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Visualization of nuclear many-body correlations with the most probable configuration of nucleons
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A method to visualize many-body correlations using the information of the full wave function is presented.
The set of nucleon coordinates which maximizes the square of the wave function, that is, the most probable
spatial configuration of nucleons, is visualized. The method is applied to Hartree-Fock (HF) and HF+BCS wave
functions of p- and sd-shell N = Z even-even nuclei to analyze the many-body correlations in those systems. It
is found that there are α-cluster-like four-body correlations already at the HF level in some of the nuclei. The
effects of pairing on the most probable configuration are also investigated. The method is useful to analyze the
nuclear many-body correlations, and it suggests a new viewpoint to microscopic nuclear wave functions.
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I. INTRODUCTION

The nuclear many-body wave function contains an enor-
mous amount of information since it is, for an A-body system,
a function of 3A continuous variables for positions and 2A
discrete variables for spins and isospins. Therefore, in general
it is difficult to analyze the full information of the wave
function. Moreover, many of the experimental observables
are expectation values or transition probabilities of one- or
two-body operators. For these reasons, theoretical analyses
in nuclear physics are made mainly for quantities obtained
after integrating out most of the information of correlations
embedded in a many-body wave function, such as one- and
two-body densities.

A typical example of spatial nucleon correlations is cluster-
ing. Cluster model calculations have been successfully applied
mainly to light systems where some specific cluster structure
is explicitly assumed [1–4]. Studies of the cluster structure
based on microscopic theories without assuming any clus-
ters have been made with the one-body density [5–8] and
two-body density (the localization function) [9–14] in the
coordinate space. There was also an analysis of the overlaps
between α-cluster-model and mean-field wave functions [15].
The reduced width amplitude and spectroscopic factor can
also be used to quantify the existence probability of clus-
ters [16–19].

In the field of quantum chemistry, on the other hand,
methods to visualize the spatial correlation among all elec-
trons in a system have been developed and applied to studies
of molecular structures [20–23]. The authors of Ref. [20]
have developed a method, which they call “dynamic Voronoi
metropolis sampling (DVMS),” to efficiently compute the av-
erage electron configuration of the system by partitioning the
3N-dimensional space of a many-electron wave function into
regions related by the permutation symmetry. It provides a
way to find out a “representative snapshot” of all the electrons

in a molecule. The method does not rely on the molecular
orbitals, which cannot be defined uniquely for a Slater deter-
minant, and are even less well defined when the wave function
is given by a superposition of many Slater determinants. Thus
it gives a robust way to analyze the wave functions obtained
by any theoretical framework, and it would be interesting to
apply such a method to the nuclear structure as well.

In this paper, we employ a simpler method: the most proba-
ble spatial arrangement of nucleons, i.e., the set of coordinates
(r1σ1τ1, r2σ2τ2, . . . , rAσAτA) that maximizes |�|2, is searched
for and visualized as the likely snapshot of a nucleus. As
the first application of the method, we test it with nuclear
many-body wave functions obtained by Hartree-Fock (HF)
and HF+BCS theories.

The paper is organized as follows. In Sec. II, the method
to find the maximum of |�|2 is introduced. In Sec. III we
describe the results for the p- and sd-shell N = Z nuclei. A
summary and future outlook are given in Sec. IV. In addition,
we give in Appendix B the coordinate-space representation of
the BCS-type wave function.

II. METHOD: |�|2 MAXIMIZATION

In this section, we present the method that we call the
“|�|2-maximization method” for visualization of the many-
body correlations. The idea is to plot the most probable
configuration of all the nucleons in a nucleus.

We consider a time-even many-body state consisting of
N (= even) identical fermions. For simplicity we ignore the
isospin degrees of freedom. The function to be maximized is
the square of the wave function,

ρ (N )(x1, x2, . . . , xN ) ≡ |�(x1, x2, . . . , xN )|2, (1)

where xi ≡ (riσi ) denotes the position and spin variables of
the ith particle. The superscript (N ) emphasizes that this is the
“N-body density,” which is the probability density of finding
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the N particles simultaneously at the given set of coordinates.
Notice that ρ (N ) is invariant under any permutation of the
coordinates. To simplify the problem, we define the density
within a limited domain of the parameter space,

ρ
(N )
ds

(r1, r2, . . . , rN )

≡ ρ(r1 ↑, . . . , rN/2+ds ↑︸ ︷︷ ︸
N/2+ds up

, rN/2+ds+1 ↓, . . . , rN ↓︸ ︷︷ ︸
N/2−ds down

), (2)

with the spin variables fixed. The integer parameter ds denotes
half the difference between the numbers of spin ups and
downs. For example, ds = 0 gives

ρ
(N )
0 (r1, r2, . . . , rN )

≡ ρ(r1 ↑, . . . , rN/2 ↑︸ ︷︷ ︸
N/2 up

, rN/2+1 ↓, . . . , rN ↓︸ ︷︷ ︸
N/2 down

), (3)

for which the numbers of spin ups and downs are equal.
The function ρ

(N )
ds

depends only on continuous variables
r1, r2, . . . , rN . Note again that the order of the spatial coordi-
nates within those with the same spin orientation is irrelevant.
Due to the time-reversal invariance of the many-body state, it
suffices to consider only ρ

(N )
ds�0. Thus the task is to maximize

ρ
(N )
ds

for 0 � ds � N/2 and locate the global maximum. Then
we plot the set of coordinates, which maximizes ρ (N ), in the
three-dimensional space, specifying also the spin orientations.

The |�|2-maximization method gives a qualitative and in-
tuitive picture for the many-body correlations but does not
give a quantitative measure for degree of clustering or other
types of correlation. The method is still under development
towards more extensions and applications, as we will mention
in Sec. IV.

Note that, by maximization, one only finds the maximum
of the probability distribution and does not pay attention to its
global behavior, such as the fluctuation around the maximum
or the existence of local maxima. It is also pointed out in
Ref. [20] that the maximum of an electronic wave function
in a molecule is not always representative, and it may lead
to a misleading picture for molecular-bond structure. There-
fore, to study the many-body correlations in more detail, it
is important to investigate the global behaviors as well as the
maximum. Nevertheless, in this paper, we try this simple |�|2
maximization to investigate what we can see from the nuclear
many-body wave function.

We should also point out that analyses of the full wave
function |�(x1, . . . , xN )|2 or its maximum have already been
made in few-body calculations [24–27]. There is also a
method to determine the “physical coordinates” of nucleons in
the antisymmetrized molecular dynamics wave function [28].
The |�|2 maximization presented in this work gives a more
general way to perform similar analyses for systems of many
particles and for general types of wave functions.

III. RESULTS AND DISCUSSION

We test the |�|2-maximization method with nuclear wave
functions of light N = Z nuclei obtained by microscopic the-
ories.

Due to the short-range and attractive natures of the
nucleon-nucleon force, it is reasonable to assume for the nu-
clear ground states that the maximum of ρ

(N )
ds=0 is the global

maximum of ρ (N ). Thus we will show in this section only
the maximum of ρ

(N )
0 for all the systems that we examine

(see Appendix A for ds dependence of the maximum value
of ρ

(N )
ds

for 20Ne nucleus as an example). The neutron-proton
formalism is employed in the present framework, and the half
of the spins are fixed to be up and the other half down each for
neutron and proton sector.

A. Setup

We take Hartree-Fock (HF) and HF+BCS wave functions
with the SLy4 Skyrme effective interaction [29] for the HF
part and the constant-gap approximation for the BCS part. The
HF+BCS state is obtained as usual by adjusting the Fermi
energies to get the correct average particle numbers. We im-
pose the axial and reflection symmetries, and the time-reversal
symmetry [30]. Note that, in the present calculation, the wave
function is given as a product of the neutron and proton parts,
each of which depends only on the neutron and proton coordi-
nates, respectively. Therefore, there is no explicit correlation
between neutrons and protons, and the maximum search can
be carried out separately. The maximum search is performed
with the conjugate gradient (CG) method [31] starting from a
random initial configuration for the set of spatial coordinates.

One needs values of the wave function �(x1, x2, . . . , xN )
for any given set of coordinates. The wave function of a HF
state is given by a Slater determinant. The wave function of
the N-particle component of a HF+BCS state is given by a
Pfaffian. See Appendix B for the explicit expression of the
BCS wave function in the coordinate-space representation.

Some remarks on the correlations present in the mean-field
wave function are in order. The Pauli principle, of course, is
explicitly taken into account by antisymmetrization. There are
also the long-range correlations through the mean fields due to
the interaction, which roughly determine the nuclear (intrin-
sic) density distribution [32]. In particular, the deformation
induces collective correlations that bring some nucleons to
one side and some others to another side of nucleus. In addi-
tion, in N = Z nuclei, the neutron and proton wave functions
differ only slightly because of the Coulomb force, which is
also an implicit but dynamical correlation through the mean
fields due to the attraction between neutrons and protons. The
deformation and its coherence between neutrons and protons
together could lead to cluster correlations in some deformed
nuclei, as will be seen later. Furthermore, when the nn and
pp pairing correlations are taken into account, one would
expect that there will be an additional attractive correlation
between spin-up and -down nucleons. The effect of pairing
on the correlation between spin-up and -down will also be
investigated.

We also remark on the symmetries imposed in the present
calculations. Because of the axial symmetry around the z axis,
|�|2 is invariant under the simultaneous rotation of all the
coordinates around z axis. Furthermore, since the present HF
and HF+BCS wave functions are given as a product of neu-
tron and proton parts, |�|2 is independent of the relative angle
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(a) HF, Density (b) HF, Localization

8Be

(a) HF, Density (b) HF, Localization

8Be

FIG. 1. The most probable configuration of spin-up (-down) neu-
trons in the HF ground state of 8Be are shown with blue (sky blue)
arrows together with (a) the neutron one-body density and (b) the
neutron localization function Cn↑. The density isosurface in (a) is
drawn at half the maximum value, while the localization function in
(b) is drawn at 0.8 times the maximum.

around the z axis between the neutron and proton coordinates.
The same applies to the reflection symmetry as well: |�|2
is left unchanged under reflection of all the neutron and/or
proton positions and spins.

B. Ground states of s- and sd-shell N = Z nuclei

Now we present the results for the ground states of 8Be,
12C, 16O, 20Ne, 24Mg, and 28Si nuclei. Since neutron and
proton wave functions are almost the same in N = Z system
and there is no explicit correlation between neutrons and pro-
tons, we shall show only the most probable configurations of
neutrons.

Figures 1–6 show the most probable arrangements of neu-
trons in the mean-field ground states. The positions of spin-up
(-down) neutrons are represented with blue (sky blue) arrows,
together with the isosurfaces of the neutron one-body density
and localization function [9,33]. The density isosurface is
drawn at half the maximum value while the localization func-
tion (multiplied by the one-body density), as defined below
in Eq. (5), is drawn at 0.8 times the maximum. The bars
in the figures connecting the arrows are added to clarify the
structures but do not have a physical significance. The vertical
axis is the symmetry axis, and the ticks on it are located every
1 fm.

The localization function shown in Figs. 1–6(b) is a mea-
sure of localization in the HF wave function, which is related
to the spatial two-body correlation between two like-spin
fermions of the same kind [9–14,33,34]. It was developed
in quantum chemistry [33] and introduced to nuclear physics
in Ref. [9]. It was recently used also to study the extra ki-
netic energy due to the Pauli exclusion during the collision
process [35]. The localization function for a particle of kind
q = n or p with spin σ =↑ or ↓ is defined as

Cqσ (r) =
[

1 +
(

ρqσ τqσ − jqσ − 1
4∇(ρqσ )2

ρqσ τTF
qσ

)2]−1

, (4)

where ρqσ , τqσ , and jqσ are the one-body density, kinetic-
energy density, and current density of particle qσ , re-
spectively, and τTF

qσ = 3
5 (6π )2/3ρ5/3

qσ is the Thomas-Fermi
kinetic-energy density. A value of Cqσ close to 1 implies the

neutron spin up

neutron spin down

12C

(a) HF, Density (b) HF, Localization

(c) HF+BCS, Density

FIG. 2. The most probable configurations of spin-up (-down)
neutrons obtained by the HF and the HF+BCS wave functions in the
ground state of 12C nucleus are shown with blue (sky blue) arrows.
We show (a) the HF result together with the neutron one-body den-
sity, (b) the HF result together with the neutron localization function,
and (c) the HF+BCS result together with the neutron one-body
density. The density isosurface is drawn at half the maximum value,
while the localization function is drawn at 0.8 times the maximum.
See the Supplemental Material [36] for the animated views of (a) and
(c).

signature of localization, which means that the probability of
finding two particles of qσ close to each other is very low.
Cqσ ≈ 1 simultaneously for all the spin-isospin combinations
is a minimal necessary condition of α clusterization [9]. In
the present case with N = Z and time-reversal symmetry, the
wave functions of neutron and proton are approximately the
same, and Cq↑ and Cq↓ are exactly the same, so it suffices to
consider only Cn↑. Since the localization is not a meaningful
quantity in the regions where the one-body density is close
to zero, we look at the localization function multiplied by the

neutron spin up

neutron spin down

16O

(a) HF, Density (b) HF, Localization

(c) HF+BCS, Density

FIG. 3. The same as Fig. 2 but for the ground state of 16O nu-
cleus. There are two surfaces for the localization function because it
is peaked around 1.5 fm away from the center of the nucleus.
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neutron spin up

neutron spin down

20Ne

(a) HF, Density (b) HF, Localization

(c) HF+BCS, Density

FIG. 4. The same as Fig. 2 but for the ground state of the 20Ne
nucleus.

normalized one-body density,

Cqσ (r) = Cqσ (r)
ρqσ (r)

maxρqσ (r)
, (5)

as was done in Ref. [10].
The localization function is shown for comparison with

the result of |�|2 maximization. Notice that the localization
function only represents the two-body correlation between
nucleons with the same spin and tells nothing about the corre-
lation between different spins. On the other hand, one can see
the correlations between spin-up and -down neutrons as well
with the |�|2-maximization method since it is based on the
full information the wave function and takes into account the
correlations among all nucleons.

Figure 1 shows the result for the HF ground state of 8Be
nucleus. It is well established that the nucleus has very pro-
nounced 2α structure, and its mean-field wave function indeed
exhibits such structure. One sees that pairs of spin-up and

neutron spin up

neutron spin down

24Mg

(a) HF, Density (b) HF, Localization

(c) HF+BCS, Density

FIG. 5. The same as Fig. 2 but for the ground state of the 24Mg
nucleus.

neutron spin up

neutron spin down

28Si

(a) HF, Density (b) HF, Localization

(c) HF+BCS, Density

FIG. 6. The same as Fig. 2 but for the ground state of the 28Si
nucleus.

-down neutrons are located at the upper and lower part of the
system. Since the proton configuration is almost identical to
that of neutrons, there are quartets of nucleons consisting of
different spins and isospins at almost the same position. It in-
dicates that there are two α-cluster-like objects in this system.
The neutron localization function, which may be regarded
as a measure of α clustering, shown in Fig. 1(b), has large
values around the most probable positions of the neutrons.
Thus one finds that the implication about α clustering of the
localization function is consistent with the picture obtained
with the present approach in this particular case.

Figure 2 shows the result for the 12C nucleus. The 12C
nucleus is spherical in the present calculations. As seen in
Figs. 2(a) and 2(b) for the HF case, the most probable po-
sitions of the three neutrons with the same spin form an
equilateral triangle. We have found that, in the HF case, there
is almost no correlation in the relative angle about z axis
between the two triangles. With the pairing correlation, the
two triangles are overlaid in the most probable arrangement,
as seen in Fig. 2(c) for the HF+BCS case. Thus it turns out,
as could be expected, that the pairing correlation induces an
attractive correlation between spin-up and -down nucleons.
We recall that the protons are not explicitly correlated with
the neutrons. Thus, in the present HF and HF+BCS wave
functions there are no α-like correlations as observed in the
8Be case. In the present calculation, only if there is a pair of
neutrons on the symmetry axis and N = Z can one say that
there is an α-cluster-like four-body correlation.

In 16O nucleus shown in Fig. 3, the four neutrons with the
same spin form a regular tetrahedron [Figs. 3(a) and 3(b)].
As in the case of the 12C nucleus, only with the pairing
correlation do the spin-up and -down tetrahedrons favor the
same orientation. Again, since the protons are not correlated
with the neutrons, one cannot claim α-cluster correlation in
our present framework. Note that we forced the pairing gaps
to be nonzero by the constant-gap approximation although the
pairing is not likely to be active in this nucleus.

Figure 4 shows the result for the 20Ne nucleus. In contrast
to the two spherical nuclei 12C and 16O, 20Ne is deformed,
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HF+BCS Δ=12/A1/2 (MeV)

FIG. 7. |�|2 of 20Ne as functions of the relative angle θ between
spin-up and -down neutrons. The angle θ is defined as the rotation
angle of the positions of spin-up neutrons about the z axis while
those of spin-down neutrons are fixed. θ = 0 corresponds to the most
probable configuration shown in Fig. 4. The probabilities are nor-
malized with their own maximum values. The solid curve represents
the HF result, and the dashed and dotted curves show the HF+BCS
results with pairing gaps 	 = 6/A1/2 MeV and 	 = 12/A1/2 MeV,
respectively.

and interesting cluster structure associated with it is observed
with our method. As seen in Fig. 4, there are two α clusters at
the top and bottom along the z axis, and at the middle are two
regular triangles of spin-up and -down neutrons, respectively.
As can be seen in Fig. 4(b), the nucleons are most likely to be
located at the regions where the localization function has large
values. However, despite the large values of the localization
function at the middle of the system, we conclude from our
analysis that α particles are not likely to exist around there in
the present mean-field wave functions. As we shall see later,
without pairing, there is no rotational correlation around the
z axis between the spin-up and -down triangles. Moreover,
by construction there is no such correlation between neutron
and proton triangles as mentioned in the previous subsection.
We can only state that in the present setup that each triplet of
nucleons with the same spin is likely to form a regular triangle
and that 12 nucleons are likely to be located along the circle on
the xy plane. With pairing, spin-up and -down triangles of the
same nucleon kind favor the same orientation (see Fig. 7). If
we took into account explicit neutron-proton correlations via,
e.g., neutron-proton pairing or HF quasiparticles with isospin
mixing [37–40] in addition to the pairing between like nucle-
ons, there might be α clusters in the middle region as well
as the top and bottom. We also note that the “bipyramidal”
structure seen in our results supports the assumption of the
cluster model employed in Ref. [41], if one is concerned only
with neutrons or protons.

Figure 5 shows the results for the 24Mg nucleus. In the
HF case [Fig. 5(a)], four of the spin-up neutrons form a
trapezoid, while the remaining two are located at both sides
of it. The spin-down neutrons are arranged symmetrically
with the spin-up ones. As a result, there are six close pairs
of neutrons. As seen from Fig. 5(b) the neutrons are located
in the region where the localization function is larger. With
pairing [Fig. 5(c)], the two trapezoids become rectangles,

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 π/2 π 3π/2 2π

|Ψ
(θ

)|2 /|Ψ
(0

)|2

θ [rad]

HF
HF+BCS Δ=6/A1/2 (MeV)

HF+BCS Δ=12/A1/2 (MeV)

FIG. 8. The same as Fig. 7 but for the ground state of the 24Mg
nucleus.

and the arrangements of spin-up and -down nucleons become
identical.

Figure 6 shows the results for the 28Si nucleus, which is
oblately deformed. It is likely that there are two α clusters
along the z axis, and regular pentagons are formed on the xy
plane by the remaining nucleons with the same spin. The two
pentagons coincide with each other with pairing correlations.

Next, we investigate the effects of the pairing correla-
tion by observing the behavior of the probability distribution
around the maximum. We pick 20Ne and 24Mg, and we rotate
only the positions of spin-up neutrons by angle θ about the z
axis while spin-down neutrons are fixed. Figures 7 and 8 show
comparisons of the θ dependence of |�|2 with and without
the pairing in 20Ne and 24Mg, respectively. The solid curve
shows the probability relative to the maximum in the HF
case, while the dashed and dotted curves show the same thing
with different values of the pairing gap, 	 = 6/A1/2 MeV and
	 = 12/A1/2 MeV, respectively. Since the most probable neu-
tron configuration of the 20Ne (24Mg) nucleus is symmetric
under rotation by 2π/3 (π ), |�|2 changes periodically. As can
be seen in the two figures, as the pairing strength increases,
the probability variation also increases. We have also tried
a similar analysis on the spherical 12C nucleus by rotating
the spin-up neutrons around the z axis while the spin-down
neutrons are fixed. We have observed, without pairing, that
the probability is nearly constant whereas with pairing the
probability changes by ≈60%.

To briefly summarize the above results, we saw α-like
four-body correlations, which are induced by collective defor-
mations and their coherence between neutrons and protons,
along the z axis in some of the deformed nuclei. It is also
found that the pairing correlation always reinforces the attrac-
tive correlations between spin-up and -down nucleons. It is
remarkable that the correlation induced by the deformation is
reflected in the most likely configuration of nucleons as the
cluster-like correlation.

C. Deformed states of 16O

Here we investigate the deformed states of 16O nucleus
obtained with constrained HF+BCS calculations. In Fig. 9 we
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FIG. 9. The HF+BCS potential-energy curve of the 16O nucleus
as a function of the quadrupole moment Q2. The HF + BCS result
is obtained with the constant-gap approximation with the gap param-
eter 	 = 12/A1/2 MeV. The density isosurfaces at Q2 = −90, −50,
50, and 180 fm2 are also shown.

show the potential-energy curve of the nucleus as a function
of the quadrupole deformation Q2 defined as

Q2 =
∫

d3r r2Y20(r̂)ρ(r), (6)

where ρ(r) is the total one-body density. The ground state
is spherical, and, as the deformation increases in the prolate
direction, there appears an elongated shape with a bulge at
the middle and eventually a rod shape, while at large oblate
deformations there appears a torus shape.

We performed the |�|2 maximization for the 16O nucleus
with different Q2 values. The resulting most probable neutron
configurations for four selected values of Q2 are shown in
Fig. 10 together with the neutron single-particle energies near
the Fermi energies as functions of Q2. It is found that there
are four regimes of the nucleon arrangement depending on
the occupied single-particle levels. We have observed abrupt
transitions of the neutron arrangement around the Q2 val-
ues where an alternation of the Fermi level occurs: Q2 ≈
−25 fm2, 25 fm2, and 100 fm2 (see Supplemental Mate-
rial [36]). In the most oblate region where Q2 � −25 fm2,
the four pairs of neutrons are most likely to form a square
on the xy plane [Fig. 10(a)]. In the near-spherical region, the
pairs form a tetrahedron [Fig. 10(b)]. In the prolate region
where 25 � Q2 � 100 fm2, the pairs form a diamond shape
aligned to z axis, indicating there are α clusters at the top
and the bottom [Fig. 10(c)]. Finally, in the most prolate region
(Q2 � 100 fm2), all the pairs are located on the z axis, forming
a four-α linear chain.

From the various structures obtained by the |�|2 max-
imization, we found the characteristic arrangements of
nucleons in different regimes of deformation or occupied or-
bitals, which was not clear if we merely observed the shapes.

IV. SUMMARY AND FUTURE PERSPECTIVES

In this paper, we have introduced a method to visualize the
many-body correlations based on the full information of the
wave function, and demonstrated the usefulness of the method
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(a)

(a) (b)

(c) (d)

(b)
(c)

(d)

Single parrticclee energy
FFermmii energy

(a) (((b)
((c)

(d)

16O neutron spin down
neutron spin up

FIG. 10. The most probable neutron configurations of the 16O
nucleus at (a) Q2 = 50 fm2, (b) 2 fm2, (c) 50 fm2, and (d) 180 fm2.
The lower panel shows the neutron single-particle energies and the
Fermi energy as functions of Q2. The background colors are inserted
according to the four regimes of neutron configurations: square for
Q2 � −25 fm2, tetrahedron for −25 fm2 � Q2 � 25 fm2, diamond
for 25 fm2 � Q2 � 100 fm2, and linear chain for 100 fm2 � Q2. The
vertical lines labeled by (a)–(d) correspond to the Q2 values at which
the upper figures are obtained. See the Supplemental Material [36]
for an animation showing the evolution of the neutron configuration
as Q2 increases.

in nuclear physics. The method visualizes the set of nucleon
coordinates which maximizes the square of the many-body
wave function. We have applied it to HF and HF+BCS wave
functions of p- and sd-shell N = Z even-even nuclei to study
the cluster and other correlations in these systems. It was
found that the HF wave function already contains α-cluster-
like correlations in some deformed nuclei. From the HF+BCS
wave functions we found that the pairing correlations in-
duce attractive correlations between spin-up and -down
nucleons.

We believe that the present method gives a new viewpoint
to the microscopic nuclear wave function. There are several
directions for further developments of such methods.

(1) Analyses of more global behaviors of the wave
function. In the present work, we only searched for the max-
imum of |�|2, but it would be necessary and interesting to
study more global behaviors as was mentioned in Sec. II.
The Markov-chain Monte-Carlo method would be useful to
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analyze complicated structures, such as fluctuations and local
maxima, of the probability distribution in the multidimen-
sional space.

(2) Applications to more correlated many-body states. The
merit of our method is fully exploited when it is applied to a
“black box” wave function that contains rich and nontrivial
correlations. Thus the shell model or ab initio wave func-
tions, which take into account correlations indiscriminately,
are more suited for the method. It would also be interesting
to analyze the structure of the random-phase approxima-
tion or generator-coordinate method wave functions that take
into account the correlations associated with collective mo-
tions [32,42]. The collective motion would induce fluctuations
of the collective degrees of freedom including the cluster
structure.

(3) Studies of phenomena other than clustering. There are
several phenomena that can be analyzed with the present
method or its extensions. The molecular-bond structure ac-
companying clusters and the correlations among valence
neutrons in neutron-rich nuclei can be interesting targets of
our analyses. Visualization of motions of individual nucleons
during reaction dynamics would also help understanding of
mechanisms of fusion, fission, and multinucleon transfer re-
actions.
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APPENDIX A: ds DEPENDENCE OF ρ
(N)
ds

In this Appendix, we demonstrate numerically the valid-
ity of the assumption made in Sec. III that the maximum
of ρ

(N )
ds=0(r1, . . . , rN ) [Eq. (2)] is the global maximum of

ρ (N )(x1, . . . , xN ) [Eq. (1)], taking 20Ne as an example.
In Fig. 11, we show the values of ρ

(N )
ds

with 0 � ds � 4
as functions of CG iterations for the neutron part of the HF
wave function of 20Ne nucleus. Although the initial values
and the convergence behaviors are different, ρ

(N )
ds=0 converges

indeed to the largest value, and the others converge to values
smaller by orders of magnitude. It can also be seen that the
maximum values of ρ

(N )
ds

decrease with the absolute value
of ds.

This example shows the validity of the assumption: it is
most likely that the numbers of spin-up and -down nucle-
ons are equal in the ground state so that the nucleons gain
energy from the short-range and attractive nucleon-nucleon
interaction.

APPENDIX B: BCS WAVE FUNCTION IN
COORDINATE-SPACE REPRESENTATION

In this Appendix, we give the expression of the N-particle
component of a BCS wave function in the coordinate-space
representation, written in terms of the Pfaffian of a certain

FIG. 11. Values of ρ
(N )
ds

for ds = 0, . . . , 4 as functions of CG iter-
ations for the neutron part of the wave function of the 20Ne nucleus.
The initial spatial neutron coordinates are generated randomly.

matrix. Although the coordinate-space BCS or so-called APG
(antisymmetrized product of geminals) wave functions have
been discussed and utilized in the context of condensed-matter
physics and chemistry [43–46], the notations and structures
of their wave functions are suited to many-electron systems
rather than nuclear systems. Here we present similar formulas
that conform to the nuclear-physics notation. It is remarkable
that the formula [Eq. (B24)], given in the form of a Pfaffian,
represents the natural generalization of the Slater determinant
for HF to the generalized product wave function for BCS or
Hartree-Fock-Bogoliubov (HFB) theory [32], including the
HF Slater determinant as a special case. We start with a sim-
pler case where all the fermions are paired, then we handle a
more complicated situation where there are unpaired particles
as well as pairs.

1. Fully paired state

We consider the usual BCS state expressed as

|�〉 =
∏
k>0

(uk + vka†
ka†

k̄
)|0〉 ∝ exp

(∑
k>0

vk

uk
a†

ka†
k̄

)
|0〉, (B1)

where k > 0 labels a single-particle state, k̄ ≡ −k denotes
the “conjugate” state to be paired with k [32], and |0〉 is
the bare vacuum. The coefficients uk and vk are, in general,

TABLE I. Subsequences K ∈ ( [N]
N − M), and corresponding Kc and

sgn(K ) for N = 4 and M = 2.

K Kc sgn(K )

(1,2) (3,4) +1
(1,3) (2,4) −1
(1,4) (2,3) +1
(2,3) (1,4) +1
(2,4) (1,3) −1
(3,4) (1,2) +1
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complex variational parameters. The exponent of Eq. (B1) can
be rewritten as∑

k>0

vk

uk
a†

ka†
k̄

=
∫

dx dx′ ∑
k>0

vk

uk
ϕk (x)ϕk̄ (x′)ψ†(x)ψ†(x′)

=
∫

dx dx′ Z (x, x′)ψ†(x)ψ†(x′), (B2)

where ϕk (x) is the single-particle wave function, ψ (x) is the
nucleon field operator, and

Z (x, x′) ≡
∑
k>0

vk

uk
ϕk (x)ϕk̄ (x′). (B3)

Note that x denotes the position and the spin variables.
The N-particle component |�N 〉, where N is even, of the

BCS state as given in Eq. (B1) is given up to an unimportant
factor by

|�N 〉 ∝
(∑

k>0

vk

uk
a†

ka†
k̄

)N/2

|0〉

=
(∫

dx dx′ Z (x, x′)ψ†(x)ψ†(x′)
)N/2

|0〉

=
∫

dx1dx2 · · · dxN−1dxN Z (x1, x2) · · ·

× Z (xN−1, xN )ψ†(x1)ψ†(x2) · · · ψ†(xN−1)ψ†(xN )|0〉.
(B4)

It can then be shown by using the anticommutation relation of
the fermion operators that the coordinate-space wave function
is given by

〈x1, . . . , xN |�〉 = 〈0|ψ (x1) · · · ψ (xN )|�N 〉
∝

∑
σ∈SN

sgn(σ )Z (xσ (1), xσ (2) )Z (xσ (3), xσ (4) )

× · · · Z (xσ (N−1), xσ (N ) ), (B5)

where SN is the symmetric group on N objects, and sgn(σ )
equals +1 (−1) for even (odd) permutations. The above ex-
pression can be rewritten as

〈x1, . . . , xN |�〉 ∝ 1

(N/2)!

∑
σ∈S′

N

sgn(σ )Z̄ (xσ (1), xσ (2) )

× Z̄ (xσ (3), xσ (4) ) . . . Z̄ (xσ (N−1), xσ (N ) ),
(B6)

where

Z̄ (x, y) ≡ Z (x, y) − Z (y, x) (B7)

and

S′
2n = {σ ∈ S2n|σ (2i − 1) < σ (2i) (1 � i � n)}. (B8)

The right-hand side of Eq. (B6) is nothing but the Pfaffian of
the following skew symmetric N × N matrix [47]:

Z =

⎛
⎜⎜⎝

0 Z̄12 . . . Z̄1N

Z̄21 0 . . . Z̄2N
...

...
. . .

...

Z̄N1 Z̄N2 . . . 0

⎞
⎟⎟⎠, (B9)

where Z̄i j ≡ Z̄ (xi, x j ) = −Z̄ ji. Therefore, the BCS wave func-
tion is given by a Pfaffian,

�(x1, . . . , xN ) ∝ pfZ. (B10)

Due to the property of a Pfaffian that (pfA)2 = det A,

ρ (N )(x1, . . . , xN ) = |�(x1, . . . , xN )|2 ∝ |pfZ|2 = | det Z|.
(B11)

2. State with unpaired particles

In practical calculations for nuclear systems, the levels far
below the fermi level are unpaired and fully occupied, and the
v/u factors for these levels tend to diverge. Moreover, for odd
nuclei, the last nucleon remains unpaired and blocks a level
from the pairing correlation. In such cases, Eq. (B10) is not
applicable anymore. Thus now we consider a more general
case where M < N single-particles states are unpaired and
fully occupied. Such a state is given by

|�〉 =
M∏

i=1

a†
i

∏
j�M+1

(u j + v ja
†
j a

†
j̄
)|0〉. (B12)

If M is an odd number, N is also odd, and N − M is still even.
In the same way as the preceding discussion, one obtains, for
the coordinate-space representation of the state as given in
Eq (B12),

〈x1, . . . , xN |�〉 ∝
∑
σ∈SN

sgn(σ )ϕ1(xσ (1) ) . . . ϕM (xσ (M ) )

× Z (xσ (M+1), xσ (M+2)) . . .

× Z (xσ (N−1), xσ (N ) ). (B13)

Note that the summation in the function Z [Eq. (B3)] in this
case is taken over the levels other than the M fully occupied
or blocked ones. Since the number of terms in the summation
grows factorially with the number of particles, it is difficult
to make a brute-force computation for many-particle systems.
We shall show in the following that the right hand side of
Eq. (B13) is proportional to a single Pfaffian of an (N + M ) ×
(N + M ) matrix, which is determined by the ϕ’s and Z’s. Thus
|�|2 is easily obtained by computing a determinant.

We will rewrite the right-hand side of Eq. (B13) as a sum
of products of a determinant and a Pfaffian. To this end, we
first introduce a notation to specify a submatrix of a matrix.
Consider an m × n matrix X = (xi j )1�i�m,1� j�n. Given a sub-
set of r(� m) row indices I = {i1, i2, . . . , ir} and a subset
of s(� n) column indices J = { j1, j2, . . . , js}, we denote the
r × s submatrix of X by

X (I; J ) = (xip jq )1�p�r,1�q�s. (B14)

Next, we define a notation for a subsequence of a sequence of
integers. Let [N] be the sequence of positive integers up to N ,
{1, 2, . . . , N}. The set of the subsequences of length r of [N]
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is denoted by
([N]

r

)
. That is,

([N]
r

)
contains all the sequences

{k1, k2, . . . , kr} such that 1 � k1 < k2 < · · · � N . Thus each
element K ∈ ([N]

r

)
specifies a certain partition of [N] into r

numbers and N − r numbers. The complementary sequence
of K in [N] is denoted by Kc, which is also arranged in the
ascending order.

Let B be an N × M matrix defined as

B =

⎛
⎜⎜⎝

ϕ1(1) · · · ϕM (1)
ϕ1(2) · · · ϕM (2)

...
...

ϕ1(N ) · · · ϕM (N )

⎞
⎟⎟⎠, (B15)

where ϕi( j) ≡ ϕi(x j ). Using the notations defined above, one
has∑

σ∈SN

sgn(σ )ϕ1(xσ (1) ) · · · ϕM (xσ (M ) )Z (xσ (M+1), xσ (M+2)) · · ·

× Z (xσ (N−1), xσ (N ) ) =
∑

K∈
(

[N]
N − M

) sgn(K )

× pfZ (K ; K ) det B(Kc; [M]),

(B16)

where sgn(K ) is the sign of the permutation
{k1, . . . , kN−M , kc

1, . . . , kc
M} given by concatenating K and

Kc. See Table I for the list of all the possible sequences
K ∈ ( [N]

N − M

)
, and corresponding Kc and sgn(K ) for a simple

case where N = 4 and M = 2. In Eq. (B16), pfZ (K ; K ) is
the Pfaffian of an (N − M ) × (N − M ) submatrix of Z while
det B(Kc; [M]) is the determinant of an M × M submatrix of
B. Hereafter, we keep K for an element of

( [N]
N − M

)
.

Now we define the following N × (N + M ) matrix:

T = (1N , B) =

⎛
⎜⎜⎝

1 ϕ1(1) . . . ϕM (1)
1 ϕ1(2) . . . ϕM (2)

. . .
...

...

1 ϕ1(N ) . . . ϕM (N )

⎞
⎟⎟⎠,

(B17)
where 1N is the N × N identity matrix. The submatrix
T ([N]; K ∪ {N + 1, . . . , N + M}) represents an N × N ma-
trix,

T ([N]; K ∪ {N + 1, . . . , N + M}) = (I ′(K ), B), (B18)

where I ′(K ) is an N × (N − M ) matrix such that I ′(K )kk =
1 for k ∈ K and = 0 otherwise. Note that T ([N]; K ∪ {N +
1, . . . , N + M}) is given simply by removing the M columns
from the 1N block of T . The determinant of T ([N]; K ∪ {N +
1, . . . , N + M}) is given by

det T ([N]; K ∪ {N + 1, . . . , N + M}) = sgn(K ) det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ϕ1(k1) . . . ϕM (k1)
1 ϕ1(k2) . . . ϕM (k2)

. . .
...

...

1 ϕ1(kN−M ) . . . ϕM (kN−M )
0 ϕ1(kc

1 ) . . . ϕM (kc
1 )

0 ϕ1(kc
2 ) . . . ϕM (kc

2 )
. . .

...
...

0 ϕ1(kc
M ) . . . ϕM (kc

M )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B19)

= sgn(K ) det

(
1N−M B(K, [M])
OM B(Kc, [M])

)
, (B20)

where OM is the M × M zero matrix. The sgn(K ) arises from
the rearrangement of the rows. Thus one obtains

det T ([N]; K ∪ {N + 1, . . . , N + M})

= sgn(K ) det 1N−M det B(Kc; [M])

= sgn(K ) det B(Kc; [M]). (B21)

Substituting Eq. (B21) into Eq. (B16) leads to

∑
σ∈SN

sgn(σ )ϕ1(xσ (1) ) · · · ϕM (xσ (M ) )Z (xσ (M+1), xσ (M+2)) · · ·

× Z (xσ (N−1), xσ (N ) )

∝
∑

K∈
( [N]

N − M

) pfZ (K ; K )

× det T ([N]; K ∪ {N + 1, . . . , N + M}). (B22)

Now the wave function takes the form of a sum of products of
a Pfaffian and a determinant. It follows from the theorem in
Refs. [47,48] that∑

K∈
( [N]

N − M

) pfZ (K ; K ) det T ([N]; K ∪ {N + 1, . . . , N + M}

= (−1)M(M−1)/2pf

(
GZGT H
−HT OM

)
, (B23)

where G = T ([N]; {1, . . . , N}) and H = T ([N]; {N +
1, . . . , N + M}).
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In the present case, G = 1N and H = B, and thus one
finally obtains

〈x1, . . . , xN |�〉 ∝ (−1)M(M−1)/2pf

( Z B
−BT OM

)
. (B24)

As mentioned earlier, this formula is valid also when M =
odd and N − M = even [47]. Therefore it is applicable to an
odd nuclei in which there is a blocked level. Notice that, in
the HF case where N = M, Eq. (B24) reduces to the Slater

determinant [45,47,48]:

�(x1, x2, ...xN ) ∝ (−1)M(M−1)/2pf

(
ON B
−BT ON

)
= det B. (B25)

Therefore, Eq. (B24) for the BCS-type wave functions in-
cludes the Slater determinant for the HF case as a special case.
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Nazarewicz, Local density approximation for proton-neutron
pairing correlations: Formalism, Phys. Rev. C 69, 014316
(2004).

[38] K. Sato, J. Dobaczewski, T. Nakatsukasa, and W.
Satuła, Energy-density-functional calculations including
proton-neutron mixing, Phys. Rev. C 88, 061301(R) (2013).

[39] J. A. Sheikh, N. Hinohara, J. Dobaczewski, T. Nakatsukasa,
W. Nazarewicz, and K. Sato, Isospin-invariant Skyrme energy-
density-functional approach with axial symmetry, Phys. Rev. C
89, 054317 (2014).

[40] S. Frauendorf and A. O. Macchiavelli, Overview of neutron-
proton pairing, Prog. Part. Nucl. Phys. 78, 24 (2014).

[41] R. Bijker and F. Iachello, Cluster structure of 20Ne: Evidence
for D3h symmetry, Nucl. Phys. A 1006, 122077 (2021).

[42] D. J. Rowe, Nuclear Collective Motion–Models and Theory
(World Scientific, Singapore, 2010).

[43] J. P. Bouchaud, A. Georges, and C. Lhuillier, Pair wave func-
tions for strongly correlated fermions and their determinantal
representation, J. Phys. France 49, 553 (1988).

[44] M. Bajdich, L. Mitas, G. Drobný, L. K. Wagner, and K. E.
Schmidt, Pfaffian Pairing Wave Functions in Electronic-
Structure Quantum Monte Carlo Simulations, Phys. Rev. Lett.
96, 130201 (2006).

[45] M. Bajdich, L. Mitas, L. K. Wagner, and K. E. Schmidt, Pfaffian
pairing and backflow wave functions for electronic structure
quantum Monte Carlo methods, Phys. Rev. B 77, 115112
(2008).

[46] C. Genovese, T. Shirakawa, K. Nakano, and S. Sorella, General
correlated geminal ansatz for electronic structure calculations:
Exploiting Pfaffians in Place of Determinants, J. Chem. Theory
Comput. 16, 6114 (2020).

[47] M. Ishikawa and M. Wakayama, Minor summation formula of
pfaffians, Linear Multilinear Algebra 39, 285 (1995).

[48] S. Okada, Pfaffian formula and Schur Q-function identities,
Adv. Math 353, 446 (2019).

014307-11

https://doi.org/10.1063/1.458517
https://doi.org/10.1103/PhysRevLett.120.053001
https://doi.org/10.1103/PhysRevC.104.034619
http://link.aps.org/supplemental/10.1103/PhysRevC.106.014307
https://doi.org/10.1103/PhysRevC.69.014316
https://doi.org/10.1103/PhysRevC.88.061301
https://doi.org/10.1103/PhysRevC.89.054317
https://doi.org/10.1016/j.ppnp.2014.07.001
https://doi.org/10.1016/j.nuclphysa.2020.122077
https://doi.org/10.1051/jphys:01988004904055300
https://doi.org/10.1103/PhysRevLett.96.130201
https://doi.org/10.1103/PhysRevB.77.115112
https://doi.org/10.1021/acs.jctc.0c00165
https://doi.org/10.1080/03081089508818403
https://doi.org/10.1016/j.aim.2019.07.006

