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Ground-state properties of finite drops of α particles (Q-balls) are studied within a field-theoretical approach
in the mean-field approximation. The strong interaction of α’s is described by the scalar field with a sextic
Skyrme-like potential. The radial profiles of scalar and Coulomb fields are found by solving the coupled system
of Klein-Gordon and Poisson equations. The formation of shell-like nuclei, with vanishing density around the
center, is predicted at high enough attractive strength of Skyrme potential. The equilibrium values of energy
and baryon number of Q-balls and Q-shells are calculated for different sets of interaction parameters. Empirical
binding energies of α-conjugate nuclei are reproduced only if the gradient term in the Lagrangian is strongly
enhanced. It is demonstrated that this enhancement can be explained by a finite size of α particles.
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I. INTRODUCTION

The formation of α-particle clusters and quartic correla-
tions in nuclei are interesting phenomena that have been in
the focus of theoretical and experimental studies for many
years, see, e.g., Refs. [1–3]. Several phenomenological and
microscopic models have been suggested to describe cluster-
ing in nuclei and nuclear matter (see Ref. [4] for a recent
review). For example, a relativistic mean-field model with
light clusters has been used [5] to calculate their radial profiles
in heavy nuclei. It was conjectured that such clusters occupy
predominantly the dilute nuclear periphery.

Especially interesting is the possibility of Bose-Einstein
condensation (BEC) of α clusters in so-called “α-conjugate”
nuclei, which have even proton and neutron numbers Z =
N = A/2 (see Ref. [6] and references therein). Earlier we
studied charge-neutral infinite systems of α [7,8] and α +
N [9–11] particles in the mean-field approximation, using
Skyrme-like effective interactions. Both the BEC and the
liquid-gas phase transition had been considered. The phase
diagrams of the α- and α + N matter were found to be quali-
tatively similar to that observed for liquid 4He.

In the present paper we consider finite systems of charged
bosons, described by a scalar mean field including also
Coulomb interactions. Such a field-theoretical approach was
introduced originally in Refs. [12,13] for so-called Q-ball
solitons. The ground states of Q-balls with attractive interac-
tions of bosons were studied in more detail by Coleman [14].
Properties of charged Q-balls, with Skyrme-like effective in-
teractions, were considered in Ref. [15]. Q-ball solutions were
used to describe heavy α-clustered nuclei in Ref. [16]. One
can consider Q-balls as localized, coherent superpositions
of bosons similar to atomic Bose condensates in magnetic
traps. Properties of such condensates are well described by
the Gross-Pitaevskii equation [17,18]. As demonstrated in

Ref. [19], the latter is a nonrelativistic analogue of the Klein-
Gordon equation for scalar fields of Q-balls. Introducing
Q-balls was rather successful in particle physics and astro-
physics (see, e.g., Ref. [20]). In particular, gravitating Q-balls
are candidates for bosonic stars [21] and dark matter [22].
However, properties of charged Q-balls, and, especially, their
stability criteria are still not fully explored. For instance, a new
type of soliton solutions, with vanishing scalar density around
the center (“Q-shells”), have been found recently [23–25] for
certain classes of boson self-interactions.

In the present paper we study the ground states (GS) of
spherical Q-balls and Q-shells made of charged α particles.
The strong interactions of α’s are described by a Skyrme-like
scalar potential containing attractive and repulsive terms. First
we use interaction parameters determined in Ref. [8] by fitting
the microscopic calculations [26] for homogeneous uncharged
α matter. Then, the sensitivity of the results to variation of
these parameters is analyzed.

We emphasize that α-clustered nuclei, are not necessar-
ily the stable ground states. Some of such nuclei may be
metastable excited states, as, e.g., the 3α Hoyle state in 12C
at excitation energy 7.65 MeV. Similarly, α-clustered excited
states may exist in heavier nuclei, even with charge numbers
of up to Z ≈ 80, as follows from the analysis in Ref. [6].
It was shown within the density functional approach [27]
that cluster formation probabilities indeed become larger in
excited states of α-conjugate nuclei. As demonstrated in
Refs. [28,29], α-clustered nuclei can be created in heavy-ion
reactions at intermediate and relativistic energies. The separa-
tion of α-clustered and nucleonic states of nuclear matter can
be explained by the existence of a potential barrier between
these two phases [11].

The paper is organized as follows: The model Lagrangian
is introduced in Sec. II A, where the equations of motion for
the scalar field and electrostatic potential are also derived.
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In Sec. II B we show how the particle numbers and binding
energies of Q-balls are calculated. In Sec. II C we discuss
a limiting case of homogeneous, uncharged α matter and
introduce the constraints on the interaction parameters.

The radial profiles of the baryon density, Coulomb poten-
tial, and particle effective mass are calculated in Secs. III A
and III B for both, Q-ball and Q-shell configurations. Their
binding energies are analyzed in Sec. IV A for different sets of
model parameters. Section IV B demonstrates that empirical
binding energies of α-conjugate nuclei can be reproduced
only when the gradient term in the effective Lagrangian is
significantly enhanced. It is argued that such enhancement
can be explained by finite-size effects in the αα interaction.
Lifetimes of metastable Q-balls are estimated in Sec. V.

The numerical procedure is explained in Appendix A.
The surface tension coefficient of cold α matter is calculated
analytically and compared with the corresponding value for
isospin-symmetric nuclear matter in Appendix B.

II. CHARGED Q-BALLS IN THE MEAN-FIELD
APPROXIMATION

A. Equations of motion for scalar and Coulomb fields

In this paper finite systems of charged, massive bosonic
particles are studied by taking into account both strong and
Coulomb interactions. All numerical calculations are per-
formed for finite systems of α particles. Below we apply
a field-theoretical approach denoting by φ (x) and Aν (x) the
scalar and electromagnetic fields at the space-time point xν =
(t, r)ν . Generally, the Lagrangian density of a bosonic system
can be written as [15] (h̄ = c = 1):

L = 1
2 Dνφ(Dνφ)∗ − U (|φ|) + Lem, (1)

where Dν = ∂ν − iqAν (q = 2e is the charge of the α particle),
U (|φ|) is the mean-field potential, which describes strong
self-interactions of α’s, and the last, electromagnetic, term
reads

Lem = − 1

16π
Fνσ F νσ , Fνσ = ∂νAσ − ∂σ Aν . (2)

Obviously, the Lagrangian (1) is locally gauge-invariant. The
corresponding conserved current is

Jν = Im(φ∗Dνφ). (3)

In the following only GS of spherical- and nonrotating Q-
balls at zero temperature are studied. In this case one can write
φ = eiμtϕ (r) and Aν = A(r)δν,0, where ϕ and A are positive
(real) functions, and μ is the chemical potential.1 Then one
has Jν = n(r)δν,0, where n = J0 is the number density of the
α particles:

n = (μ − qA)ϕ2. (4)

The Lagrangian density can be written as

L = 1

2
(μ − qA)2ϕ2 − 1

2
(∇ϕ)2 − U (ϕ) + 1

8π
(∇A)2. (5)

1In the literature on Q-balls, it is usually denoted by ω.

Variation with respect to ϕ and A leads to the following cou-
pled equations:

�ϕ + (μ − qA)2 ϕ = U ′(ϕ), (6)

�A + 4π qn = 0. (7)

Equation (6) can be rewritten in the form of the Klein-Gordon
equation (KGE), with the effective mass squared:

M2 = U ′(ϕ)/ϕ. (8)

Equation (7) is the Poisson equation with the charge density
qn, where n is defined in Eq. (4). Stable Q-balls are char-
acterized by the following boundary conditions, at small and
large r:

ϕ′ (0) = 0, A′(0) = 0, (9)

ϕ (r), A (r) → 0 at r → ∞. (10)

Using Eqs. (6) and (8), one can see that for �ϕ = 0 the
KGE is satisfied if μ − qA = M. Therefore, the homogeneous
solution (ϕ = const) is possible only when

μ = M + qA. (11)

This relation may be regarded as a generalization of the
well-known BEC condition μ = M [8], for uncharged bosonic
matter. Note that Eq. (11) is gauge-invariant. Our calculations
show (see Fig. 2 below) that Eq. (11) holds approximately, for
central regions of large Q-balls.

B. Particle number and binding energy of Q-balls

The total number of particles in a Q-ball and its baryon
number B are found by integrating the density n over the
whole volume:

Q = B/4 = 4π

∫ ∞

0
(μ − qA)ϕ2r2dr. (12)

Note, that in our grand canonical approach, Q is, in general, a
noninteger quantity. One should bear in mind that the mean-
field approximation, used in this paper, is not justified for
small Q-balls, with Q � 1.

From the Lagrangian, the energy-momentum tensor Tνσ of
Q-balls as well as profiles of the energy density ε and pressure
p can be calculated. One gets (see, for details, Ref. [30])

T00 = ε = εk + U + εgr + εc, (13)

Trr = εk − U + εgr − εc = p + 4
3 (εgr − εc). (14)

Here

εk = 1

2
(μ − qA)2ϕ2, εgr = 1

2
(∇ϕ)2, εc = 1

8π
(∇A)2 (15)

are, respectively, the kinetic, gradient, and Coulomb contribu-
tions to the energy density.

The total energy E and the binding energy per particle W
are obtained by integrating ε over the whole volume:

E = (m − W )Q = 4π

∫ ∞

0
εr2dr , (16)

where m � 3727.3 MeV is the mass of a single α particle. The
binding energy per nucleon equals WB = mN − E/B = (W +
Bα )/4, where mN � 938.9 MeV is the nucleon mass and
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FIG. 1. Radial profiles of the baryon density nB = 4n (a) and Coulomb potential qA (b) for different values of the chemical potential
μ = m − �, calculated for the parameter Set I.

Bα = 4mN − m � 28.3 MeV is the binding energy of the α

particle.
Using Eqs. (6)–(7), (12)–(16), one can prove the validity of

the thermodynamic relation [14]

dE = μd Q , (17)

which connects differentials of E and Q at zero temperature.
This justifies our interpretation of μ as the chemical poten-
tial. The necessary conditions for the Q-ball stability can be
written as

� ≡ m − μ > 0, W > 0. (18)

The first inequality implies that the escape of a single
α particle from the Q-ball’s surface to infinity is ener-
getically forbidden [15].2 The calculations show that the
conditions (18) are fulfilled in the interval Qmin < Q < Qmax

where Qmin and Qmax correspond, respectively, to W = 0 and
� = 0.

Following Refs. [8,16], the mean-field potential U (ϕ) is
parameterized in the Skyrme-like form

U (ϕ) = m2

2
ϕ2 − a

4
ϕ4 + b

6
ϕ6, (19)

where a and b are positive parameters, which determine,
respectively, the attractive and repulsive interactions of α

particles. Similar self-interactions of scalar bosons have been
considered in Refs. [15,30,31]. The above expression can be
rewritten as

U

ϕ2 = b

6

(
ϕ2 − ϕ2

0

)2 + m2

2

(
1 − 1



)
. (20)

2As discussed in Appendix A, the region μ > m corresponds to
continuum states, with ϕ oscillating at r → ∞. However, these states
are, in fact, metastable, due to presence of the Coulomb barrier.

Here

ϕ0 =
√

3a

4b
,  = 16bm2

3a2
(21)

are the parameters which determine the main characteristics
of the Q-balls, as well as properties of equilibrium, uncharged
α matter (see detailed calculations in Ref. [8]). In particular,
ϕ2

0 is the equilibrium scalar density of a homogeneous Bose-
Einstein condensate at zero temperature.

Substituting (19) into Eq. (8) gives the equation for the
effective mass squared

M2 = m2 − aϕ2 + bϕ4. (22)

One can see that M2(ϕ0) = m2 (1 − −1) is nonnegative at
 � 1.3

C. Properties of homogeneous, uncharged α matter

If the Coulomb field is switched off (q → 0), Q-balls could
be arbitrary large. At zero temperature such hypothetical,
“uncharged” α matter has the GS characterized by a spatially
homogeneous scalar field, ϕ = ϕ0. This value corresponds to
the minimum of U (ϕ)/ϕ2 [14]. Indeed, applying formulas of
preceding section for a homogeneous, uncharged system with
∇ϕ = 0, A = 0, one gets the following relations:

ε

n
= μ

2
+ U (ϕ)

μϕ2
, μ = M(ϕ). (23)

Therefore, the minimum of the energy per particle ε/n is
found by minimizing U/ϕ2. The second condition in Eq. (23)
is obtained from the KGE for homogeneous uncharged matter
[see Eqs. (6) and (8)]. It is interesting that it coincides with

3As pointed out in Ref. [32], the bosonic vacuum becomes unstable
at  < 1. This does not occur for the Skyrme parameters expected
for α interactions.
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FIG. 2. The radial profiles of M + qA − μ (the solid line), M −
m (the dashed curve) and qA (the dash-dotted line), for � = m −
μ = 0 and the parameter Set I.

the generalized condition of Bose-Einstein condensation as
introduced in Ref. [8]. By using Eqs. (23) one obtains the
following characteristics of the α-matter GS:

μ = min
(ε

n

)
= m

√
1 − 1


. (24)

Adjusting the binding energy W = m − μ and the density
n = μϕ2

0 to the GS properties of homogeneous uncharged α

matter, as obtained by microscopic calculations in Ref. [26],
we extracted the values (for details, see Ref. [8])

a = 7853, b = 78.94 MeV−2. (25)

Below this parameter choice is denoted as Set I.
There exists an additional constraint on  [7], which fol-

lows from the obvious condition, namely, that α matter has
to be less bound than isospin-symmetric nuclear matter in the
GS. It is commonly accepted that such matter has the binding
energy per baryon WSM � 16 MeV. On the other hand, in
accordance with Eq. (24), in the limit of large  the binding
energy of α matter per particle equals W � m/(2). There-
fore, one gets the condition

WB � 1

4

( m

2
+ Bα

)
< WSM. (26)

This is equivalent to  > 52 (approximately) or

a√
b

< 1190 MeV. (27)

For b ≈ 80 MeV−2 (which is close to the value assumed in Set
I) one obtains the constraint4 a � 1.1×104.

4Note that the parameters b = 30.73 MeV−2 and a = 3 · 104 used
in Ref. [16] violate the constraint (27), which results in an unrealis-
tically large binding energy of α matter WB � 214 MeV.

TABLE I. Characteristics of Q-balls for different values of chem-
ical potential μ = m − � calculated for parameter Set I.

� (MeV) Q W (MeV) ϕ (0)/ϕ0 qA(0) (MeV)

0a 14.1 5.6 0.896 25.5
2 11.8 6.6 0.924 22.4
4 9.0 7.6 0.949 19.2
6 6.7 8.6 0.971 15.9
8 4.5 9.3 0.994 12.3
10 2.4 9.6 1.022 8.0
10.7 1.2 8.8 1.042 5.0
10.1 0.52 6.5 1.057 2.8
9.1 0.32 4.4 1.054 1.9
5.5 0.14 0.01 0.958 0.9

aThe results for � = 0 are obtained by setting � = 10−4 MeV.

III. GROUND-STATE PROPERTIES
OF CHARGED Q-BALLS

A. Radial profiles of density and effective mass

Using the effective potential (19) we have solved nu-
merically coupled Eqs. (6) and (7) for different values of
interaction parameters a and b. Similar calculations have
been done earlier in Refs. [15,30,31]. It was shown that, in
general, for a given μ there exist two stable Q-ball config-
urations with different effective radii, energies, and particle
numbers. However, the previous authors did not analyze in
detail the sensitivity to the model parameters and did not
specify bosonic particles bound in Q-balls. We also make
comparison with empirical data [6,33] on α-conjugate nuclei.
Characteristics of stable Q-balls, calculated for the parameter
Set I [see Eq. (25)], are shown in Table I. The last two columns
give the central values of the scalar and Coulomb fields. Note
that ϕ (0) � ϕ0 where ϕ0 is given by Eq. (21) which implies
a rather good accuracy of the “thin wall” approximation [15],
even for Q ∼ 1. According to Table I, the maximum particle
number for stable states Qmax � 14 corresponds to � = 0
(i.e., μ = m). However, due to the presence of the Coulomb
barrier we expect the formation of metastable Q-balls even for
� < 0 (see Sec. V). Figures 1 and 2 show the profiles of the
baryon density, Coulomb potential and effective mass for dif-
ferent μ. One can see a central density suppression, especially
well visible for � � 5 MeV. This effect is due to the repulsive
Coulomb interaction, and it does not appear for uncharged
Q-balls (see, e.g., Ref. [15]). A similar central depletion of
proton density was predicted in the relativistic mean-field
model of Ref. [34] for superheavy nuclei with Z ≈ 120. Ac-
cording to Fig. 2, in the case μ = m, the Q-ball’s chemical
potential is, in fact, the result of cancellation between the
attractive well of the depth m − M and the repulsive Coulomb
energy qA at r < R � 5 fm.5 This cancellation does not occur

5Note that for � = 0 the central electrostatic potential qA(0)
is close to the value 3q2Q/(2R) � 24 MeV for a homogeneously
charged sphere with the radius R and total charge Q. One can also
see that the height of the Coulomb barrier at r = R is approximately
equal to q2Q/R � 16 MeV.
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FIG. 3. The profiles of baryon density (a) and Coulomb potential (b) for μ = m and the parameters a = 104, b = 80 MeV−2. Solid and
dashed lines correspond to the Q-ball and Q-shell solutions, respectively.

at larger radii, where the nuclear potential disappears and the
Coulomb barrier dominates.

B. Two types of solutions: Q-balls and Q-shells

We have investigated possible solutions of field equa-
tions for different sets of model parameters. It was found that a
new class of solutions appears for large enough values of the
attraction coefficient a. Namely, the model predicts the for-
mation of hollow, shell-like structures with vanishing baryon
density in the central region. To distinguish these two types of
solutions, we call them Q-balls and Q-shells, respectively. The
appearance of Q-shells was demonstrated in Refs. [23–25].

The calculations show that stable Q-shells do not exist
for the parameter Set I. According to our analysis, at b �
80 MeV−2 they appear only for a � 9×103 and small enough
� values. Figure 3 represents the radial profiles of the baryon
density and Coulomb potential, as obtained for a = 104,
b = 80 MeV−2, and � = 0. These parameters yield the val-
ues Q � 27.3, W � 10.1 MeV for the Q-ball solution, while
Q � 33.5,W � 8.5 MeV for the Q-shell. The new shell-like
solution corresponds to larger (smaller) values of gradient
(Coulomb) energy per particle.

Figure 4 shows the results for the same parameters a, b,
but for nonzero � value, corresponding to smaller μ. Re-
ducing the chemical potential gives rise to shifting the outer
surface of a Q-shell towards the Q-ball’s surface. This is
seen in Fig. 4 where Q-ball and Q-shell profiles are con-
sidered for � = 3.4 MeV.6 In this case the model predicts
closer characteristics: Q � 23.4,W � 11.5 MeV and Q �
22.3,W � 11.0 MeV, for the Q-ball and Q-shell configura-
tions, respectively. These two configurations with close values

6At larger values of �, Q-shell solutions disappear for the values
of interaction parameters considered here.

of Q may be regarded as density isomers, separated by a
potential barrier.

The sensitivity of Q-shell properties to the model parame-
ters will be considered in the next section.

IV. SYSTEMATICS OF BINDING ENERGIES
OF Q-BALLS AND Q-SHELLS

A. Comparison with empirical binding energies
of α-conjugate nuclei

In this section we consider how the present model is able to
reproduce the “experimental” data. The GS binding energies
of α-conjugate nuclei (with Z = N = 2Q) were compiled by
von Oertzen in Ref. [33]. It was conjectured that such nuclei
can be regarded as made of α particles. The compiled data are
shown below by dots.

Figure 5 shows the Q-ball binding energy W as a function
of Q for the parameter Set I. The right end point of the
W (Q) curve, corresponding to the chemical potential μ = m,
gives the maximal possible number of α particles in a stable
Q-ball. At μ > m, Q-balls become metastable, as it is energet-
ically possible for α’s to leave the system and go to infinity.
However, at not too large μ − m, this process is strongly
suppressed by the Coulomb barrier (see Fig. 2). The lifetimes
of these metastable states can be very long as known from
α-decays of ordinary nuclei, see Sec. V. Therefore, the region
μ > m is also included in our analysis.

In Fig. 5 we show separately different contributions to the
Q-ball’s energy per particle. They were calculated by using the
corresponding energy density terms in Eq. (15). Note, that the
absolute value of the gradient energy per particle decreases,
while the Coulomb contribution increases with Q. Obviously,
our mean-field approach is not reliable at Q � 1.

One can see, that the model predictions with the parameter
Set I strongly deviate from the empirical data. In particular,
binding energies of lighter nuclei, with Q � 10, are signifi-
cantly overestimated. In principle, one can find such model
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FIG. 4. Same as Fig. 3, but for � = 3.4 MeV.

parameters a and b which allow a good fit for any individual
α-conjugate nucleus, as, e.g., 52Fe (Q = 13) in Fig. 5, but then
it is not possible to fit the empirical data for other α-conjugate
nuclei in the whole mass-number interval. Nevertheless, the
shape of the binding energy curve is qualitatively similar
to that predicted by Weizsäcker’s formula [35] for ordinary
nuclei. Namely, binding energies drop at small Q due to
the surface energy, and at large Q because of the Coulomb
repulsion.

FIG. 5. Binding energy per particle, W , as a function of the total
number of α’s, Q, for parameter Set I (the solid line). The combined
contribution of the kinetic and potential parts of the Q-ball’s energy is
shown by the long-dashed curve. The Coulomb and gradient energies
are shown by the dash-dotted and short-dashed lines, respectively.
Dots are empirical values of the binding energies of α-conjugate
nuclei with A = 4Q from Ref. [33].

Figure 6 demonstrates the sensitivity of binding energies
W (Q) to the choice of the interaction parameters a and b.
Again one can see that the model predictions are in strong
disagreement with empirical data, and it is not possible to
improve the fit just by choosing parameters significantly dif-
ferent from Set I.

By analyzing these results one can make the following
conclusions: first, the boundaries of the Q-ball and Q-shell
stability (� = 0) shift to larger Q-values with increasing a or
decreasing b.7 Second, Q-shells appear only at large enough
Q, and threshold Q-values where they become more bound
as compared to Q-balls (see crosses in Fig. 6) increase (de-
crease) with a (b). Note, that in the case of the parameter
Set I this threshold shifts to the region of the Q-ball metasta-
bility, i.e., outside the end points of the dash-dotted lines in
Fig. 6.

Inspecting Figs. 5 and 6 suggests that the large deviation
from the data is caused by too small surface energy, which is
generated by the gradient term (GT) εgr [see Eq. (15)]. Indeed,
as shown in the next section, agreement with the empirical
data can be achieved by a significant enhancement of the GT.

B. Modification of the gradient term

A simple analysis shows that the predicted surface tension
of cold α matter, is unrealistically small, of the order of
0.2 MeV/fm2 for the parameter Set I (see Appendix B). This
is by a factor of 5 smaller than the empirical value for ordinary
nuclei. To avoid this drawback, we have modified the GT of
Lagrangian (5) by the replacement (∇ϕ)2 → ξs(∇ϕ)2 where
ξs � 1 is the enhancement factor. This leads to the appear-
ance of additional coefficient ξs in front of the Laplacian in
the KGE (6). The same factor also appears in the gradient

7As shown in Appendix B this leads to increased values of the
surface tension.
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FIG. 6. Binding energies per particle as functions of particle number Q for different values of the parameters a and b, shown in the left
and right panels. Thick and thin lines correspond to Q-balls and Q-shells, respectively. Crosses mark left boundaries of domains where stable
Q-shells exist. Dots are empirical data extracted [33] from observed masses of α-conjugate nuclei.

part of the energy density εgr. Our calculations show (see
Figs. 7 and 8) that this modification of the model leads to
smoothing density profiles and reducing binding energies for
Q-balls with Q � 15. Figure 8 shows that the empirical data
can be well reproduced with large ξs ∼ 8–9. As shown in
Appendix B, the resulting surface tension coefficient becomes
similar to that for ordinary nuclei. In Fig. 8 the results for
ξs = 8.5 are extrapolated into the region of metastable nuclei
with Q > Qmax (the short-dashed line). Note that the extrapo-
lation is close to the empirical data even at large Q. From this
analysis we conclude that these data can be well described by
the model parameters a = 104, b = 75 MeV−2 and ξs = 8.5
(Set II).

C. Importance of finite-size effects

Of course, such a strong modification of the GT needs to be
explained. From the density profiles in Fig. 7 one can see that
at ξs � 3, surface widths of Q-balls are smaller than the rms
radius of α particle Rα � 1.7 fm [36]. This unrealistic behav-
ior follows from the pointlike character of strong interaction
assumed in the Skyrme potential (19). In reality, α particles
are extended objects which can be described by a (normalized)
Gaussian density distribution

F (r) = λ3

π3/2
exp (−λ2r2), (28)

FIG. 7. Profiles of the baryon density (a) and Coulomb potential (b) for different values of the gradient enhancement factor ξs.
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FIG. 8. Binding energy W as the function of Q for a = 104, b =
75 MeV−2, and ξs = 8, 8.5, and 9. Short-dashed line is obtained
by linear extrapolation of the solid curve to the region Q > Qmax

where Qmax � 21.5 is the particle number corresponding to μ = m
for ξs = 8.5.

where the parameter λ ∼ R−1
α . Therefore, the attractive inter-

action of α particles is only possible at distances �r � 2Rα .8

One can estimate this finite-size effect by adding the cor-
rection term to the Lagrangian9

δL = a

4

∫
F (R)

[
ϕ2

(
r + R

2

)
ϕ2

(
r − R

2

)
− ϕ4(r)

]
d 3R,

(29)
where R is the distance between the α-particle centers. Ex-
panding the expression in square brackets up to the lowest
order in R and neglecting the curvature terms, we obtain

δL � − a

24
ϕ2(r) (∇ϕ)2

∫
F (R) R2d 3R. (30)

After adding δL to the Lagrangian (5) one can see that the
GT is enhanced by the factor

ξs � 1 + a

8λ2
ϕ2(r) ≈ 1 + k2

0

4λ2
. (31)

Here we have taken ϕ2 ∼ ϕ2
0/2, where ϕ0 is defined in

Eq. (21), and introduced the characteristic momentum k0 from
Eq. (A2). For the parameter set with a = 104, b = 75 MeV−2,
one has k0 = 2.53 fm−1. Substituting λ = 0.5 fm−1 we ob-
tain the enhancement factor ξs ≈ 7.4 which is close to the
value extracted from the fit of data on α-conjugate nuclei
(see Fig. 8).

8At smaller distances, a repulsive interaction of the van der Waals
type should be also included.

9In the limit of a point-like interaction (λ → ∞) one has F (R) →
δ(R) and δL → 0.

V. ESTIMATING LIFETIMES OF METASTABLE Q-BALLS

Lifetimes of metastable Q-balls can be estimated by using
standard formalism for α-decay of ordinary nuclei [37,38].
We approximate the α-particle potential in the Q-ball by a
combination of an attractive square well with radius R and the
repulsive Coulomb barrier V (r) = q2Q/r at r > R, where Q is
total number of α particles in the Q-ball. One can estimate the
single-particle (nonrelativistic) energy of α’s in a metastable
state as

E � μ − m � 3q2

2R
(Q − Qm) > 0, (32)

where Qm is the maximal value of Q for stable states. We
neglect the energy spreading due to a nonzero decay width.
It is also assumed that μ changes linearly with the Coulomb
potential at r = 0 (see footnote 5). In the following we neglect
the Q-dependence of R estimating it by the value at Q = Qm.
The condition 0 < E < V (R) is fulfilled if Qm < Q < 3Qm.

In the semiclassical approximation, the probability of α

particle with the energy E to penetrate the Coulomb barrier
is

P(E ) = exp

{
−2

h̄

∫ rmax

R

√
2m[V (r) − E ]dr

}
, (33)

where r = rmax is determined from the equation V (r) = E .
The integral in Eq. (33) can be calculated analytically that
gives

|ln P| = 2mv

h̄R
I (α), α = 2

3

Q

Q − Qm
, (34)

where v = √
2E/m is the mean velocity of α particles at r <

R and

I (α) =
∫ α

1

√
α

x
− 1 dx = α tan−1

√
α − 1 − √

α − 1. (35)

FIG. 9. Lifetimes of metastable Q-balls at μ > m for different
sets of model parameters.
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The lifetime of the metastable state with energy E can be
estimated as

τ (E ) � 2R

vP (E )
. (36)

The results of calculating τ as a function of μ is shown in
Fig. 9 for different sets of model parameters. Obviously, Q-
balls closer to the threshold μ = m have longer lifetimes, and
τ → ∞ at μ → m. With the “best fit” parameters correspond-
ing to the solid line in Fig. 9, we predict lifetimes τ � 10−10 s
for μ − m � 8 MeV. This is much longer than typical time
scales in ordinary nuclei. Such metastable Q-balls emitting
multiple α particles could be good candidates for α-clustered
nuclei.

VI. CONCLUSIONS

In the present paper we have formulated the mean-field
model for describing finite-size systems of charged scalar
bosons with Skyrme-like effective interactions. This model is
used to study the Bose-Einstein condensation of α particles
in drops of nuclear size containing up to 50 α clusters. The
baryon density, energy density, and effective mass profiles
were calculated for different values of the chemical poten-
tial μ. Two types of solutions have been found: Q-balls
with nonzero density at the center and Q-shells with van-
ishing density in the central region. It is shown that stable
Q-shells appear only for large enough strengths of attractive
interaction.

We have calculated the GS binding energies of Q-balls
(Q-shells) as functions of μ and investigated their stability
regions. Both stable (with μ < m, where m is the α-particle
mass) and metastable (μ > m) solutions were considered. It
was shown that lifetimes of metastable Q-balls may be rather
long in nuclear scale. Such Q-balls are especially interesting
due to the possibility of simultaneous emission of several α

particles. These decay channels could be a unique signature
of α clustering in nuclei.

We have tried to find the set of model parameters which
would fit the empirical binding energies of α-conjugate nuclei
compiled in Ref. [33]. It turned out that the standard version
of the model with pointlike α particles strongly overestimates
binding energies of lighter Q-balls. The agreement with em-
pirical data has been achieved only when the gradient term of
the Lagrangian was significantly enhanced. It is demonstrated
that this enhancement can be naturally explained by a finite
size of α’s. We note that our assumption that ground states of
α-conjugate nuclei contain only α particles and no nucleons
is probably oversimplified. In the future we are going to study
more complicated finite-size α-nucleon systems.
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APPENDIX A: NUMERICAL PROCEDURE

In this section we describe our numerical procedure for cal-
culating properties of (meta)stable Q-balls (and/or Q-shells).
For such calculations it is important to impose suitable
asymptotic conditions at large r. At r → ∞ one can write
approximately U � (mϕ)2/2, and A � qQ/r, where Q is the
total number of α particles bound in the Q-ball. Then using
Eq. (6), one finds following asymptotic behavior (for details
see Ref. [39])

ϕ � const
e−

√
m2−μ2 r

r1+βQ
, β = q2μ√

m2 − μ2
(at r → ∞) .

(A1)
One can see that at μ > m the scalar field becomes a complex
function which results in a finite flux at r → ∞. However,
at not too large μ − m one can consider such systems as
metastable nuclei emitting α’s from their surface. Due to
presence of the Coulomb barrier, corresponding decay times
may be rather long, as demonstrated in Sec. V.

It is useful to define a new function Q∗(r) which is equal to
the number of particles within a sphere of radius r (note that
Q∗(0) = 0 and Q∗ → Q at r → ∞). According to the Gauss
law of electrostatics, A′(r) = −qQ∗(r)/r2. One can rewrite
Eqs. (6) and (7) by introducing the dimensionless quantities
ρ = k0r, f = ϕ/ϕ0, g = (μ − qA)/k0, where

k0 =
√

m2 − μ2
0 = m√


, (A2)

is the characteristic momentum scale of the equilibrium α

matter.10 We arrive at the following set of differential equa-
tions which determine the profiles of f , g, and Q∗:

d2 f

dρ2
+ 2

ρ

df

dρ
= f ( − g2 − 4 f 2 + 3 f 4), (A3)

d g

dρ
= q2Q∗

ρ2
, (A4)

d Q∗
dρ

= 16π

a
g ( f ρ)2. (A5)

By introducing a spatial grid ρi = hi, i = 0, 1, . . . imax,
where h ∼ 10−2 and imax ∼ 5 · 103, we approximated
Eqs. (A3)–(A5) by an algebraic system of finite-difference
equations. It was solved by iterations, using the program
package ’dsolve’ from Numerical Recipes [40]. The initial
profiles of f (ρ) and g(ρ) were chosen by using semi-analytic
approximations, suggested in Refs. [25,31].

APPENDIX B: SURFACE TENSION OF Q-BALLS

In this section we analyze the surface tension σs of large
Q-balls neglecting Coulomb field in the KGE (6). In fact, we

10Here we denote its chemical potential as μ0 and apply Eq. (24) in
the second equality.
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derive the surface tension of a cold condensate of (uncharged)
bosons interacting with the Skyrme potential (19). We calcu-
late σs as follows:

σs = (4πR2)−1
∫

εgr d3r �
∫ ∞

0

(
dϕ

dz

)2

dz, (B1)

where εgr is defined in Eq. (15). In the second equality, in-
stead of a spherical Q-ball with radius R, a one-dimensional
symmetrical slab −∞ < z < +∞ is considered. Such an ap-
proximation is justified for large Q. In this case the scalar field
ϕ (z) obeys the one-dimensional KGE:

d2ϕ

dz2
+ μ2ϕ = dU

dϕ
. (B2)

The first integral of this equation is easily obtained:

1

2

(
dϕ

dz

)2

= U (ϕ) − μ2ϕ2

2
≡ � (ϕ) . (B3)

Here we have taken into account that ϕ, dϕ/dz → 0 at |z| →
∞. In fact, this equation implies that pressure p = Tzz = 0 for
all z. In the last equality of Eq. (B3) we introduce the ther-
modynamic potential � = ε − μn for a homogeneous scalar
field ϕ (see Sec. II C). It is easy to see that at the central plane,
z = 0, one has dϕ/dz = 0 and ϕ = ϕ∗, where ϕ∗ is found
from the equation � (ϕ∗) = 0.

Finally one obtains the relation (first derived in Ref. [14])

σs =
∫ ϕ∗

0

√
2�(ϕ) dϕ. (B4)

In the case of Skyrme interaction, substituting Eq. (19), one
has

σs = k0ϕ
2
0

∫ f∗

0

√
η2 − 2 f 2 + f 4 f df , (B5)

where

f∗ =
√

1 −
√

1 − η2, η = 1

k0

√
m2 − μ2. (B6)

Here we use the constants ϕ0, k0 defined in Eqs. (21) and (A2).
The integral in Eq. (B5) can be calculated analytically. One

gets

σs = σ0 F (η), (B7)

where

σ0 = k0ϕ
2
0

4
= a2

(
3

16b

)3/2

, (B8)

and

F (η) = η − (1 − η2) ln

√
1 + η

1 − η
(B9)

is a dimensionless function which monotonically increases
from zero to unity in the interval 0 < η < 1. Equations (B7)–
(B9) give the analytic expression for σs as a function of
chemical potential. It is interesting to note that heaviest sta-
ble Q-balls with μ = m have vanishing surface tension. One
can see that σs reaches its maximal value σ0 for equilibrium
bosonic matter with μ = μ0.

Numerical estimates give rather small values for σ0. For
example, by choosing the parameters a, b from Set I, one
obtains σ0 � 0.18 MeV/fm2. A somewhat larger value, σ0 �
0.32 MeV/fm2, is obtained for a = 104, b = 75 MeV−2. How-
ever, much higher surface tension coefficients are expected
for cold ordinary nuclei. Indeed, according to the Weizsäcker
mass formula, the nuclear surface energy equals ES = aS A2/3

where A is the baryon number of the nucleus and aS �
17.2 MeV [41]. Dividing this energy by 4πR2 (here R =
r0 A1/3 � 1.2A1/3 fm is the geometrical radius of the nucleus),
one obtains the nuclear surface tension coefficient:

σsN � aS

4πr2
0

� 0.95MeV/fm2. (B10)

This exceeds the value of σs predicted for Q-balls by about a
factor of three.

Such a discrepancy can be removed by modifying the
Laplacian term in the KGE. One can see that introducing the
enhancement factor ξs in front of Laplacian in Eq. (6) leads
to the additional coefficient

√
ξs in the right hand sides of

Eqs. (B4) and (B8). Using the value ξs � 8.5, which enables
a good agreement with von Oertzen data (see Fig. 8), we get
the estimate σ0 � 0.94 MeV/fm2, very close to that obtained
in Eq. (B10).

[1] Y. Funaki, H. Horiuchi, W. von Oertzen, G. Röpke, P. Schuck,
A. Tohsaki, and T. Yamada, Phys. Rev. C 80, 064326 (2009).

[2] T. Sogo, G. Röpke, and P. Schuck, Phys. Rev. C 81, 064310
(2010).

[3] J.-P. Ebran, E. Khan, T. Niksic, and D. Vretenar, Phys. Rev. C
87, 044307 (2013).

[4] M. Freer, H. Horiuchi, Y. Kanada-En’yo, D. Lee, and U.-G.
Meißner, Rev. Mod. Phys. 90, 035004 (2018).

[5] S. Typel, Phys. Rev. C 89, 064321 (2014).
[6] W. von Oertzen, Lect. Notes Phys. 818, 109 (2010)
[7] L. M. Satarov, M. I. Gorenstein, A. Motornenko, V. Vovchenko,

I. N. Mishustin, and H. Stoecker, J. Phys. G: Nucl. Part. Phys.
44, 125102 (2017).

[8] L. M. Satarov, R. V. Poberezhnyuk, I. N. Mishustin, and H.
Stoecker, Phys. Rev. C 103, 024301 (2021).
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