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Causality violations in realistic simulations of heavy-ion collisions
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Causality is violated in the early stages of state-of-the-art heavy-ion hydrodynamic simulations. Such viola-
tions are present in up to 75% of the fluid cells in the initial time and only after 2–3 fm/c of evolution do we find
that 50% of the fluid cells are definitely causal. Superluminal propagation reaches up to 15% the speed of light
in some of the fluid cells. The inclusion of pre-equilibrium evolution significantly reduces the number of acausal
cells. Our findings suggests that relativistic causality may place constraints on the available parameter space of
heavy-ion collision simulations when factored into more thorough statistical analyses.
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I. INTRODUCTION

Relativistic viscous hydrodynamics is vital for the
phenomenological modeling of ultrarelativistic heavy ion-
collisions [1–3]. Confirmed predictions at the LHC [4–6] at
the percent level, and the ability to fit standard observables
[7–20], provide strong evidence for the formation of a fluid-
like state of matter known as the quark-gluon plasma (QGP)
in high-energy nuclear collisions [21].

Comparisons to experimental data require modeling all the
stages of a heavy-ion collision: the initial [11,22,23], the pre-
equilibrium stages [24–28], relativistic hydrodynamics [3],
and hadronic interactions [29–33]. Relativistic viscous fluid-
dynamics is currently determined by equations of motion
[34–36] for an extended set of dynamical variables which in-
clude the temperature, chemical potentials, and flow velocity
as well as nonequilibrium currents, such as the shear-stress
tensor πμν , the bulk scalar �, and diffusion currents.1 These
simulations have provided key insight into the temperature
dependence of the QGP’s transport coefficients [14,42–46].

The applicability of hydrodynamics to small and short-
lived nuclear systems is far from trivial. Very large initial
spatial gradients occur [22,47–49], driving the system far-
from-equilibrium. Furthermore, collective behavior compat-
ible with hydrodynamics was found in even smaller systems
(e.g., pA collisions) [50–53]. While progress on understand-
ing far-from-equilibrium relativistic hydrodynamics has been
made [54–56]), traditionally [57] hydrodynamics is only ex-
pected to accurately describe the long-time, long-wavelength
behavior of systems close to equilibrium.

1Viable descriptions of relativistic viscous fluids can also be ob-
tained at first-order in derivatives using only the hydrodynamic
variables, see Refs. [37–41].

A strong connection exists between the initial energy den-
sity’s spatial anisotropy and the final flow harmonics [58–65]
that begins to break down in small systems [49,66–68] due to
significant initial out-of-equilibrium contributions [69]. Thus,
the emergence of hydrodynamics and its domain of applica-
bility have direct relevance to QGP phenomenology.

In the far-from-equilibrium domain, dissipative contribu-
tions to the energy-momentum tensor of the system can
become comparable to the equilibrium pressure P. Then,
viscous terms contribute significantly to the fluid evolution
[70] and constraints on the transport coefficients derived in
Refs. [71–73] using linearized perturbations around equilib-
rium are insufficient to ensure a well-defined causal evolution.
Current heavy-ion simulations employ transport coefficients
to satisfy these linear constraints, but it is unknown whether
causality actually holds in such simulations in the nonlinear
far-from-equilibrium regime, except in certain highly sym-
metric scenarios [74].

This question can be answered using the new constraints
[75] involving the magnitude of the viscous currents and
transport coefficients, which ensure that causality [76] holds
in the nonlinear regime of the class of second order hy-
drodynamic equations of motion [34–36] used in heavy-ion
simulations. These constraints define the physically allowable
space of out-of-equilibrium corrections to the initial state,
providing new theoretical guidance for relativistic viscous
hydrodynamics.

In this work we investigate these causality constraints
for the most well-behaved scenario in heavy ions collisions
simulations: central LHC Pb + Pb collisions. Two state-of-
the-art open-source frameworks are used in our study: The
first [42,43,45,77] couples TRENTo + free-streaming +
VISHNU and the second framework [22,27,28,78–81] cou-
ples IP-Glasma + (KøMPøST) + MUSIC. For compactness,
we at times refer to these two frameworks as the “TFV” and
“IKM” frameworks, respectively, in the text. Both frameworks
generically yield causality violations throughout a significant
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FIG. 1. From top to bottom: the TFV scenario and the three IKM scenarios (no KøMPøST, free-streaming KøMPøST, EKT KøMPøST).
Colors correspond to the following cell classifications: causal (blue), acausal (red), and purple (indeterminate). Cells where the causality
analysis is inapplicable are colored green or orange, as discussed in the text.

portion of the early time evolution, for typical parameter
settings determined via comparisons to experimental data.
In the IKM framework, we study if variations in the pre-
hydrodynamic phase [27,28] can ameliorate these violations.
Pre-equilibrium evolution significantly reduces acausal be-
havior, but does not eliminate it. Our analysis suggests that
the nonlinear constraints imposed by causality should be taken
into account in the assessment of viable regions of hydro-
dynamic parameter space and, ultimately, in the quantitative
extraction of QGP properties.

II. MODELING

Both frameworks incorporate a fully initialized energy-
momentum tensor T μν in their initial state, have constrained
parameters through a Bayesian analysis [42,43,82], and
have been extensively compared with experimental data.
An alternative approach also exists that only initializes the
energy density profiles [11,16], which produces relatively

equivalent results to experimental data except for a handful
of observables [83–87]. While the TRENTo and IP-Glasma
initial-state models have comparable energy density eccentric-
ities [14,23,88], subtle differences remain that are likely due
to the scaling of the initial energy density distribution with the
thickness functions [89,90]. Our simulations are performed at
zero baryon chemical potential.

In the TFV framework, we adopt the Bayesian tune to LHC
p + Pb and Pb + Pb data [42,43] which combines TRENTo
initial conditions [23] with a conformal, prehydrodynamic
free-streaming phase [25,26], a boost-invariant hydrodynamic
phase [77,91], and a hadronic afterburner UrQMD [29,30]. We
use the maximum-likelihood parameters [43] for the trans-
port coefficients. A single,

√
sNN = 2.76 TeV central Pb + Pb

event is generated and the random seed is set to 1 to ensure
reproducibility of our results. The energy density freeze-out
criterion is imposed at εFO ≈ 0.265 GeV/fm3.

In the IKM framework, the initial conditions are from
IP-Glasma, coupled to classical Yang-Mills evolution [22,79],

L061901-2



CAUSALITY VIOLATIONS IN REALISTIC SIMULATIONS … PHYSICAL REVIEW C 105, L061901 (2022)

FIG. 2. Fractions of the number of hydrodynamic cells (ε � εFO) that are causal (left), indeterminate (center), or acausal (right) vs the
rescaled time evolution in each framework.

followed by a boost-invariant hydrodynamics (MUSIC) starting
at τ = 0.4 fm/c [80]. We consider an intervening prehy-
drodynamic phase starting at τ = 0.1 fm/c and propagated
until τ = 0.8 fm/c using KøMPøST [27,28]: “FS” free-
streaming or “EKT” effective kinetic theory. Three different
scenarios are considered: (i) IP-Glasma + MUSIC; (ii) IP-
Glasma + KøMPøST (FS) + MUSIC; (iii) IP-Glasma +
KøMPøST (EKT) + MUSIC. A single,

√
sNN = 2.76 TeV

central Pb + Pb event is generated with a random seed of
1615404198. All scenarios use η/s = 0.12 and the [ζ/s](T )
parametrization from Ref. [92], and freeze-out occurs at
εFO = 0.18 GeV/fm3 or at TFO = 145 MeV. The pressure
P is from the lattice QCD-based equations of state in both
frameworks [93,94].

The constraints from Ref. [75] apply to the Israel-Stewart-
like [34–36] equations of motion used in both frameworks.
They were found by determining the characteristic velocities
(i.e., the propagation modes) of the corresponding nonlinear
system of PDEs, which were used to obtain a set of necessary
conditions for causality, i.e., the system must satisfy these
conditions to be causal. Sufficient conditions for causality
indicate that causality is guaranteed to hold. Both sets of
conditions correspond to simple inequalities involving trans-

port coefficients and viscous currents, i.e., � and the four
eigenvalues {0,	i} of πμ

ν (with i = 1, 2, 3 and
∑3

i=1 	i = 0),
which can be evaluated at each time step. For the explicit ex-
pressions of the constraints, see Ref. [75] or the Supplemental
Material [95].

We sort grid points in the simulations into three different
categories, identified by colors: Blue shows points at which
the sufficient conditions (and consequently the necessary con-
ditions) hold, hence causality is respected. Red shows points
at which one or more necessary conditions (and consequently
sufficient conditions) are violated, hence causality is unques-
tionably violated. Purple shows points at which all necessary
conditions are satisfied but one or more sufficient condi-
tions fail, hence the analysis cannot determine if causality
is violated. On very rare occasions, points occur where the
preconditions [75] for the applicability of the causality anal-
ysis fail to hold. Here, this is typically due, e.g., to values
of 	i for which ε + P + � + 	i is not positive. We color
these points orange in our plots below. Green points denote
the case where the diagonalization of πμ

ν fails and πμνuμ �= 0.
However, both orange and green points occur so infrequently
that they are barely visible in the plots and will be neglected
in the following.

FIG. 3. Characteristic velocities for PbPb collision in the IKM framework: no KøMPøST (left), free streaming (middle), KøMPøST EKT
(right).
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FIG. 4. The momentum anisotropy ε2,p (top) and spatial eccen-
tricity ε2,x (bottom) versus time. Black dots represent the points at
which exactly half of the hydrodynamic cells (with ε � εFO) become
explicitly causal.

III. RESULTS

The time evolution of the causality analysis for a typi-
cal Pb + Pb event is shown for the TFV framework and all
scenarios of the IKM framework in Fig. 1. Note that only
the fluid cells that have not yet frozen out are plotted. The
hydrodynamic simulations are all characterized by pervasive
violations of causality, particularly in the first 1–2 fm/c of the
collision. For the TFV framework, most of the severe causality
violation occurs near the edge of the system where Knud-
sen and inverse Reynolds numbers [48,49] become large,
although still above freeze-out. For the IKM framework, with-
out KøMPøST, approximately 75% of cells in the initial
state violate causality. However, the inclusion of KøMPøST
pre-equilibrium evolution significantly reduces the causality
violation present in the IP-Glasma initial state, bringing it
down to approximately 1/3 of fluid cells. EKT has a slight
improvement over FS but the difference is small.

These plots demonstrate some qualitative features that are
likely due to different choices in the transport coefficients
in the two frameworks. For instance, the TFV framework
appears to switch the regions at the edge from acausal to
causal first and work its way inwards (with a small region of
indeterminable cells at the center at late times). In contrast,
the IKM scenarios have acausal and indeterminate regions at
the edges throughout the expansion but appears to have more
causal regions at the center. This may be due to the larger
bulk viscosity used in the IKM framework [92,96] or to the
smoother initial conditions from TRENTo.

In Fig. 2 we show the time evolution of the fraction of fluid
cells (with ε � εFO), plotted as a function of the rescaled time
�τ ≡ τ − τhydro (where τhydro is the time at which hydrody-
namics begins). During roughly the first 20% of the evolution
most of the system’s fluid cells are either acausal (red) or
indeterminate (purple or green). All simulations considered
do eventually converge to a regime where the hydrodynamic
evolution is completely causal everywhere. These observa-
tions hold quite generally for the different events, centralities,
and collision systems we considered. Our results appear to
be consistent with those from a recent work [97], which has
also studied causality in AA collisions. However, we find that
the fraction of causality-violating cells at a given time can
include up to 75% of the system.2 In Fig. 3, we show the
times and temperatures over which characteristic velocities
were found to propagate faster than the speed of light in the
three cases of the IKM framework. The details concerning the
calculation of these velocities are given in the Supplemental
Material [95] and can also be found in Ref. [75]. These show
that the characteristic velocities were calculated to be around
15% greater than the speed of light, most pervasive both
at early times and near the transition temperature. One can
note that while the calculated superluminal speeds seem to
decrease as pre-equilibrium is turned on, its pervasiveness
in time is increased. Also, we note that the scenario with
KøMPøST EKT has small regions of very high superluminal
characteristic velocities.

Further work is needed to explore the consequences of
causality violations for experimental observables such as
anisotropic flow or the HBT radii [98,99]. In this first study,
in lieu of these standard observables, we consider instead the
momentum anisotropy ε2,p and the spatial eccentricity ε2,x.3

We study in Fig. 4 how these quantities evolve with time in
different scenarios. The black dots indicate the point in time
for each scenario when half of the fluid cells are certainly
causal. Whereas most of the final ε2,p in the TFV framework
is built up after the majority of the system has become causal,
in the IKM scenarios the majority of the ε2,p anisotropy is
built up at early times (up to 20%–30% of evolution time) and
nearly half of the final anisotropy is built up when most of
the system either explicitly violates causality or the sufficient
conditions are not met. This shows that enforcing causality
criteria may lead to measurable effects for final-state observ-
ables [97], which should be considered in Bayesian analyses
that seek to realistically extract QGP properties.

Omitting the acausal and indeterminate cells from the cal-
culation leads to significantly different estimates for the initial
and final values of ε2,p and ε2,x and, thus, substantially differ-
ent interpretations of the underlying physics. Generally, the
eccentricities are larger when only causal cells are considered

2We note that the acausal cells account for only about 1%–2% of
the total number of cells in the simulation throughout the evolution
of the system (because the acausal cells turn causal at larger times),
which is consistent with Ref. [97].

3ε2,p = [(〈T xx − T yy〉2
1 + 〈2T xy〉2

1)/〈T xx + T yy〉2
1]1/2, ε2,x =

[(〈x2 − y2〉2
eγ + 〈2xy〉2

eγ )/〈x2 + y2〉2
eγ ]1/2, where 〈 f (x, y)〉w =∫

dxdyw(x, y) f (x, y)/
∫

dxdyw(x, y) and γ = (1 − u2
x − u2

y )1/2.
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(and, conversely, their radii are smaller). Although we cannot
at this stage remove the effects of causality violations entirely
from our simulations, these results suggest that both collective
dynamics and spatial geometry will be affected once causality
constraints are taken into account.

IV. CONCLUSION

In this paper we conclusively showed that there are siz-
able causality violations in state-of-the-art simulations of
heavy-ion collisions. The TFV and IKM frameworks, with
parameters constrained by experimental data, yield up to 75%
of fluid cells explicitly violating causality in the earliest stages
of central Pb + Pb collisions at the LHC. Retaining causal-
ity in small systems may be even more problematic than
in large system (see also Ref. [97]), depending on the pre-
equilibrium evolution and the model parameter space favored
by data (since Knudsen and Reynolds numbers remain large
throughout the entire evolution even for intermediate systems
[100]). Our causality analysis of a p + Pb event in the TFV
framework can be found in the Supplemental Material [95].

A pre-equilibrium phase prior to the hydrodynamic evolu-
tion significantly reduces the amount of causality violation,
although it does not fully eliminate it. Much of this analysis
depends on our understanding of the pre-equilibrium phase,
which is typically modeled in a conformally invariant manner,
whereas the equation of state of quantum chromodynam-
ics [93,101,102] used in the hydrodynamic evolution is far
from conformal even at the high temperatures probed at top
LHC energies at early times (see Ref. [83] for the conse-

quences of matching a pre-equilibrium conformal phase to a
nonconformal hydrodynamic evolution). Further improve-
ments in the pre-equilibrium phase [46,103–105], going
beyond conformal and boost invariance, are needed to fix this
acausal behavior found in hydrodynamic simulations of the
QGP formed in heavy-ion collisions.

Another possible solution would be the systematic imple-
mentation of causality constraints into Bayesian analyses (see,
e.g., Ref. [43]), which would allow the causality requirements
to dictate which regions of parameter space are most viable.
Such an analysis, performed taking into account both AA
and small systems, would be crucial to determine the values
of transport coefficients and the initial viscous currents that
are physical and compatible with experimental data. Alterna-
tively, when causality violation is concentrated at the edge of
the system, a core-corona approach wherein only fluid cells
that are causal are run through hydrodynamics (the core) and
all other fluid cells (the corona) are hadronized [106–109] may
be more applicable.
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