂β̃2
− 1

β̃

∂

∂β̃
+ W ±

L

β̃2
+ u(β̃ )

]
ψ±

L (β̃ ) = εLψ±
L (β̃ ), (2.6)

whereas the equation for the angular variable reads

[
− ∂2

∂φ2
+ u(φ) + uL(φ)

]
χ±

L (φ) = W ±
L χ±

L (φ) (2.7)

with

uL(φ) = 3

sin2 2φ
+ L(L + 1)

3(1 + sin2 φ)
. (2.8)

B. The φ equation

Let us ignore at this step the additional potential u(φ),
and concentrate on Eq. (2.7) for the potential (2.8), which
emerges uniquely from the geometry of the axial quadrupole-
octupole deformation space. The uL(φ) potential is depicted in
Fig. 1. It has a symmetric double well shape with an infinite
separating barrier. The solutions in each well are equal and
their symmetric and antisymmetric combination defines the
wave function χ±

L . In order to determine these solutions, we
diagonalized Eq. (2.7) in a basis of particle in the box states,
only for the positive φ well. The obtained lowest states for
each angular momentum are given in Fig. 2, where we also
compared them with the harmonic approximation calculations
made in Ref. [23]. As can be seen from Fig. 1, the potential
is quite flat for lower angular momentum values, hence the
larger departure of the harmonic approximation in respect
to the diagonalization results. Nevertheless, with a suitable
constant shift in energy which can be accommodated by the
additional potential u(φ), the two evaluations have a rather
compatible dependence on angular momentum.

Note that due to the infinite potential barrier, the odd-even
L staggering (parity splitting) of energy levels is missing. In
the framework of the present model, the tunneling effect is
usually postulated by a constant contribution to the doubly
degenerated energy state in either of the potential minima
[19,24]. Here, we chose to approximate the inner part of the
uL(φ) with a finite barrier. In this way, one will be able to keep
the maximum information coming from the geometry of the
deformation space but also allow a controlled tunneling effect
between the ±φ potential minima. After few tries, we arrived
at the conclusion that an inverted parabola is a sensible choice:

v(φ) = −aφ2 + b. (2.9)
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FIG. 3. Comparison between theoretical and experimental absolute energies (column 1) and �L = 1 staggering measure (column 2) for
224Ra [42], 226Ra [44], and 228Ra [46] nuclei. The last column depicts the evolution of the corresponding ũL (φ) potential for few selected
angular momentum values with the dashed horizontal lines noting the matching points ±φc.

The parameters a and b are determined by demanding the
satisfaction of continuity conditions at the conjunction point

uL(φc) = v(φc),
∂uL(φ)

∂φ

∣∣∣∣
φc

= ∂v(φ)

∂φ

∣∣∣∣
φc

, (2.10)

for a fixed value of the matching point |φc|. It is easy to
see that both parameters depend linearly on L(L + 1), and
consequently v(φ) too, keeping thus the original dependence
on L from uL(φ). This also produces a tunneling or a vibra-
tional effect which depends now on angular momentum. The
modified potential is then defined as

ũL(φ) =
{
vL(φ), |φ| < φc

uL(φ), |φ| � φc
(2.11)

with the matching procedure schematically exemplified in
Fig. 1. It must be mentioned that the additional potential u(φ)
ignored up to this point can be chosen in such a way as to be
compatible with the adopted approximation. For the sake of
generality, one will consider a constant contribution w0 from

u(φ). The associated differential equation in variable φ is then
diagonalized in the same particle in the box wave functions
which are now discriminated by the parity

f +
n (φ) =

√
2

π
cos (2n − 1)φ, (2.12)

f −
n (φ) =

√
2

π
sin 2nφ. (2.13)

The symmetric (+) basis is used for even L positive par-
ity states, and, respectively, odd L negative parity states are
associated with antisymmetric (−) basis solutions. The final
solution of the equation for the angular variable is expressed
as χ±

s = ∑
n As

n f ±
n with s denoting the solution order and As

n
its corresponding eigenvector components. Only the lowest
state s = 1 is of interest here.

Before proceeding to numerical applications, it is worth
to mention few aspects of the adopted approximation. As
the angular momentum increases, the minima of the original
uL(φ) potential become sharper and move to higher values of
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FIG. 4. Same as in Fig. 3, but for 224Th [42], 226Th [48], and 228Th [46].

φ. For L = 0 the minimum position is at φ0 = 45◦ [23]. If
we restrict ourselves to |φc| < 45◦, the position and elevation
of the potential minima from uL(φ) are preserved in ũL(φ).
Going further with |φc| > 45◦ will result in negative values
of a coming from the conditions (2.10), and the lowest L
potentials ũL(φ) will then exhibit a single central minimum.
This situation increases the energy splitting and is consistent
with the octupole vibration mechanism. The critical angular
momentum Lc, marking the transition from single to double
well shape of the ũL(φ) potential, increases with |φc|. At
sufficiently high |φc| values, the ũL(φ) potential acquires a
single well shape for the hole considered range of angular
momentum as is depicted in Fig. 1. Note, however, that due
to the matching point conditions, the single well becomes
shallower with increasing angular momentum.

The numerical values of W ±
L will acquire negative values

for large |φc|, as the potential deepens. In this case, w0 will
be used to counterbalance the overall centrifugal contribution
in order to have a β̃ equation bounded below. Similarly, w0

is also allowed to have negative values for tempering the
increased rotational contribution due to the finite barrier.

C. The β̃ equation

If one considers a harmonic oscillator (HO) potential
u(β̃ ) = β̃2 in Eq. (2.6) for the β̃ shape variable, one can solve
it analytically. Then the total energy is readily obtained as

E±
Ln = h̄2

2B
εLn = h̄2

B
(2n + ν±

L + 1) (2.14)

with the corresponding wave function

ψ±
Ln(β̃ ) =

√
2n!

�(n + ν±
L + 1)

β̃ν±
L L

ν±
L

n (β̃2)e−β̃2/2, (2.15)

where

ν±
L =

√
W ±

L + w0, (2.16)

and n = 0, 1, 2, . . . with n = 0 denoting the positive and nega-
tive parity ground state band. When w0 > 0, the total potential
u(β̃, φ) = β̃2 + w0/β̃

2 obtained after the adopted approxima-
tion in the φ equation, acquires the form of the Davidson
potential used for example in Refs. [19,22,25,26] for the
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FIG. 5. Same as in Fig. 3, but for 230Th [49], 232Th [50], and 234Th [52].

octupole collective excitations. Similarly, if one considers a
hyperbolic potential u(β̃ ) = −1/β̃, the results for energy

E±
Ln = − h̄2(η±

L )2

2B
= − h̄2

8B

1(
ν±

L + 1
2 + n

)2 , (2.17)

and wave function

ψ±
Ln(β̃ ) = (2η±

L )ν
±
L +1

√
n!

�(n + 2ν±
L + 1)(2n + 2ν±

L + 1)

×e−η±
L β̃ β̃ν±

L L
2ν±

L
n (2η±

L β̃ ), (2.18)

would be equivalent to those for a Kratzer potential u(β̃, φ) =
−1/β̃ + w0/β̃

2 which is customarily employed in quadrupole
collective models [27–30], but not yet considered for the oc-
tupole degrees of freedom. The notations are kept the same as
in the HO case.

The set of parameter free solvable potentials is completed
with the infinite square well potential (ISW):

u(β̃ ) =
{

0, β̃ � 1
∞, β̃ > 1,

(2.19)

whose energy is well known

E±
Ln = h̄2

2B

[
xnν±

L

]2
(2.20)

with xnν±
L

being the (n + 1)th root of Bessel function Jν±
L

(β )
used to define the corresponding wave function

ψ±
Ln(β̃ ) =

√
2

Jν±
L

(
xnν±

L
β̃
)

Jν±
L +1

(
xnν±

L

) . (2.21)

By adding the centrifugal term w0/β̃
2 > 0, one can move

the inner wall of the ISW. This effect is similar to the con-
fined β-soft model for the quadrupole deformation [31,32].
As a consequence, the Bessel function’s order ν±

L defined by
Eq. (2.16) is increased due to the additional contribution of
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FIG. 6. Same as in Fig. 3, but for 230U [49], 232U [53], and 234U [52].

ω0. As in the cases of HO and hyperbolic potentials, the ω0

parameter generalizes the total centrifugal contribution.
It is worth to mention that all considered potentials are

scaled. More precisely, the string constant of the HO, the
strength of the hyperbolic potential as well as the position
of the infinite wall in ISW are set to unity, because their
values just add a factor to the total energy assumed included
in the mass B, and are not relevant for the normalized wave
functions. Nevertheless, one must be aware that the scaling is
different for each potential when these are compared to each
other.

D. Electromagnetic transitions

The relevant electric transition probabilities can be written
in the following form [22,23,25]:

B(Eλ; Lnp → L′n′ p′) = tλ
(
CL λ L′

0 0 0

)2(
B̃λ

Lnp;L′n′ p′ Iλ
Lp;L′ p′

)2
,

λ = 1, 2, 3, (2.22)

where tλ are constants gathering the corresponding physical
units and various normalization constants. In the above ex-
pression, C is the Clebsch-Gordan coefficient, B̃ is the integral
over the β̃ variable,

B̃1
Lnp;L′n′ p′ =

∫
β̃3ψ

p
Ln(β̃ )ψ p′

L′n′ (β̃ )dβ̃, (2.23)

B̃2,3
Lnp;L′n′ p′ =

∫
β̃2ψ

p
Ln(β̃ )ψ p′

L′n′ (β̃ )dβ̃, (2.24)

while I is the integral over the angular variable φ:

I1
Lp;L′ p′ =

∫
sin 2φχ

p
L (φ)χ p′

L′ (φ)dφ, (2.25)

I2
Lp;L′ p′ =

∫
cos φχ

p
L (φ)χ p′

L′ (φ)dφ, (2.26)

I3
Lp;L′ p′ =

∫
sin φχ

p
L (φ)χ p′

L′ (φ)dφ. (2.27)

014311-7



R. BUDACA, P. BUGANU, AND A. I. BUDACA PHYSICAL REVIEW C 106, 014311 (2022)

FIG. 7. Same as in Fig. 3, but for 236U [54], 238U [55], and 240U [56].

III. NUMERICAL APPLICATION

The experimental realization of the proposed model is
sought among Ra isotopes and light actinide nuclei, which
exhibit the most extensive alternate parity bands and are well
known examples of octupole deformation. The focus of the
study is the yrast positive and negative parity states. There-
fore, we fitted the corresponding experimental data only for
these states from Ra, Th, U, and Pu isotopes, by minimizing
the quantity

σ =
√√√√ 1

N

N∑
states

(
Eexp(L±)

Eexp(2+)
− E±

L0 − E+
00

E+
20 − E+

00

)2

. (3.1)

The fits on energy ratios have the advantage of eliminating
the scale dependence on the mass B, leaving only two rel-
evant parameters, |φc| and w0. Although some nuclei have
experimental data up to very high spin states, the fits and
the associated analysis are limited to L � 24 states. The
separation constant W ±

L needed for the determination of the
theoretical energies is obtained by diagonalizing Eq. (2.7)

with the potential (2.11) in a basis of 100 f ±
n (φ) states which

assures a comfortable convergence of the eigenvalues for all
considered angular momentum values. The diagonalization
procedure is applied for a grid of |φc| values of one degree
increment in the interval [2◦, 85◦]. A fine tuning is performed
for fits with |φc| > 70◦. The same set of experimental data
is fitted separately with total energy determined from HO,
hyperbolic, and ISW β̃ potentials. It is found that the HO po-
tential performs much better than the hyperbolic potential for
the considered nuclei with the comparable performance only
for the 240U nucleus. We will further omit the results of the
hyperbolic potential. However, one expects that it would fare
better in the other regions of the nuclide chart with possible
octupole deformation. For few lighter nuclei, the ISW model
is the most suitable choice.

Excepting the lighter A < 224 isotopes of Ra and Th,
the model fits are excellent for all experimentally available
extended alternate parity bands in the investigated isotopic
chains. This can be seen from the σ values reported in
Table I for the best suited β̃ potential and the compar-
ison between experimental and theoretical energy spectra
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FIG. 8. Same as in Fig. 3, but for 236Pu [54], 238Pu [55], and 240Pu [57].

visualized in Figs. 3–8. The agreement with absolute energy
levels can be easily ascertained by factorizing σ with the
excitation energy of the experimental 2+ state also listed in
Table I. The 234Th and 240U nuclei lack experimental data for
the negative parity band head state. As the theoretical results
in general underestimate the experimental data in the low spin
region of the negative parity band, the predicted elevation of
1− state at 507.5 keV for 234Th and 676.9 keV for 240U can be
considered as reference lower limits for future measurements.

The energy splitting between alternate parity bands pro-
duces the so-called odd-even or �L = 1 staggering. A
suitable measure of this effect is the fifth order finite differ-
ence of E (L) [33,34]:

�5E (L) = 6�E (L) − 4�E (L − 1) − 4�E (L + 1)

+�E (L + 2) + �E (L − 2), (3.2)

where �E (L) = E (L) − E (L − 1) and E denotes experimen-
tal or theoretical energies. The extreme sensibility of this
quantity is often used to study the fine structure of the octupole

bands. For example, the different inertia of the positive and
negative parity bands were shown to produce the unusual beat
patterns in the �L = 1 staggering [33–35]. As can be seen
from Figs. 3 and 4, such an effect is most obvious in 224Ra,
226Ra, and 224Th nuclei. To reproduce this behavior, a more
consistent treatment of the quadrupole-octupole rotation is
necessary [35–37]. Nevertheless, the present simple model
reproduces very well the angular momentum where energy
splitting disappears for these three nuclei, and the general
staggering behavior for the other nuclei with a strong octupole
vibration nature (see Figs. 5–8).

The proposed model can be in principle used to describe
excited alternate parity bands. Considering n = 1 for the β̃

vibration quanta, we made in Table II some predictions for the
band heads of K = 0 excited alternate parity bands. The con-
sidered nuclei are known as good rotors, therefore vibrational
excited states are expected at very high energy. Apart from
the lightest Ra and Th isotopes, where the theory conforms
well with the yrare experimental 0+ and 1− states, the theory
predicts very high band heads, especially for the negative
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TABLE II. Theoretical excited band head states 0+ and 1− are
compared with possible experimental realizations in the considered
nuclei.

Eth(0+
2 ) Eexp(0+

i>1) Eth(1−
2 ) Eexp(1−

i>1, K = 0)
Nucleus [keV] [keV] [keV] [keV]

224Ra [42] 802.6 916.4 1067.3 1053.0
226Ra [48] 755.6 824.6 1099.9 1077.2
228Ra [46] 1047.6 721.2 1405.2

1042.0
224Th 803.6 1105.5
226Th [48] 969.7 805.2 1274.3
228Th [46] 892.2 831.8 1307.0
230Th [49] 1215.6 634.9 1612.9
232Th [51] 1222.2 730.4 1869.4 1303.3

1078.5 1489.0
234Th [52] 1346.6 810.0 1854.2

1470.0
230U 1208.0 1530.3
232U [50] 1294.0 691.4 1830.5

927.3
1277.2

234U [52] 1278.5 809.9 2070.5 1237.3
1044.5 1809.7

1969.9
236U [54] 1383.2 919.1 2020.5 2086.5
238U [55] 1326.2 927.2 1904.5 1996.7

997.2
240U 1396.6 2073.5
236Pu 1425.9 2117.1
238Pu [55] 1549.4 962.8 2049.3 1447.2

1134.0 1621.3
1228.7 1636.4
1426.6

240Pu [57] 1407.9 860.7 1881.5 1607.7
1089.5 1775.3
1525.9 1917.8

parity in strongly vibrational nuclei. Nevertheless, Table II
shows some possible experimental realizations of these states
in higher order 0+ and 1− measured energy levels.

The two parameters of the model have clear physical at-
tributes: |φc| mediates between stable octupole deformation
and octupole vibration modes, while w0 is a measure of
the overall rotational behavior. The Ra and Th nuclei with
A = 224, 226, and 228, have visibly lower values for both
parameters than the rest of the considered nuclei. As can be
seen in Figs. 3 and 4, the lower and moderate values of |φc|
are reflected in a double well shape of their corresponding
ũL(φ) potential, sustained in the whole range of the considered
angular momentum states (A = 224) or attained at higher
spins (A = 226, 228). The double well shape of the ũL(φ)
potential is associated with a stable admixture of octupole and
quadrupole deformation, while a single well ũL(φ) potential
obtained for the rest of the considered nuclei is associated
with the octupole vibration which commences through the
central value φ = 0 where octupole deformation vanishes. An

interesting situation arises for 226Th, where the ground state
ũL(φ) potential is completely flat.

The deduced values of the both parameters listed in Table I
have a regular evolution with nucleon numbers. For example,
Ra and Th nuclei with A = 224, 226, and 228 exhibit the
same increasing behavior for both |φc| and w0. As a matter
of fact, these particular Ra and Th isotopes were proposed
as critical points for shape and dynamical phase transitions
[9,10,20–23,25,38]. It is not surprising then that ISW potential
usually employed in critical phenomena is better suited for
224,226Ra and 224,226,228Th. These nuclei are indeed special
also from the angular variable’s point of view. The rela-
tively small |φc| value of A = 226 isotopes allows a sufficient
amount of tunneling to raise the negative parity states with
L � 3 above the separation barrier. One can say that in these
nuclei takes place a transition from a delocalized to a sta-
ble quadrupole-octupole deformation. While the 226,228Ra and
226,228Th nuclei contain the dynamical (spin-dependent) tran-
sition from a single to a double well potential associated to the
change from an octupole vibration mode to an increasingly
stabilized octupole deformation. This transition commences
through different quantum phases: starting with single well
vibration, then a double well vibration with energy above the
separation barrier which changes to a tunneling vibration and
finally ending in a stable quadrupole-octupole phase where the
two ±φ configurations no longer interact. A similar picture
is present for example in the chiral bands of triaxial nuclei,
where the dynamical transition changes the chiral vibration
into static chirality of the particle-rotor configuration [39,40].
Considering the changes in the equilibrium shape, it can be
said that A = 226, 228 Ra and Th nuclei are perfect examples
of the Poincaré shape transition [41]. The model also suggests
a transition from a β̃ potential with a softer inner wall (ISW)
to one with a softer outer wall (HO) between 226Ra and 228Ra,
as well as between 228Th and 230Th. The heavier Th nuclei
continue the increasing trend of both parameters up to a max-
imum at neutron number N = 142, which is mirrored by the
parameters obtained for U and Pu isotopes.

It is well known that the transition probabilities are more
sensible to structural changes. The calculated values of the
intraband E2 transition probabilities listed in Tables III and
IV, strengthen the observations regarding the different nature
of the A = 224, 226, 228 Ra and Th isotopes. Both theoret-
ical and experimental transition rates are normalized such
that to exclude the scale dependence on t2. This is achieved
by presenting the data in terms of ratios B(E2, Lp → Lp −
2)/B(E2, 2+ → 0+). A similar presentation is used also for
E1 and E3 data, by considering ratios of transition rates with
the same multipolarity. While for the octupole vibrational
nuclei A > 228 is predicted a monotonously increasing trend
for the B(E2, Lp → Lp − 2) confirmed by the available exper-
imental data, the lightest Ra and Th nuclei have a rather differ-
ent evolution with spin of this quantity. Indeed, the calculated
transitions for A = 224 and 226 isotopes show a moderate
increase for few angular momentum states and then they start
to decrease towards a saturation value at high spins, which is
lower for the critical A = 226 nuclei. The evolution with spin
of the E2 rates for the A = 228 isotopes is apparently similar
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TABLE III. Theoretical and experimentally available E2 transition probabilities in units of B(E2; 2+ → 0+) for 224,226,228Ra [42,43,45,47]
and 224−234Th [46,50] nuclei.

224Ra 226Ra 228Ra 224Th 226Th 228Th 230Th 232Th 234Th

Lp
i → Lp

f Th. Exp. Th. Exp. Th. Exp Th. Exp. Th. Exp. Th. Exp Th. Exp. Th. Exp. Th. Exp.

4+ → 2+ 1.46 1.41(8) 1.49 1.49+7
−4 1.47 1.47(16) 1.48 1.45 1.47 1.45(7) 1.45 1.45 1.44(15) 1.45

6+ → 4+ 1.59 1.59(14) 1.72 1.76+4
−5 1.70 1.77(20) 1.64 1.61 1.69 1.65 1.64 1.65(14) 1.63

8+ → 6+ 1.57 1.72(51) 1.84 1.69+4
−6 1.89 1.80(20) 1.63 1.63 1.85 1.79 1.78 1.74(12) 1.76

10+ → 8+ 1.47 1.86 1.63+13
−6 2.08 2.36+27

−25 1.53 1.54 1.96 1.93 1.91 1.83(15) 1.87
12+ → 10+ 1.35 1.77 3.17+15

−26 2.26 1.77+27
−17 1.42 1.36 2.04 2.06 2.05 1.87(18) 1.99

14+ → 12+ 1.24 1.57 1.81+26
−11 2.45 1.31 1.18 2.07 2.20 2.19 1.97(19) 2.11

16+ → 14+ 1.16 1.35 2.00+100
−29 2.64 1.23 1.05 2.04 2.35 2.33 1.97(23) 2.24

18+ → 16+ 1.09 1.17 0.83+24
−17 2.80 1.16 0.95 1.94 2.50 2.49 2.27(38) 2.37

20+ → 18+ 1.03 1.03 2.93 1.09 0.88 1.74 2.65 2.64 1.82(32) 2.50
22+ → 20+ 0.98 0.94 2.98 1.04 0.82 1.49 2.79 2.81 2.12(57) 2.64
24+ → 22+ 0.93 0.87 2.92 0.98 0.78 1.24 2.93 2.98 1.21(36) 2.78
3− → 1− 1.01 0.95(10) 0.98 1.87+6

−12 1.08 1.04 0.94 1.01 1.11 1.28 1.18
5− → 3− 1.21 1.94(62) 1.18 1.49+4

−7 1.30 1.26 1.11 1.21 1.33 1.54 1.41
7− → 5− 1.29 1.27 1.08+2

−4 1.44 1.35 1.18 1.32 1.46 1.68 1.54
9− → 7− 1.31 1.31 1.53+2

−9 1.56 1.38 1.19 1.38 1.56 1.79 1.64
11− → 9− 1.29 1.31 1.95+18

−38 1.68 1.36 1.16 1.42 1.65 1.90 1.73
13− → 11− 1.24 1.27 3.63+84

−49 1.78 1.31 1.11 1.43 1.75 2.01 1.82
15− → 13− 1.18 1.20 2.97+212

−119 1.88 1.25 1.04 1.41 1.84 2.13 1.91
17− → 15− 1.12 1.12 1.95 1.18 0.97 1.36 1.93 2.25 2.01
19− → 17− 1.06 1.04 2.01 1.12 0.90 1.30 2.01 2.38 2.11
21− → 19− 1.00 0.96 2.03 1.06 0.85 1.21 2.09 2.51 2.21
23− → 21− 0.95 0.89 2.02 1.01 0.80 1.11 2.15 2.64 2.31

TABLE IV. Same as in Table III, but for 230−240U [54,55] and 236,238,240Pu nuclei.

230U 232U 234U 236U 238U 240U 236Pu 238Pu 240Pu

Lp
i → Lp

f Th. Exp. Th. Exp. Th. Exp Th. Exp. Th. Exp. Th. Exp Th. Exp. Th. Exp. Th. Exp.

4+ → 2+ 1.45 1.45 1.45 1.44 1.43(11) 1.44 1.44 1.44 1.44 1.44
6+ → 4+ 1.64 1.63 1.62 1.62 1.54(11) 1.62 1.62 1.62 1.61 1.61
8+ → 6+ 1.78 1.76 1.75 1.74 1.56(17) 1.75 1.46(21) 1.74 1.73 1.72 1.73
10+ → 8+ 1.90 1.88 1.86 1.85 1.44(17) 1.85 1.71(21) 1.84 1.84 1.81 1.82
12+ → 10+ 2.03 1.99 1.97 1.95 1.64(29) 1.96 1.78(18) 1.94 1.93 1.89 1.91
14+ → 12+ 2.15 2.12 2.08 2.05 1.80(21) 2.07 1.75(14) 2.05 2.03 1.98 2.01
16+ → 14+ 2.27 2.24 2.20 2.16 1.52(17) 2.19 1.74(8) 2.16 2.14 2.07 2.11
18+ → 16+ 2.39 2.37 2.33 2.28 1.96(21) 2.31 1.71(11) 2.27 2.25 2.16 2.21
20+ → 18+ 2.49 2.51 2.46 2.40 2.04(33) 2.43 1.64(14) 2.39 2.36 2.26 2.31
22+ → 20+ 2.57 2.65 2.59 2.53 2.08(49) 2.56 1.74(27) 2.51 2.48 2.36 2.42
24+ → 22+ 2.60 2.80 2.73 2.66 2.68(53) 2.69 1.89(30) 2.64 2.61 2.46 2.53
3− → 1− 1.05 1.21 1.33 1.25 1.23 1.26 1.26 1.17 1.17
5− → 3− 1.25 1.45 1.59 1.49 1.47 1.50 1.50 1.39 1.39
7− → 5− 1.37 1.57 1.73 1.62 1.60 1.63 1.63 1.50 1.51
9− → 7− 1.45 1.68 1.83 1.71 1.69 1.73 1.73 1.58 1.59
11− → 9− 1.53 1.77 1.93 1.80 1.78 1.82 1.81 1.65 1.67
13− → 11− 1.60 1.87 2.02 1.89 1.87 1.91 1.90 1.72 1.74
15− → 13− 1.66 1.96 2.12 1.98 1.96 1.99 1.98 1.79 1.82
17− → 15− 1.72 2.07 2.23 2.07 2.06 2.09 2.07 1.86 1.90
19− → 17− 1.76 2.17 2.33 2.17 2.16 2.18 2.17 1.94 1.97
21− → 19− 1.78 2.28 2.45 2.27 2.26 2.28 2.27 2.01 2.06
23− → 21− 1.78 2.39 2.56 2.37 2.37 2.39 2.37 2.09 2.14
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TABLE V. Theoretical and experimentally available E1 transition probabilities in 10−5 W.u. for 224Ra [43], 226Ra [45], 228Ra [47], 232Th
[58], and 240Pu [57]. The underlined experimental value is used for fixing the t1 factor from Eq.(2.22) by equating it with the corresponding
theoretical estimation.

224Ra 226Ra 228Ra 232Th 240Pu

Lp
i → Lp

f Th. Exp. Th. Exp. Th. Exp. Th. Exp. Th. Exp.

1− → 0+ 2.7 <5 35 35(13) 27 27+52
−20 8.7 2.2

1− → 2+ 5.9 <13 75 64(19) 56 13+23
−9 17.7 4.5

3− → 2+ 3.9 3.9+17
−14 49 22(5) 36 48+54

−33 11.5 2.9
3− → 4+ 6.1 73 19(3) 52 39+43

−19 15.8 3.9
5− → 4+ 5.0 4+3

−2 59 33(5) 42 66+73
−49 12.7 3.2 >2.4

5− → 6+ 7.1 82 55 16.0 4.3(10) 3.9 >3.9
7− → 6+ 6.3 <30 72 69(9) 49 19+43

−15 13.9 3.4
7− → 8+ 8.4 96 123(94) 63 16.9 10.7(20) 4.0
9− → 8+ 7.7 86 127(21) 58 90+27

−6 15.3 3.6
9− → 10+ 9.6 114 160(59) 73 18.3 18.3(27) 4.2
11− → 10+ 8.9 104 198(48) 69 17.0 3.9
11− → 12+ 10.4 136 223(102) 86 20.0 18(5) 4.5
13− → 12+ 9.7 126 615(156) 83 19.0 4.2
13− → 14+ 10.8 158 654+302

−101 103 22.2 4.8
15− → 14+ 10.2 147 408+104

−208 100 21.3 4.6

to that of the heavier nuclei. One can observe however that it
starts to decrease at very high spins, where these nuclei start
to acquire a more stable octupole deformation. The available
experimental data for these lighter nuclei confirm mainly the
increasing part of the theoretical evolution with spin. With
the exception of 226Ra nucleus, where the experimental data
shows a maximum in the vicinity of the predicted maximal
transition rate, the decreasing region of interest in other nuclei
is not explored or has data with large uncertainties.

The trends in E1 transition rates are more erratic to be
systematically compared. Therefore, we used the available ex-
perimental information on these transitions to rather check the
model’s performance. From Table V, one can see that the gen-
eral increase with spin is reproduced by the theory with few
occasional data matches with extrapolated theoretical values.
An important characteristic of the theoretical E1 rates is the
fact that B(E1; L− → (L + 1)+)/(E1; L− → (L − 1)+) > 1
is preserved for all spins. This rule is satisfied also within
experimental data complemented by experimentally available
ratios shown in Table VI with few exceptions in low spin
transitions of 226,228Ra nuclei which due to large uncertainties
can very well confirm the rule.

In what concerns E3 transition probabilities, the
experimental data are scarce. There are however few
nuclei with sufficient data to be compared with model
predictions. Thus, for 224Ra nucleus the measured
B(E3; 1− → 2+)/B(E3; 3− → 0+) = 5(1) and B(E3; 5− →
2+)/B(E3; 3− → 0+) = 1.45(42) ratios [43] are consistent
with the theoretical values 3.21 and, respectively, 1.68.
Also, combining the results of Refs. [54,59] for 236U, one
finds that the deduced experimental ratio B(E3; 0+ →
3−)/B(E3; 1− → 4+) = 2.58(51) is comparable with the
theoretical value 1.71.

IV. CONCLUSIONS

A model based on the quadrupole-octupole axially sym-
metric version of the general Bohr Hamiltonian is constructed
by means of a consistent treatment of the interaction between
configurations with opposite octupole deformation. The inter-
action is modeled by a finite barrier in the angular variable
mediating the relative contribution between quadrupole and
octupole deformations, whose spin dependence is naturally
given by the inner geometry of the shape parametrization.

TABLE VI. Theoretical and experimentally available ratios B(E1; L− → (L + 1)+)/(E1; L− → (L − 1)+) for 226Th [20], 230Th [58], 236U
[54], 238U [55].

226Th 230Th 236U 238U

L− Th. Exp. Th. Exp. Th. Exp. Th. Exp.

1− 2.11 1.85(17) 2.03 2.28(12) 2.02 2.15(33) 2.02 1.57(79)
3− 1.49 1.01(26) 1.38 1.97(9) 1.36 1.37
5− 1.40 1.27 2.21(11) 1.24 1.24
7− 1.37 1.22 2.41(13) 1.19 1.20
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The resulted model has only two adjustable parameters up to
a scale. Numerical applications on extended alternate parity
bands in Ra, Th, U, and Pu nuclei demonstrate the model’s
ability to describe in a unified manner the evolution of the
octupole deformation from a vibrational type to a stable one,
within an isotopic chain, as well as a function of spin within
the rotational bands of certain nuclei. As a result, we identified
the Ra and Th nuclei with A = 224, 226, 228, as belonging
to the critical region of the shape phase transition between
stable and dynamic octupole deformation. The extension of
the critical region over few nuclei is due to its spin depen-
dence. More precisely, A = 224 nuclei have an incipient stable
octupole deformation in their ground state with small mixing
between positive and negative octupole deformation configu-
rations, which rapidly vanishes into a well stabilized octupole
deformation at high spins. The next A = 226 nuclei exhibit
a clear transition at moderate spins from a highly anharmonic
octupole vibration towards a static octupole deformation. This
dynamical transition is moved at higher spins in the A = 228

nuclei, such that their ground and low spin states correspond
to well behaved octupole vibration. It is worth mentioning that
the model performs well also in U and Pu nuclei with a strong
octupole vibration character.

The model predicts some specific trends in the electromag-
netic properties of the suggested transitional nuclei, which
must be confirmed by experimental measurements. The reli-
ability of the predictions is supported by the reproduction of
the available data on experimental E1, E2, and E3 transition
probabilities. The successful reproduction of the spectral ob-
servables in such a various set of nuclei is used to extend the
model calculations to excited alternate parity bands, for which
one provided possible experimental counterparts.
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