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Volume extrapolation via eigenvector continuation
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We develop an extension of eigenvector continuation (EC) that makes it possible to extrapolate simulations
of quantum systems in finite periodic boxes across large ranges of box sizes. The formal justification for this
approach, which we call finite-volume eigenvector continuation (FVEC), is provided by matching periodic
functions at different box sizes. As concrete FVEC implementation we use a discrete variable representation
based on plane-wave states and present several applications calculated within this framework.
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I. INTRODUCTION

Simulations of quantum systems in finite volume (FV),
such as a cubic box with periodic boundary conditions, can
be used to obtain information about that same system in in-
finite volume. In a series of highly influential papers [1–3],
Lüscher has shown that the real-world (infinite-volume) prop-
erties of the system are encoded in how its (discrete) energy
levels change as the size of the volume is varied. Bound-
state relations connect the finite-volume energy correction to
the asymptotic properties of wave functions, leading to an
exponential volume dependence [1,4–6], while information
about elastic scattering can be obtained from discrete energy
levels with power-law dependence on the box size. Reso-
nances, i.e., short-lived, unstable states, are manifest in the
volume-dependent spectrum as avoided crossings of energy
levels [7–9]. While early studies of finite-volume relations
considered two-body applications, work in recent years has
focused largely on deriving rigorous FV quantization condi-
tions for three-body systems [10–22], following early studies
of the triton and Efimov trimers in finite volume [23–26].
Related work has derived the volume dependence for bound
states comprised of an arbitrary number of particles [6], and
it has been demonstrated that genuine few-body resonances
can be identified from FV calculations [27], thus providing a
discovery tool for such exotic states.

Eigenvector continuation (EC), first introduced in
Ref. [28], is a powerful (yet strikingly simple in practice)
method to address otherwise unfeasible physics problems.
Given a Hamiltonian with parametric dependence H (c),
EC enables robust extrapolations to a given target point
c∗ from “training data” far away from that point by
exploiting information contained in eigenvectors. The
essence of the system is “learned” through the construction
of a highly effective (nonorthogonal) basis, leading to a
variational calculation of the states of interest with rapid
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convergence [29]. Recent work [30,31] has shown that EC as
a particular reduced-basis (RB) method falls within a larger
class of model-order reduction (MOR) techniques. In practice,
EC boils down to constructing Hamiltonian and norm
matrices (denoted as H (c∗) and N , respectively) and solving
the generalized eigenvalue problem H (c∗)|ψ〉 = λN |ψ〉.

Since its inception, various interesting applications and
extensions of EC have been identified in a short time.
Early applications focusing on bound states include the
construction of highly efficient emulators for uncertainty
quantification [32–34] and robust extrapolations of pertur-
bation theory [35–37]. More recently, the approach has
been extended to construct emulators for scattering sys-
tems [38–40] and to studies of nuclear reactions [41,42].

We introduce here a novel extension of EC that goes
beyond simple parametric dependencies of the Hamiltonian.
Specifically, we develop EC as a tool for performing vol-
ume extrapolations at greatly reduced numerical cost. Since
this extension is applicable in connection with any numerical
method that provides access to wave functions in periodic
finite topologies, it immediately yields several interesting ap-
plications, among which we highlight in particular FV studies
of few-body resonances [27,43]. Identifying such unstable
states as avoided crossing of FV energy levels requires the
calculation of spectra over a range of volumes, and in partic-
ular in very large boxes to reach, for example, the low-energy
regime of few-neutron systems, which are of great current in-
terest in nuclear experiments [44,45] and nuclear theory (see,
for example, Refs. [43,46–48]). The technique introduced in
this paper provides a way to greatly extend the reach of FV
resonance studies. Moreover, few-body approaches used to
extrapolate Lattice QCD results to infinite volume via match-
ing to an effective field theory description, recently discussed
in Ref. [49], can benefit from EC based volume extrapolation.

II. FINITE-VOLUME EIGENVECTOR CONTINUATION

By “finite-volume eigenvector continuation (FVEC)” we
refer to the application of EC to extrapolate properties of
quantum states calculated in a set of periodic boxes with
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sizes Li, i = 1, . . . , N to a target volume L∗. This should be
distinguished from using standard EC at a fixed single volume
L to extrapolate a parametric dependence of the Hamiltonian.
Specifically, we want to consider states |ψLi〉 at volume Li (or
sets of states {|ψ ( j)

Li
〉, j = 1, . . . , Ni}) and perform EC using

Hamiltonian and norm matrices

Hi j = 〈
ψLi

∣∣HL∗

∣∣ψL j

〉
, (1a)

Ni j = 〈
ψLi

∣∣ψL j

〉
. (1b)

However, at face value the above definitions appear prob-
lematic because the dependence on L does not simply stem
from the Hamiltonian; it is inherent in the definition of the
Hilbert space. Two states |ψLi〉 and |ψL j 〉 are actually vectors
in different Hilbert spaces for i �= j, and it is not immediately
clear how the matrix elements written down naively in Eqs. (1)
can be well-defined quantities. To resolve this issue, we de-
velop the notion of a vector space that accommodates states
with arbitrary periodicities and show how it relates to FVEC
calculations.

A. Periodic matching

Let HL be the space of periodic functions f : R → C with
f (x + L) = f (x) for some fixed but arbitrary L > 0. Consider
the union

H =
⋃

{L>0}
HL. (2)

We proceed to show that this concept can be used to define
overlaps and matrix elements of periodic states with different
periods. We restrict the discussion to the special case of a
one-dimensional (1D) two-body system (described by a sin-
gle relative coordinate x), and merely note that everything
generalizes to a larger number of spatial dimensions and/or
particles in a straightforward manner.

(a) Addition. Clearly H is not a vector space if one defines
the sum of f , g ∈ H in the usual pointwise manner (because
the sum of two periodic functions is not in general periodic).
However, for given L, L′ > 0 one can map f ∈ HL to HL′ by
means of a dilatation:

(DL,L′ f )(x) =
√

L

L′ f

(
L

L′ x
)

. (3)

With this, we can define an addition operation for f ∈ HL and
g ∈ HL′ as follows:

(
f

max+ g
)
(x) = (DL,L′ f )(x) + g(x) (4)

for L′ > L, and adjusting g instead in the opposite case. The
result is a periodic function in HL′ ⊂ H, and since multiplica-

tion by a scalar is trivially defined, (H,
max+ ) is a vector space.

(b) Inner products. An inner product on H can be defined
similarly. Let f , g ∈ H and, without loss of generality, assume
L � L′ for the periods of f and g, respectively. Then

〈 f , g〉max = 〈DL,L′ f , g〉HL′ =
∫ L′/2

−L′/2
(DL,L′ f )(x)∗g(x) dx (5)

defines an inner product on (H,
max+ ). Indeed, consider for

example adding h ∈ HL′′ with L′′ � L′ to the second operand:
〈
f , g

max+ h
〉
max = 〈 f , DL′,L′′g + h〉max

= 〈DL,L′′ f , DL′,L′′g + h〉HL′′

= 〈DL,L′′ f , DL′,L′′g〉HL′′ + 〈DL,L′′ f , h〉HL′′

= 〈 f , g〉max + 〈 f , h〉max, (6)

where we set x′ = (L′/L′′)x to find

〈DL,L′′ f , DL′,L′′g〉HL′′

=
∫ L′′/2

−L′′/2

√
L

L′′ f

(
L

L′′ x
)∗√ L′

L′′ g

(
L′

L′′ x
)

dx

=
∫ L′/2

−L′/2

√
L

L′ f

(
L

L′ x
′
)∗

g (x′) dx′ = 〈 f , g〉max. (7)

They key step above was using the property DL,L′′ f =
DL,L′DL′,L′′ f of dilatations (which actually form a multiplica-
tive group). Other combinations of operands and periods work
similarly, and again including scalar factors is trivial.

(c) Matrix elements. Finally, consider a (linear) operator O
on HL. While initially this is only given as a mapping HL →
HL, we can define its action on a function f ∈ HL′ by inserting
an appropriate dilatation:

O f ≡ ODL′,L f ∈ HL. (8)

Together with the inner product (5) this provides a definition
of operator matrix elements between different HL, HL′ .

B. Truncated periodic bases

Consider now truncated bases SL,N and SL′,N for HL and
HL′ , respectively, with N a positive integer. Specifically, let
SL,N = {φ(L)

j : j = 1, . . . , N} with

φ
(L)
j (x) = 1√

L
exp

(
i
2π j

L
x

)
(9)

be a set of plane waves. Then DL,L′ is a bijection between SL,N

and SL′,N , and because for each j we have DL,L′φ
(L)
j = φ

(L′ )
j .

Therefore, if ψ and ψ ′ are functions expanded upon SL,N and
SL′,N , respectively, taking the inner product of their coefficient
vectors in RN is the same as considering the inner product on
H as defined in Eq. (5). Note that while this inner product
has been defined by matching functions to the maximum
period, we could equally well have chosen to match to the
smaller period. In practice the concrete choice does not matter
because both lead to identical inner products on RN . Overall
we have arrived at a justification for writing down Eqs. (1) as
well a straightforward prescription for implementing FVEC
numerically.

Discrete variable representation. While conceptually
straightforward, the plane-wave basis (9) is in general not
an efficient approach to study few-body systems. It can,
however, be used as starting point for the construction of a
so-called discrete variable representation (DVR). Originally
suggested as an alternative to harmonic-oscillator based cal-
culations in nuclear physics [50], recent work has established
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this plane-wave DVR as a powerful numerical framework
for studying few-body resonances in FV [27,43,51]. Its con-
struction starts with the states φ j (x) defined in Eq. (9), with
j = −N/2, . . . , N/2 − 1 for even N > 2, and where as be-
fore x denotes the relative coordinate for a two-body (n = 2)
system in d = 1 dimensions. Any periodic solution of the 1D
Schrödinger equation can be expanded in terms of the φ j (x),
yielding a discrete Fourier transform (DFT). Given a set of
equidistant points xk ∈ [−L/2, L/2) and weights wk = L/N
(independent of k), DVR states are constructed as [52]

ψk (x) =
N/2−1∑

i=−N/2

U∗
kiφi(x), (10)

with Uki = √
wkφi(xk ) defining a unitary matrix. Calculations

in a periodic box can then be carried out through an expansion
in terms of the ψk (x) instead of the φ j (x). Importantly, since
the transformation between plane-wave states and DVR states
is unitary, the above considerations that justify FVEC carry
over to DVR calculations.

Local potentials are represented in the DVR by basis di-
agonal matrices [27,51]. Separable potentials have a more
complicated representation, but can also be implemented ef-
ficiently [43]. Another advantage of the DVR is that despite
being effectively defined on a lattice of points, it yields a
continuum dispersion relation E = p2/(2μ), where p and μ

are the center-of-mass momentum and the reduced mass of
the system, respectively. This is achieved by a nondiagonal
matrix representation for the kinetic energy K , which is,
however, known analytically [27,51]. For d > 1 or n > 2 the
DVR representation of K becomes a sparse matrix that can
be calculated very efficiently based only on the 1D two-body
matrix elements. The DVR construction in this case starts
from product states of (n − 1) × d plane waves.

As discussed in Refs. [27,51] it is straightforward (and
numerically very efficient) to construct out of these basic
states subspaces with proper bosonic or fermionic (including
spin degrees of freedom) symmetry properties, and optionally,
definite parity. Moreover, the breaking of spherical symmetry
in infinite volume down to the cubic symmetry subgroup
O in FV can be accounted for by introducing appropriate
projectors [53], represented as sparse matrices in the DVR
basis [27]. These projectors select a specific cubic irreducible
representation � out of the set {A1, A2, E , T1, T2} (with dimen-
sionalities 1, 1, 2, 3, and 3, respectively). Angular-momentum
multiplets are reducible with respect to O, so each angular-
momentum state in infinite volume in general contributes to
several �. Low-lying A1 states are to a good approximation
dominated by infinite-volume S-wave states, whereas P-wave
states contribute predominantly to T1 multiplets. In practice
it suffices to perform cubic-projected calculations at selected
volumes in order to assign quantum numbers.

III. APPLICATIONS

A. Simple two-body system

As a first test we consider a simple two-body system (in
three dimensions) interacting via a Gaussian potential

V (r) = V0 exp

(
−

( r

R

)2
)

. (11)

6 8 10 12 14 16 18 20
L

−1.5

−1.0

−0.5

0.0

0.5

E

exact

FVEC

training

A+
1 E+

FIG. 1. Positive-parity energy spectrum of two particles in finite
volume as a function of the box size L for a Gaussian potential (11)
with R = 2 and V0 = −4.0 in natural units (see text). Solid lines
show the three lowest energy levels calculated in DVR basis with
N = 32. Dashed lines indicate FVEC results obtained based on train-
ing data from four different box sizes (solid circles).

For this calculation we use natural units with h̄ = c = 1 and
also set the particle mass m = 1. As (arbitrary) specific choice
we set R = 2 and V0 = −4.0, which produces a spectrum with
two bound S-wave states in infinite volume, one of which is
very loosely bound. In finite volume both bound states are
found in the A+

1 representation, where the superscript indicates
positive parity. The FV spectrum including the lowest states
is shown in Fig. 1. For the FVEC calculation we chose to
include training data at four different volumes, L = 6, 7, 8, 9,
including four states at each training volume so that the total
number of training data is 4 × 4 = 16. This covers the two
A+

1 bound states as well as the lowest lying scattering states,
falling in the twofold degenerate E+ representation. The DVR
calculation was performed using an N = 32 model space for
all data points. Extrapolation based on this training set work
very well, as shown in Fig. 1 up to L = 20, with merely about
4% deviation between FVEC and exact calculation for the
ground state at L = 20.

B. Three-boson resonance

As another application we consider three identical spin-0
bosons with mass m = 939.0 MeV (mimicking neutrons) in-
teracting via the two-body potential

V (r) = V0 exp

(
−

(
r

R0

)2)
+ V1 exp

(
−

(
r − a

R1

)2)
,

(12)
with V0 = −55 MeV, V1 = 1.5 MeV, R0 = √

5 fm, R1 =
10 fm, and a = 5 fm. This potential produces a reso-
nance state with energy ER = −5.31 MeV and half width
0.12 MeV [54] (shaded band in Fig. 2).

In Fig. 2 we show an FVEC calculation for this sys-
tem, using training data at five different box sizes L =
21, 22, 23, 24, 25 fm with N = 28. For each training volume
eight states were included, covering four A+

1 states (including
the deeply bound ground state not shown in the figure), one
E+ state, and one T +

2 state (for which only part of cubic
multiplet was included because the training calculations did
not all yield the full triplet). In total, 8 × 5 = 40 training
states were included. The FVEC calculation provides an ex-
cellent reproduction of the exact energy levels, with noticeable
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FIG. 2. Positive-parity finite-volume energy spectrum of three
bosons interacting via the potential (12). Solid lines show the exact
states calculated in DVR bases with N � 28, whereas dashed lines
indicate FVEC results obtained based on training data at five different
box sizes (solid circles). The FVEC calculation was performed using
8 × 5 = 40 training states, which includes the A+

1 ground state not
shown in the plot. See text for details.

deviations only for excited states at box sizes far away from
the training regime. In particular, FVEC perfectly captures
the avoided crossing between the lowest two A+

1 states in
Fig. 2, indicating the three-boson resonance that Ref. [27]
extracted at ER = −5.32(1) MeV from the FV spectrum, in
good agreement with Ref. [54].

C. Three neutrons

Finally, we consider a system of three neutrons (n) in
pionless effective field theory at leading order. Specifically,
we use a separable momentum-space contact interaction,

V (q, q′) = C g(q)g(q′), (13)

where g(q) = exp(−q2n/�2n) is a super-Gaussian regulator.
A projector ensures that the potential acts only on spin-singlet
neutron pairs with vanishing angular momentum (FV ana-
log of the 1S0 channel). This system was recently studied in
Ref. [43] (which also discusses the use of separable inter-
actions with the plane-wave DVR), and as in that work we
set n = 2 and fix the momentum cutoff � = 250 MeV. The
low-energy constant C is fixed to reproduce the nn scattering
length ann = −18.9 fm.

Figure 3 shows results using training data from N = 22
DVR calculations at L = 19, 20, 21 fm. The DVR basis B
was restricted to include only states with spin projection
Sz = 1/2, which covers total spin S = 1/2 and S = 3/2. Its
dimension dim B = 28, 344, 960 is quite sizable, and even
larger bases are needed to converge the calculation in boxes
with L � 32 fm [43]. Compared to the previous examples,
this application is more involved because (a) the inclusion
of spin increases the DVR basis size at fixed N and (b) the
low-lying fermion spectrum is comprised of negative-parity T1

and T2 states, each coming as threefold degenerate multiplets
(with dominant correspondence to P-wave and D-wave states
in infinite volume, respectively). For the training calculations
used to generate Fig. 3, the iterative diagonalization did not

18 20 22 24 26 28 30 32
L (fm)

1
2
3
4
5
6
7
8
9

E
(M

eV
)

exact

FVEC

training

T−
1 T−

2

FIG. 3. Negative-parity Sz = 1/2 finite-volume energy spectrum
of three neutrons interacting via a separable contact potential fit
to reproduce the neutron-neutron scattering length ann = −18.9 fm.
Solid lines show the exact states calculated in DVR bases with
N � 22, whereas dashed lines indicate FVEC results obtained based
on N = 22 training data at three different box sizes (solid circles).
The first and third levels shown in the plots are T −

1 states with total
spin S = 1/2. The second level is a (noninteracting) S = 3/2 T −

1

state, whereas the fourth level is a T −
2 state with S = 1/2. A total

number of 3 × 8 = 24 training data were used to generate this plot,
covering a subset of states from the four three-dimensional multiplets
(see text for details).

resolve all these degeneracies, finding between one and three
states of each multiplet, not uniform across the different
training volumes. In spite of these imperfections, FVEC still
performs remarkably well after preprocessing the set of train-
ing vectors with a modified Gram-Schmidt orthogonalization.
This step is well known to be useful for EC calculations in
order to avoid numerical problems stemming from singular
and/or ill-conditioned norm matrices. Therefore, this example
demonstrates the robustness of the FVEC method.

IV. UNCERTAINTY ESTIMATION

The accuracy of an FVEC calculation depends on the
choice of training data, both on the range it is chosen from
and on the number of training points used to construct the
EC subspace. This dependence can be used to estimate the
inherent uncertainty in an FVEC prediction, which we illus-
trate in Fig. 4 for the same two-body system with attractive
Gaussian interaction considered in Sec. III A. Instead of using
a single fixed set of training points, we calculate (using N =
32 for the DVR calculation) a training pool of 16 box sizes
located uniformly within the interval 6 � L � 9. To generate
the left panel in Fig. 4, we then pick all possible combinations
of NEC = 4 training points out of this pool and perform an
FVEC calculation for each of these combinations. The range
of results from these calculations (performed for each target
volume) is shown as shaded bands in Fig. 4. To generate the
right panel in the figure the procedure was repeated choosing
all combinations of NEC = 5 training points out of the pool
of 16.

Accuracy and precision of the extrapolation evidently in-
crease with higher NEC as expected. The band for the ground
state almost overlaps at large L with the exact result for NEC =
5, whereas the other levels are already well converged with
NEC = 4 (so much so that the shaded bands for the excited
states are barely visible in the figure). We note that due to
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FIG. 4. FVEC calculation with uncertainty estimates for two particles interacting via a Gaussian potential with range R = 2 and depth
V0 = −4.0 (in natural units). A pool of 16 training data sets with 6 � L � 9 (indicated as dark shaded bands) was used to estimate the FVEC
uncertainty by considering all combinations of NEC = 4 (left panel) and NEC = 5 (right panel) out of the overall pool. The range of all these
individual calculations is shown as shaded bands.

the variational nature of EC calculations the bands always lie
above the exact energy levels. This is a particular feature of
energy observables, while no such constraint holds in general
for expectation values of other operators [32].

V. DISCUSSION AND OUTLOOK

The examples considered above demonstrate that FVEC
is able to perform well for a variety of different scenarios,
including bound and unbound states and bosonic as well as
fermionic systems. In particular, we find the performance of
FVEC roughly independent of the dimension of the model
space, considering that all applications above use comparable
numbers of training data. Based on this one should expect
FVEC to work equally well even at large scales.

Eigenvector continuation has built a reputation of yield-
ing substantial speedups over exact calculations, to an extent
that it can render possible otherwise unfeasible analyses [33].
FVEC does not disappoint in this regard: for example, an
exact calculation at a single box size shown in Fig. 2 re-
quires roughly 1100 matrix-vector multiplications to find the
low-energy spectrum of the N = 28 DVR Hamiltonian using
PARPACK [55]. The FVEC calculation with 40 training data
points on the other hand requires only 40 such matrix-vector
products (plus negligible numerical cost from vector-vector
products and solving the EC eigenvalue problem). Since the
cost of constructing the DVR Hamiltonian for each target
box size is also comparatively negligible, FVEC provides a
speedup factor of roughly 28 for a single L in this particular
scenario, and even more for a calculation spanning multiple L
such as shown in Fig. 2.

While the focus in the examples we presented has been
on using FVEC for extrapolation, there is no requirement to
choose training data from a narrow set of volumes. Sampling
instead on both ends of the regime of interest to perform
an interpolation can further improve the accuracy of FVEC
at fixed cost. Uncertainty estimation as discussed in Sec. IV
works the same way for this scenario.

Our work provides a perspective for further extensions
of EC to scenarios where the parametric dependence is in
the model space rather than just the Hamiltonian. In par-
ticular, it would be interesting to develop a version of EC
to extrapolate the frequency parameter h̄ω in calculations
employing truncated harmonic-oscillator (HO) bases, which
play an important role in nuclear physics. Such a scheme
could for example leverage existing IR and UV extrapolation
schemes [56–60].
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