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Machine learning methods and uncertainty quantification have been gaining interest throughout the last several
years in low-energy nuclear physics. In particular, Gaussian processes and Bayesian neural networks have
increasingly been applied to improve mass model predictions while providing well-quantified uncertainties. In
this work, we use the probabilistic Mixture Density Network (MDN) to directly predict the mass excess of the
2016 Atomic Mass Evaluation within the range of measured data, and we extrapolate the inferred models beyond
available experimental data. The MDN provides not only mean values but also full posterior distributions both
within the training set and extrapolated testing set. We show that the addition of physical information to the
feature space increases the accuracy of the match to the training data as well as provides for more physically
meaningful extrapolations beyond the the limits of experimental data.
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I. INTRODUCTION

The mass of a nucleus is one of the most basic properties
that it possesses. Predicting this key quantity for the many
thousands of atomic nuclei that exist in nature represents a
major hurdle for theoretical nuclear physics modeling. Many
applications such as those in astrophysics [1–4], reaction mod-
eling [5,6], and nuclear data evaluations [7] are sensitive to the
accurate description of nuclear masses.

Several theoretical approaches afford the prediction of nu-
clear masses. Phenomenological models like the liquid drop
model combine experimental observations with physically
interpreted parameters and are successful in predicting bulk
properties across the nuclear chart. More advanced mass
formulas, such as the Duflo-Zuker model, incorporate micro-
scopic effects via analytic expressions [8,9]. A more detailed
picture can be provided by macroscopic-microscopic models
which tack on a microscopic component to the bulk liquid
drop terms, in the form of shell and pairing corrections [10].
Such modeling has proven to be robust in predicting the prop-
erties of atomic nuclei, offering the best accuracy of masses
at the present time [11,12]. Recent advances in computa-
tion open the opportunity for a more microscopic picture of
the nucleus, as with the approach of using energy density
functionals which are capable of predicting many properties
beyond masses [13,14]. At this time, to achieve accuracy
on the order of macroscopic-microscopic models, fully mi-
croscopic models rely on the addition of phenomenological
parameters [15–17].

Over the past several years, quantifying uncertainties on
nuclear models has become a focus of the community (e.g.,
Ref. [18]). There has been a large push to understand un-
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certainties coming from parameter optimization and model
truncation in nuclear theory, from ab initio methods [19,20]
to few-body methods [21–25] and across effective field the-
ories [26–30] and density functional theories [31,32]. Much
of the focus has been in moving the field from standard
χ2 minimization and covariance propagation to Bayesian
methods. However, there has also been significant effort put
into emulators such as Gaussian processes (GPs) [33,34],
Bayesian neural networks (BNNs) [35–37], a committee of
neural networks [38], and most recently eigenvector contin-
uation [20,39–43] for speeding up parameter optimization,
improving the accuracy of nuclear models, and uncertainty
quantification. In particular, there have been significant de-
velopments surrounding the application of GPs and BNNs to
improving nuclear mass predictions [44–47].

Model calibration, or the fitting of model parameters to
data, is an important aspect of this type of research. In
[44–47], the GP and BNN emulators were trained on the
differences between the Atomic Mass Evaluation and various
mass models (the residuals). These trained residuals were used
to “correct” each of the mass models to lie within the range
of the Atomic Mass Evaluation, as well provide uncertainties
on the theoretical predictions. However, there are some chal-
lenges using both the BNN and GP. Neufcourt et al. [44] found
that the GP is much more stable than the BNN, in particular
when the size of the training set available for the neutral
network training is limited. In addition, they note that by using
statistical arguments, the size of the neural network in the
BNN cannot exceed certain dimensions due, again, to the size
of the training set and it is further limited by the number of
free parameters given available data. (However, some studies,
e.g., Ref. [48], show that as the complexity of a neural network
increases, it will first perform worse and then perform better
and that there are certain regimes where increasing the number
of training points worsens the performance.) The GP also
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has some downsides, the major one being that its predictions
return to the mean value after one or two correlation lengths,
so there is no straightforward way to extrapolate the residual
corrections. However, it is worthwhile to note that one must be
careful any time that an extrapolation is performed, regardless
of the machine learning method used.

In this work, we take a different approach than either the
GP or BNN and instead use a probabilistic machine learning
technique, the Mixture Density Network (MDN) [49]. Unlike
most neural networks which directly map the input feature
space to a deterministic output space, the MDN describes the
output as a mixture of Gaussian functions and uses the neural
network to learn the weights, means, and standard deviations
of these distributions. The Gaussian distribution gives not
only mean values but also uncertainties associated with each
prediction, and the mixture allows full posterior distributions
to be predicted. This method allows us to take into account
discrepant values in the training set without having to simply
average them. We explored the ability of the MDN to reliably
propagate uncertainties on fission fragment mass yields from
the training set to predictions in Ref. [50] for both interpo-
lations within the training set and extrapolations beyond it.
The uncertainties were found to reliably propagate from the
training set to the predictions. It was found that very small
experimental uncertainties became about 10% larger in the
predictions compared to the training set, but this deviation
was caused mainly by the several orders of magnitude that
the fission yields span. This challenge is completely mitigated
in the current work because the mass excesses do not cover
multiple orders of magnitude.

This paper is divided into the following sections: in Sec. II,
we discuss the details of the MDN, the training and testing
sets, as well as the neural network architecture; in Sec. III,
we discuss the results of the various training sets that we
investigated and how adding more physics information into
the feature space improves the training and extrapolation;
finally, we conclude and describe some future directions for
this work in Sec. IV.

II. THEORY

In this section, we describe our choice of probabilistic
neural network, the MDN, our training and testing sets, and
the neural network architecture.

A. Mixture Density Network (MDN)

In a standard feed-forward neural network (NN), the goal
is to optimize a complex, nonlinear mapping between an input
feature space x and an output space y though y = f (x). This
mapping is typically deterministic—in that stochasticity is not
taken into account—and these networks tend to be incapable
of well reproducing probabilistic training sets. To mitigate
these challenges, and in particular to take uncertainties on
the training set into account, we employ a probabilistic ma-
chine learning technique, the Mixture Density Network [49].
Instead of using the NN to directly map the input to the output
of the training set, the MDN describes the output as a mixture

of Gaussian functions,

y(x) =
m∑

i=1

αi(x)N [μi(x), σi(x)], (1)

where N is the normal distribution and the weights, means,
and standard deviations, αi(x), μi(x), and σi(x), are learned
by the standard feed-forward NN. The loss function changes
from a simple mean-squares estimate to a log-likelihood loss,

L = − ln

[ m∑
i=1

αi(x)

(2π )m/2σi(x)
exp

{
−||t − μi(x)||2

2σi(x)2

}]
, (2)

where t is the vector of training outputs and m is the total num-
ber of Gaussian mixtures. Instead of minimizing the absolute
root-mean-square error, the loss function of Eq. (2) minimizes
the difference in the probability distributions between the true
distribution of the training set and the predicted posterior
distribution.

To better represent probabilistic data sets than traditional
deterministic neural networks, the MDN has the additional
benefit of predicting the exact posterior distribution of each
predicted value instead of simply predicting a mean and a
standard deviation—then leaving it to the user to make a de-
cision on the shape of the posterior distribution. The mixture
of Gaussians also takes into account discrepant points in the
training set (one such example is shown in Ref. [50]), without
just taking a weighted average, as the MDN has the flexibility
to form a joint distribution over the discrepant sets. More
details about the MDN can be found in Ref. [49].

Our MDN is written in PYTORCH [51] and can be run on
both CPU and GPU, with a significant speedup when using
the GPU implementation due to the parallel nature of the
computational workload. The hyperparameters that set the
number of Gaussian mixtures in the MDN and the number
of layers and nodes in the feed-forward neural network can be
specified for each run without any change in the source code.
In addition, the implementation is generalized to allow for any
number of features in the input vector and for the prediction
of any number of outputs, which is explored in this work. In
the current implementation, the number of Gaussian mixtures
is constrained to be the same for each output; however, this
could be easily generalized.

B. The training and testing sets

While the goal of this work is to directly predict the mass
excess, δM, instead of predicting a correction to any one
specific mass model, we primarily focus on how the features
included in the input space lead to better predictions within
the training set and when extrapolating beyond it. To that
end, there are several different training sets that we define
for this work, which we will describe in this section, each
successive one adding more information about the nuclei with
the goal to decrease the discrepancy between the predicted
values and the experimentally evaluated mass excesses. In
addition, we also explore how constraining multiple outputs
improves the training, particularly predicting both the mass
excess and one-neutron separation energy, Sn. To clearly de-
note these distinctions, we indicate mass predictions only with
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TABLE I. Description of the training sets used in this work.
Additional details can be found in the text.

Model name Feature space Output

M2 N , Z δM
M6 N , Z , A, A2/3, δM

Z (Z − 1)/A1/3, (N − Z )2/A
M8 N , Z , A, A2/3, Z (Z − 1)/A1/3, δM

(N − Z )2/A, ZEO, NEO

M10 N , Z , A, A2/3, Z (Z − 1)/A1/3, δM
(N − Z )2/A, ZEO, NEO

�N , �Z
M12 N , Z , A, A2/3, Z (Z − 1)/A1/3, δM

(N − Z )2/A, ZEO, NEO

�N , �Z , Nshell, Zshell

MS2 N , Z δM, Sn

MS6 N , Z , A, A2/3, δM, Sn

Z (Z − 1)/A1/3, (N − Z )2/A
MS8 N , Z , A, A2/3, Z (Z − 1)/A1/3, δM, Sn

(N − Z )2/A, ZEO, NEO

MS10 N , Z , A, A2/3, Z (Z − 1)/A1/3, δM, Sn

(N − Z )2/A, ZEO, NEO

�N , �Z
MS12 N , Z , A, A2/3, Z (Z − 1)/A1/3, δM, Sn

(N − Z )2/A, ZEO, NEO

�N , �Z , Nshell, Zshell

M, both mass and separation energy predictions with MS, and
the number that follows indicates the length of the feature
space.

In our base model, M2, the input feature space consists of
just the number of neutrons, N , and the number of protons,
Z , and we are only predicting the mass excess. The inputs for
model M6 take inspiration from the standard semiempirical
mass model [52]. In addition to N and Z , we include other bulk
properties in the feature space: the mass number, A, and A2/3

(from the volume and surface terms), Z (Z − 1)/A1/3 from the
Coulomb term, and (N − Z )2/A from the asymmetry term. In
addition, M8 also includes pairing information, ZEO and NEO

where ZEO (NEO) is zero if Z (N) is even and 1 if Z (N) is
odd. Then M10 and M12 include information about magic
numbers and the nuclear shells. M10 adds �N and �Z to the
features of M8, which are defined as the number of neutrons
or protons on top of a magic number or away from a magic
number (whichever is smaller), i.e., the valance nucleons. For
M12, Nshell and Zshell are the shell model orbitals of the last
neutron and proton, starting counting at zero, as defined in,
e.g., Ref. [53]. We additionally construct an equivalent MS
training set for each feature space. An overview of the MDN
models can be found in Table I.

We construct our training sets from the 2016 Atomic
Mass Evaluation (AME2016). For each isotope where the
separation energy can be defined (e.g., where the isotope
with N − 1 neutrons has also been measured, 2074 nuclei),
25 values of δM are sampled from a normal distribution,
N (δM(N, Z ),�M(N, Z )), where �M(N, Z ) is the experi-
mentally evaluated uncertainty on δM(N, Z ). The same is
used to calculate Sn(N, Z ) except that the masses are sam-

pled from both N (δM(N, Z ),�M(N, Z )) and N (δM(N −
1, Z ),�M(N − 1, Z )) with

Sn(N, Z ) = �n − δM(N, Z ) + δM(N − 1, Z ), (3)

where �n = 8.0713 MeV/c2 is the neutron mass excess.
Sampling from the distribution on both nuclei allows us to
include an uncertainty on the one-neutron separation energy
that comes from the evaluated uncertainty on both masses that
are needed to calculate this quantity.

The testing set consists of all of the nuclei predicted by the
2012 version of the finite-range droplet model (FRDM) [10],
8668 nuclei. This set of nuclei was chosen to span a large
range in N and Z , beyond the experimentally measured nuclei.
The FRDM predictions in unmeasured regions of the chart
have been consistent over the years, and therefore, a compari-
son of the MDN predictions to FRDM is representative of the
quality of the extrapolation.

Training ensues with the minimization of the loss function
defined in Eq. (2). After training, we quantify the goodness
of fit in the standard way by calculating the average standard
deviation between the MDN prediction and the quantity of
interest through the σRMS. For example, σRMS between the
predicted MDN mass excess, δMMDN, and the AME mass
excess, δMAME, is defined as

σRMS =

√√√√∑
i

(
δMAME

i − δMMDN
i

)2

K
, (4)

where K is the total number of nuclei that were included in
the prediction. The same quantity can also be defined for Sn.

C. Network architecture

In this work, we are investigating how to improve network
predictions by including more physics in the input feature
space. Although other studies (e.g., Ref. [54]) have shown
that deeper networks are better able to capture complexities in
the data sets of interest compared to NNs with a single layer,
deeper networks do not a priori provide any insight into why
a model is or is not training well. More complex networks
also do not lead to any new understanding of the underlying
physics, even though they are exceedingly useful for building
emulators. To that purpose, we have constructed the neural
network to be as small as possible while still providing very
good agreement between the training set and the MDN pre-
dictions (what is meant by good agreement will be discussed
as the results are presented). To that end, our network consists
of a single hidden layer with only six nodes. As in previous
work [50], because the training set was pulled from a single
Gaussian distribution at each mass, our MDN consists of
only a single Gaussian mixture. The MDN predictions do not
change significantly when multiple Gaussians are used—up
to some point when the training becomes unstable. When
multiple Gaussians are used, only one Gaussian has a nonzero
weight for each mass, which further supports our decision to
include only a single Gaussian in our MDN.

Our MDN in PYTORCH uses an Adam optimizer with a
learning rate of 0.001 (the default), with a hyperbolic tan-
gent as the activation function. The weights of the NN are
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FIG. 1. Mass difference between the MDN predictions and the AME2016 (in MeV) across the nuclear chart for the six models studied in
this work: (a) M2, (b) MS2, (c) MS6, (d) MS8, (e) MS10, and (f) MS12. Darker colors indicate regions of larger differences between the AME
and the MDN predictions.

initialized randomly. The MDN was found to be converged
after training for 100 000 epochs, which is used throughout
this work.

III. RESULTS AND DISCUSSION

A. Feature space engineering

Figure 1 shows an overview of the absolute value of the
mass difference between the AME2016 masses and the output
of the MDN for most of the models in Table I (note that the
only MS model that we show is MS12, as the residuals of
each of the MN and MSN show similar features). Beginning
with Fig. 1(a) for model M2, which only includes the number
of neutrons and protons in the input feature space and trains

on just the mass excess, we immediately see that such a small
network cannot adequately reproduce the training set, particu-
larly not to the level of accuracy that most mass models reach.
This is quantified in the first row of Table II which lists the
σRMS of the MDN predictions with respect to the AME2016.
For model M2, σRMS = 3.90 MeV whereas most mass models
with phenomenological corrections are on the order of 0.5
MeV, e.g., the Hartree-Fock-Bogoliubov approach [16].

The clearest trend that is seen in the M2 model is that
the difference in the masses increase as the nuclei become
heavier—most noticeably in the highest-Z region of the nu-
clear chart. This trend leads us to model M6, which introduces
several factors from the semiempirical mass model into the
feature space. Although we could improve the training by

014305-4



NUCLEAR MASSES LEARNED FROM A PROBABILISTIC … PHYSICAL REVIEW C 106, 014305 (2022)

TABLE II. σRMS for the mass excess (column 2) and one-neutron
separation energy (column 3) for each of the models described in this
work (column 1).

Model δM σRMS (MeV) Sn σRMS (MeV)

M2 3.90
MS2 2.43 1.25
M6 1.57
MS6 2.07 1.21
M8 1.66
MS8 2.21 0.57
M10 0.58
MS10 0.76 0.57
M12 0.56
MS12 0.64 0.47

tuning the hyperparameters of the neural network (including
more layers and nodes), this only serves to lower σRMS and
does not improve the extrapolation beyond the training set
or the consistency of the extrapolations (discussed later in
Secs. III B and III C). Instead, by including these four val-
ues into the feature space, σRMS is reduced to 1.57 MeV, a
decrease of a factor of almost 3. The residuals between the
AME2016 masses and the masses predicted by M6 are shown
in Fig. 1(b). Now, as the residuals have drastically decreased
in the high-Z region of the nuclear chart, it is much easier
to see patterns in the residuals. The residuals are noticeably
larger at the magic numbers, a prominent feature seen in the
mass models studied in Ref. [44] for the two-neutron separa-
tion energies. In addition, there is clear odd-even staggering
seen in the residuals, meaning that the MDN predictions
do not reproduce the staggering that is observed in the
data.

We first take into account the even-odd staggering. For
each nucleus, we include in the feature space NEO and ZEO,
as described in Sec. II B. The mass residuals when this feature
space is trained on, M8, are shown in Fig. 1(c). Although there
is not an overall decrease in σRMS—it is now 1.66 MeV, which
is actually a slight increase from M6—the mass residuals no
longer show the odd-even staggering that is seen in Fig. 1(b).
We then can take into account the shell closures, by including
in the feature space the distance to the shell closure, as in
model M10. As can be seen in Fig. 1(d), the large differences
between the AME2016 masses and the MDN predictions at
the magic numbers are completely removed. In addition, σRMS

again decreases by almost a factor of 3, to 0.58 MeV, which is
on par with theoretical nuclear mass models.

The last two models shown, M12 and MS12, are then
aimed at improving the extrapolation of the masses beyond
the training set, discussed in detail in Sec. III B. To improve
the extrapolation, we first include the shell model orbitals that
each N and Z falls in, as described in Sec. II B. The differ-
ence between the AME2016 masses and the MDN predicted
masses are shown in Fig. 1(e). Within the training space, there
is not much difference between models M10 and M12, and
indeed, σRMS only decreases by 0.02 MeV when the shells are
included.

In the last model shown, MS12, we include in the predic-
tion both the mass excess, δM, and the one-neutron separation
energy, Sn. Because Sn is defined by the differences in masses,
as in Eq. (3), including Sn in the loss function should provide
an additional constraint on the slope of the mass surface, in
addition to the values of the masses. When including this
additional constraint, the σRMS on δM increase by ≈ 0.1 MeV
to 0.64 MeV, but the trends across the measured region of
the nuclear chart remain similar to those for M12, as shown
in Fig. 1(f). In addition, σRMS for the one-neutron separation
energies of the MDN predictions compared to the AME2016
is 0.47 MeV. Even though we have not shown the difference
between models MN and MSN for N = 2, 6, 8, 10, the results
shown for the difference between M12 and MS12—where
the extrapolation of the mass difference is improved with the
addition of including the neutron separation energy in the
output vector—are illustrative of the differences between each
of these training pairs. The extrapolation is discussed further
in Sec. III B.

Additionally, the addition of features to the input space
reduces the mass uncertainty that is predicted by the MDN.
Particularly for model M2, outside of the training set, the
predicted uncertainties on the masses quickly become so large
as to be unusable. Naturally, the MDN predicts increased
uncertainties as the nuclei become more exotic (either neutron
rich or proton rich). An increase in uncertainties away from
the training set is exactly what we would expect from any ro-
bust prediction of uncertainties. In addition, as more features
are included in the training set, not only are the predictions
within the range of the training set more accurate, but the
uncertainties within the training set and extrapolated region
become smaller.

B. Extrapolation beyond the training set

Along with reducing the σRMS between the MDN predic-
tions and the AME2016, the second reason for including more
features in the input space is to improve the predictions in the
extrapolated region where experimental measurements have
not been made or are recent enough to have not been included
in the AME2016. To look at the MDN predictions, we show
the mass differences, δM, along a few select mass chains in
Figs. 2(a)–2(f) (Fe, Mo, Sn, W, Pb, and Sg, respectively). We
note that these mass chains span nearly the entire range of
elements included in the training set, from Z = 26 to Z = 106,
and are representative of the nuclear chart for A � 20. For
each mass chain, we plot four of the MDN calculations, M6,
M8, M12, and MS12, along with the AME2016 to compare
to the data, and FRDM2012 to show reasonable values for
the extrapolated mass differences. Here, we can see in more
detail the benefits of adding more information to the feature
space of the training set. Going from M6 to M8—which is
particularly clear in Fig. 2(f) due to the poor predictive power
of the MDN for these two training sets at higher Z values—we
see that there is no odd-even staggering along the mass chain
for M6, but that this feature appears in M8 when a feature
was included for whether the given nucleus has an odd or
even number of neutrons/protons, as is seen in the reproduc-
tion of the training set as well. In addition, we see that the
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FIG. 2. Comparison of several MDN calculations—M6 (green pluses), M8 (dark blue exes), M12 (blue circles), MS12 (red squares)—to
the AME2016 (black stars) and FRDM2012 (green open triangles) for selected mass chains: (a) Fe, (b) Mo, (c) Sn, (d) W, (e) Pb, and (f) Sg.

odd-even staggering is present even for the extrapolated mass
predictions, showing that the MDN algorithm has learned that
the odd-even staggering is an important feature for predicting
the masses. Incorporating these additional features into the
input space, even when the overall trend in the predictions is
incorrect, is crucial for reproducing the physics trends in the
predicted MDN values.

In the difference between M8 and M12/MS12, we also
see the importance of including information about the magic
numbers and shell closures. It is particularly clear in Fig. 2(e)
(but also noticeable in the remaining panels) that the masses
around the shell closures are better reproduced when informa-
tion about the magic numbers is included in the feature space.
Instead of smoothly following a parabolic shape (with or with-
out corrections for the even-odd staggering), the larger gaps

between δM values at the shell closures are seen in the mass
chains. In addition, one of the greatest benefits of including
more features in the training set is to improve and stabilize
the extrapolations, particularly noticeable in Fig. 2(f), where
only three masses from the chain are available to be included
in the training set. For the M8 training set, the extrapolated
values of δM do not even follow physical trends, simply
decreasing as N increases, instead of following a parabolic
shape. Interestingly, the M6 feature set provides a better
prediction for this mass chain than the M8. However, this
discrepancy is due more to the instability of the MDN pre-
dictions when the feature space is small (MDN calculations
with similar values for σRMS compared to the AME2016 can
lead to widely discrepant mass predictions in the extrapolated
region) rather than the predictions truly becoming worse as
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FIG. 3. Distribution of σRMS values for each of the six MDN
model predictions, in (a) the training region, compared to the AME,
and (b) in the extrapolated region, compared to the FRDM.

the feature space is increased, as will be discussed further in
Sec. III C.

C. Reproducibility of the MDN predictions

We run the MDN training and prediction for each model 50
times to understand the changes in the reproducibility of the
MDN algorithm as the size of the feature space is increased.
In Fig. 3, we show the distribution of the σRMS values for δM
(in MeV) for each of the models, compared to the AME in
Fig. 3(a) (includes only the masses in the training set) and the
FRDM in Fig. 3(b) (includes the masses in the training set
and the extrapolated region). In Fig. 3(a), models M10, M12,
and MS12 have very similar values for σRMS, as can be seen
in Table II for the single calculation analysis. In addition, the
widths of these three distributions are also fairly similar, with
the tail of the MS12 distribution extending about 0.5 MeV
farther than the distributions of M10 and M12. (However, the
number of counts in this extended tail is less than 5 out of
50.) When reproducing the training set, the addition of fea-
tures after the even-odd distinction—M10 and further feature

additions—does not improve the reproduction of the training
set, or the reproducibility across multiple MDN trainings.

It is in the extrapolation region that we see a marked im-
provement with the addition of the extended feature space,
including training jointly on the mass excesses and one-
neutron separation energies (again, only MS12 is shown, as
the other feature spaces where both mass excess and neutron
separation energy are included in the output space display the
same trends between the MN and MSN feature spaces). In
Fig. 3(b), we show the distributions of the σRMS values for six
of the MDN models with respect to the FRDM, to show the
overall reproducibility when the extrapolated region is taken
into account. On the scale of Fig. 3(b), each of the MDN
models has a similar mean σRMS compared to the FRDM.
However, the MDN models where more input features are
included have a lower average σRMS across the 50 iterations of
the training along with a narrower distribution. [The narrower
distribution of predictions with each increased feature space
indicates that the prediction of M8 in Fig. 2(f) is an outlier,
but the training sets with a larger feature space lead to more
reproducible predictions.]

Here, we see also the benefit of including both the mass
excess and one-neutron separation energy in the output of
the train, instead of just the mass excess. In particular, the
distribution of results from the MS12 model has a lower
average σRMS than the distribution from the M12 model. This
result indicates, both, that having a more complete feature
space for the network training improves the extrapolation of
the observable of interest and that simultaneously predicting
two related observables better constrains the extrapolation.
Even though the σRMS does not decrease from M12 to MS12,
the extrapolated mass values are more consistent with one
another.

IV. CONCLUSION

In conclusion, we have used for the first time the prob-
abilistic machine learning technique, the Mixture Density
Network (MDN), to directly learn the nuclear mass excesses
using a series of features related to the properties of the nu-
clear mass models, with well-quantified uncertainties. As the
number of features was increased, the σRMS between the MDN
predictions and the 2016 Atomic Mass Evaluation (AME) was
greatly improved: from nearly 4 MeV when only neutron and
proton number were included in the feature set, down almost
500 keV when the full suite of features were included in the
input space. In addition, as more features were added to the
input space, the extrapolation of masses beyond the AME was
improved, in terms of the shape of each mass chain being
more physical. We also saw that simultaneously predicting
both the mass excess and the one-neutron separation energy
using the MDN further improved the quality of the extrapo-
lated masses and the reproducibility of the MDN prediction.
Thus, including more physics information into the input space
for the network training improved the performance of the
network.

A logical next step for this work would be to test whether
this expanded input feature space allows for fewer masses to
be included in the training data set while keeping the σRMS of
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the mass excess compared to the AME close to or below 500
keV. In addition, instead of including additional physics infor-
mation into the input feature space, it is possible to include
more physics directly into the neural network itself, either
with further constraints built into the loss function or using a
specially designed network architecture (e.g., recurrent neural
networks are typically used to learn patterns in sequential
data, and such a network design could possibly better capture
the parabolic-like behavior of each mass chain).

Finally, one of the benefits of using the MDN is to provide
realistic uncertainty estimates for each predicted value based
on the uncertainty included in the training set. To this end, the
MDN could be used in a similar way as Gaussian processes
and Bayesian neural networks to perform Bayesian averaging

of multiple mass models to predict the limits of stability (e.g.,
Refs. [45,47]). It would be interesting to compare the results
from the MDN to predictions of other techniques, both in
terms of the physics content and the quality of the uncertainty
quantification.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S.
Department of Energy by Los Alamos National Laboratory
under Contract No. 89233218CNA000001. We gratefully ac-
knowledge the support of the U.S. Department of Energy
through the LANL/LDRD Program and the Center for Non
Linear Studies.

[1] M. R. Mumpower, R. Surman, G. C. McLaughlin, and A.
Aprahamian, Prog. Part. Nucl. Phys. 86, 86 (2016).

[2] C. J. Horowitz, A. Arcones, B. Côté, I. Dillmann, W.
Nazarewicz, I. U. Roederer, H. Schatz, A. Aprahamian, D.
Atanasov, A. Bauswein et al., J. Phys. G: Nucl. Part. Phys. 46,
083001 (2019).

[3] N. Vassh, G. C. McLaughlin, M. R. Mumpower, and R. Surman,
Astrophys. J. 907, 98 (2021).

[4] J. J. Cowan, C. Sneden, J. E. Lawler, A. Aprahamian,
M. Wiescher, K. Langanke, G. Martínez-Pinedo, and F.-K.
Thielemann, Rev. Mod. Phys. 93, 015002 (2021).

[5] T. Kawano, S. Chiba, and H. Koura, J. Nucl. Sci. Technol. 43, 1
(2006).

[6] T. Kawano, R. Capote, S. Hilaire, and P. Chau Huu-Tai, Phys.
Rev. C 94, 014612 (2016).

[7] M. B. Chadwick, M. Herman, P. Obložinský, M. E. Dunn, Y.
Danon, A. C. Kahler, D. L. Smith, B. Pritychenko, G. Arbanas,
R. Arcilla et al., Nucl. Data Sheets 112, 2887 (2011).

[8] J. Duflo and A. P. Zuker, Phys. Rev. C 52, R23 (1995).
[9] M. Liu, N. Wang, Y. Deng, and X. Wu, Phys. Rev. C 84, 014333

(2011).
[10] P. Möller, A. J. Sierk, T. Ichikawa, and H. Sagawa, At. Data

Nucl. Data Tables 109-110, 1 (2016).
[11] H. Koura, T. Tachibana, M. Uno, and M. Yamada, Prog. Theor.

Phys. 113, 305 (2005).
[12] H. Zhang, J. Dong, N. Ma, G. Royer, J. Li, and H. Zhang, Nucl.

Phys. A 929, 38 (2014).
[13] S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. Lett. 102,

152503 (2009).
[14] N. Schunck and L. M. Robledo, Rep. Prog. Phys. 79, 116301

(2016).
[15] S. Goriely, F. Tondeur, and J. M. Pearson, At. Data Nucl. Data

Tables 77, 311 (2001).
[16] S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. C 88,

024308 (2013).
[17] S. Goriely and R. Capote, Phys. Rev. C 89, 054318 (2014).
[18] D. R. Phillips, R. J. Furnstahl, U. Heinz, T. Maiti, W.

Nazarewicz, F. M. Nunes, M. Plumlee, M. T. Pratola, S. Pratt,
F. G. Viens et al., J. Phys. G: Nucl. Part. Phys. 48, 072001
(2021).

[19] S. R. Stroberg, J. D. Holt, A. Schwenk, and J. Simonis, Phys.
Rev. Lett. 126, 022501 (2021).

[20] S. König, A. Ekström, K. Hebeler, D. Lee, and A. Schwenk,
Phys. Lett. B 810, 135814 (2020).

[21] A. E. Lovell and F. M. Nunes, J. Phys. G: Nucl. Part. Phys. 42,
034014 (2015).

[22] A. E. Lovell, F. M. Nunes, J. Sarich, and S. M. Wild, Phys. Rev.
C 95, 024611 (2017).

[23] G. B. King, A. E. Lovell, and F. M. Nunes, Phys. Rev. C 98,
044623 (2018).

[24] A. E. Lovell and F. M. Nunes, Phys. Rev. C 97, 064612 (2018).
[25] G. B. King, A. E. Lovell, L. Neufcourt, and F. M. Nunes, Phys.

Rev. Lett. 122, 232502 (2019).
[26] M. Schindler and D. Phillips, Ann. Phys. 324, 682 (2009).
[27] E. A. Coello Pérez and T. Papenbrock, Phys. Rev. C 92, 064309

(2015).
[28] R. J. Furnstahl, N. Klco, D. R. Phillips, and S. Wesolowski,

Phys. Rev. C 92, 024005 (2015).
[29] S. Wesolowski, N. Klco, R. J. Furnstahl, D. R. Phillips, and A.

Thapaliya, J. Phys. G: Nucl. Part. Phys. 43, 074001 (2016).
[30] J. A. Melendez, S. Wesolowski, and R. J. Furnstahl, Phys. Rev.

C 96, 024003 (2017).
[31] N. Schunck, J. D. McDonnell, D. Higdon, J. Sarich, and S. M.

Wild, Eur. Phys. J. A 51, 169 (2015).
[32] J. D. McDonnell, N. Schunck, D. Higdon, J. Sarich, S. M. Wild,

and W. Nazarewicz, Phys. Rev. Lett. 114, 122501 (2015).
[33] J. Novak, K. Novak, S. Pratt, J. Vredevoogd, C. E. Coleman-

Smith, and R. L. Wolpert, Phys. Rev. C 89, 034917 (2014).
[34] E. Sangaline and S. Pratt, Phys. Rev. C 93, 024908 (2016).
[35] R. Utama, W.-C. Chen, and J. Piekarewicz, J. Phys. G: Nucl.

Part. Phys. 43, 114002 (2016).
[36] R. Utama, J. Piekarewicz, and H. B. Prosper, Phys. Rev. C 93,

014311 (2016).
[37] Z.-A. Wang, J. Pei, Y. Liu, and Y. Qiang, Phys. Rev. Lett. 123,

122501 (2019).
[38] R.-D. Lasseri, D. Regnier, J.-P. Ebran, and A. Penon, Phys. Rev.

Lett. 124, 162502 (2020).
[39] D. Frame, R. He, I. Ipsen, D. Lee, D. Lee, and E. Rrapaj, Phys.

Rev. Lett. 121, 032501 (2018).
[40] A. Sarkar and D. Lee, Phys. Rev. Lett. 126, 032501 (2021).
[41] A. Ekström and G. Hagen, Phys. Rev. Lett. 123, 252501 (2019).
[42] S. Wesolowski, I. Svensson, A. Ekström, C. Forssén, R. J.

Furnstahl, J. A. Melendez, and D. R. Phillips, Phys. Rev. C 104,
064001 (2021).

014305-8

https://doi.org/10.1016/j.ppnp.2015.09.001
https://doi.org/10.1088/1361-6471/ab0849
https://doi.org/10.3847/1538-4357/abd035
https://doi.org/10.1103/RevModPhys.93.015002
https://doi.org/10.1080/18811248.2006.9711062
https://doi.org/10.1103/PhysRevC.94.014612
https://doi.org/10.1016/j.nds.2011.11.002
https://doi.org/10.1103/PhysRevC.52.R23
https://doi.org/10.1103/PhysRevC.84.014333
https://doi.org/10.1016/j.adt.2015.10.002
https://doi.org/10.1143/PTP.113.305
https://doi.org/10.1016/j.nuclphysa.2014.05.019
https://doi.org/10.1103/PhysRevLett.102.152503
https://doi.org/10.1088/0034-4885/79/11/116301
https://doi.org/10.1006/adnd.2000.0857
https://doi.org/10.1103/PhysRevC.88.024308
https://doi.org/10.1103/PhysRevC.89.054318
https://doi.org/10.1088/1361-6471/abf1df
https://doi.org/10.1103/PhysRevLett.126.022501
https://doi.org/10.1016/j.physletb.2020.135814
https://doi.org/10.1088/0954-3899/42/3/034014
https://doi.org/10.1103/PhysRevC.95.024611
https://doi.org/10.1103/PhysRevC.98.044623
https://doi.org/10.1103/PhysRevC.97.064612
https://doi.org/10.1103/PhysRevLett.122.232502
https://doi.org/10.1016/j.aop.2008.09.003
https://doi.org/10.1103/PhysRevC.92.064309
https://doi.org/10.1103/PhysRevC.92.024005
https://doi.org/10.1088/0954-3899/43/7/074001
https://doi.org/10.1103/PhysRevC.96.024003
https://doi.org/10.1140/epja/i2015-15169-9
https://doi.org/10.1103/PhysRevLett.114.122501
https://doi.org/10.1103/PhysRevC.89.034917
https://doi.org/10.1103/PhysRevC.93.024908
https://doi.org/10.1088/0954-3899/43/11/114002
https://doi.org/10.1103/PhysRevC.93.014311
https://doi.org/10.1103/PhysRevLett.123.122501
https://doi.org/10.1103/PhysRevLett.124.162502
https://doi.org/10.1103/PhysRevLett.121.032501
https://doi.org/10.1103/PhysRevLett.126.032501
https://doi.org/10.1103/PhysRevLett.123.252501
https://doi.org/10.1103/PhysRevC.104.064001


NUCLEAR MASSES LEARNED FROM A PROBABILISTIC … PHYSICAL REVIEW C 106, 014305 (2022)

[43] R. Furnstahl, A. Garcia, P. Millican, and X. Zhang, Phys. Lett.
B 809, 135719 (2020).

[44] L. Neufcourt, Y. Cao, W. Nazarewicz, and F. Viens, Phys. Rev.
C 98, 034318 (2018).

[45] L. Neufcourt, Y. Cao, W. Nazarewicz, E. Olsen, and F. Viens,
Phys. Rev. Lett. 122, 062502 (2019).

[46] L. Neufcourt, Y. Cao, S. Giuliani, W. Nazarewicz, E. Olsen, and
O. B. Tarasov, Phys. Rev. C 101, 014319 (2020).

[47] L. Neufcourt, Y. Cao, S. A. Giuliani, W. Nazarewicz, E.
Olsen, and O. B. Tarasov, Phys. Rev. C 101, 044307
(2020).

[48] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I.
Sutskever, arXiv:1912.02292.

[49] C. M. Bishop, Technical Report, Aston University, Department
of Computer Science and Applied Mathematics, 1994 (unpub-
lished).

[50] A. E. Lovell, A. T. Mohan, and P. Talou, J. Phys. G: Nucl. Part.
Phys. 47, 114001 (2020).

[51] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G.
Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., in
Advances in Neural Information Processing Systems 32, edited
by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
E. Fox, and R. Garnett (Curran Associates, Vancouver,
Canada, 2019), p. 8024, http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-
library.pdf.

[52] C. F. V. Weizsäcker, Z. Phys. 96, 431 (1935).
[53] I. J. Thompson and F. M. Nunes, Nuclear Reactions for

Astrophysics: Principles, Calculation and Applications of Low-
Energy Reactions (Cambridge University Press, Cambridge,
UK, 2009).

[54] Z.-A. Wang and J. Pei, Phys. Rev. C 104, 064608 (2021).

014305-9

https://doi.org/10.1016/j.physletb.2020.135719
https://doi.org/10.1103/PhysRevC.98.034318
https://doi.org/10.1103/PhysRevLett.122.062502
https://doi.org/10.1103/PhysRevC.101.014319
https://doi.org/10.1103/PhysRevC.101.044307
http://arxiv.org/abs/arXiv:1912.02292
https://doi.org/10.1088/1361-6471/ab9f58
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1007/BF01337700
https://doi.org/10.1103/PhysRevC.104.064608

