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Deformed in-medium similarity renormalization group
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In the m-scheme Hartree-Fock (HF) basis, we have developed an ab initio deformed single-reference in-
medium similarity renormalization group (IMSRG) approach for open-shell nuclei. A deformed wave function
may be more efficient in describing the deformed nucleus. The broken rotational symmetry can be restored using
the angular momentum projection. However, a full angular momentum projection at the IMSRG level is still a
challenge in both theory itself and computation. The angular momentum restoration mainly recaptures the static
correlations, and in the present work we estimate the angular momentum projection effect by projecting the
HF state as a leading-order approximation. As a test ground, we have calculated the deformed 8,10Be isotopes
with the optimized chiral interaction NNLOopt. The results are benchmarked with the no-core shell model and
valence-space IMSRG calculations. Then we systematically investigate the ground-state energies and charge
radii of even-even nuclei from light beryllium to medium-mass magnesium isotopes. The calculated energies
are extrapolated to infinite basis space by an exponential form, and compared with extrapolated valence-space
IMSRG results and experimental data.

DOI: 10.1103/PhysRevC.105.L061303

The ab initio calculation of nuclei is the frontier of current
nuclear physics theory. In the past two decades, much progress
has been made in ab initio many-body methods and internu-
cleon interactions. The no-core shell model (NCSM) [1,2] and
quantum Monte Carlo [3] can provide exact solutions to light
nuclei. Ab initio in-medium similarity renormalization group
(IMSRG) [4,5], coupled cluster (CC) [6,7], self-consistent
Green’s function (SCGF) [8,9], and many-body perturbation
theory (MBPT) [10–12] can go to heavier mass regions.

The spherical symmetry-conserving single-reference
schemes of IMSRG [4,5], CC [6,13], SCGF [8], and
MBPT [10,11] work only for closed-shell nuclei. To
calculate open-shell nuclei, symmetry-breaking schemes have
been developed, which include single- and multireference
approaches. Choosing a single Hartree-Fock-Bogoliubov
(HFB) state as the reference, single-reference HFB IMSRG
[14], CC [15], SCGF [9], and MBPT [12] have been
proposed. The HFB quasiparticle state breaks the particle
number conservation, and hence the particle number
projection is usually needed. To choose the reference
state closer to the true solution, multireference IMSRG
with particle-number-projected spherical HFB [16,17]
and multireference MBPT with particle-number- and
angular-momentum-projected deformed HFB [18–20] have
been suggested. The calculations based on the Bogoliubov
quasiparticle states complicate significantly the formalism
and also increase the computational cost. Alternatively,
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one derives a valence-space effective interaction using the
spherical symmetry-conserving single-reference IMSRG
[21,22], CC [7,23], or MBPT [24–27] at a shell closure, and
performs shell model calculations for open-shell nuclei.

Using the m scheme, one can write a single Hartree-Fock
(HF) reference state for any even-even nuclei, in which the
particle number is conserved, but the rotational symmetry
is broken. Indeed, a deformed single-reference CC has been
developed [28], and was implemented without [29] and with
the angular momentum projection [30], providing a useful
tool to describe open-shell nuclei. The deformed reference
state may better reflect the intrinsic structure of the deformed
nucleus, and captures more correlations through the symmetry
restoration [31], which would be many-particle–many-hole
excitations in the spherical scheme. The preconsiderations of
expected symmetries, e.g., as done in the symmetry-adapted
approach [32,33], can provide an efficient way to capture the
expected features of nuclear states of interest and, on the other
hand, reduce the computational cost.

As one of the powerful ab initio methods, the IMSRG
formulated in terms of continuous unitary transformation pro-
vides an efficient tool to treat energy and other observables
equally. An extension to the deformed scheme should be
useful for the descriptions of open-shell nuclei. In this paper,
we present a deformed single-reference IMSRG (D-IMSRG)
within the deformed HF basis. 8Be and 10Be are exotic with
the structure of 2α cluster or elongated shape. We perform
the D-IMSRG calculations for 8,10Be ground-state energies,
and benchmark with the NCSM and valence-space IMSRG
(VS-IMSRG) results. Then, we apply the D-IMSRG to the
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ground-state energies and charge radii of even-even nuclei
from light beryllium to medium-mass magnesium isotopes.

We start from an intrinsic A-body Hamiltonian, which is
normal ordered with respect to the deformed A-dependent
reference state |�〉 (i.e., the m-scheme HF ground state of
the target nucleus). The normal-ordered intrinsic Hamiltonian
reads

H = E0 +
∑

i j

fi j : a†
i a j : + 1

2!2

∑

i jkl

�i jkl : a†
i a†

j al ak :, (1)

where E0, f , and � correspond to the normal-ordered zero-,
one-, and two-body terms, respectively. In the present work,
we use the optimized chiral nucleon-nucleon (NN) interaction
NNLOopt [34–36], which gives good descriptions of nuclear
binding energies, excitation spectra, and neutron matter equa-
tion of state without resorting to three-nucleon forces (3NFs).

First we solve the axially deformed HF equation of the
even-even nucleus within the spherical harmonic oscillator
(HO) basis. The deformed HF single-particle levels obtained
are twofold degenerate with respect to the angular momentum
projection quantum number m of the orbital (i.e., the energies
are the same with respect to ±m). We fill the deformed HF
single-particle levels up to the Fermi surfaces of neutrons and
protons in ±m pairing from low to high |m|, which keeps the
axial, parity, and time-reversal symmetries of the even-even
ground state, creating a prolate deformed HF reference state
[29].

The aim of the IMSRG is to drive the many-body Hamil-
tonian into a band- or block-diagonal form, using continuous
unitary transformation. Hamiltonian (1) can be written in the
diagonal Hd (s) and off-diagonal Hod (s) parts,

H (s) = U (s)H (0)U †(s) ≡ Hd (s) + Hod (s). (2)

With the continuous unitary transformation U (s), we aim
for lims→∞ Hod (s) = 0. In practice, the transformation is
achieved by solving the flow equation,

dH (s)

ds
= [η(s), H (s)], (3)

with an anti-Hermitian generator,

η(s) ≡ dU (s)

ds
U †(s) = −η†(s). (4)

In Eq. (3), the flow equation is truncated at the normal-
ordered two-body level, which is referred to as IMSRG(2)
[4]. In this approximation, it is a simple way to define Hod to
be composed of all one- and two-body operators that connect
hole (h) and particle (p) states with the deformed HF reference
state, e.g., Hod = { fph, �pp′hh′ } plus Hermitian conjugates [5].
The White generator η(s) is adopted to suppress the off-
diagonal coupling Hod to zero with a decay scale (s − s0)
[5,37]. The transformed Hamiltonian H̃ and other observable
Õ can be constructed by the Magnus definition U = e� [38],

H̃ = e�He−� = H + [�, H] + 1

2!
[�, [�, H]] + . . . , (5)

Õ = e�Oe−� = O + [�, O] + 1

2!
[�, [�, O]] + . . . . (6)

Then, the ground-state energy and other observables can be
calculated with the D-IMSRG ground-state wave function
|�〉 = e−�|�〉 (here |�〉 is the deformed HF reference state
of the nucleus), i.e.,

E = 〈�|H |�〉 = 〈�|e�He−�|�〉 = 〈�|H̃ |�〉, (7)

O = 〈�|O|�〉 = 〈�|e�Oe−�|�〉 = 〈�|Õ|�〉. (8)

However, the exact symmetry restoration of the D-IMSRG
wave function is computationally too cumbersome and ex-
pensive due to the exponential increase of configurations in
projecting the wave function |�〉 = e−�|�〉. In the deformed
CC without the angular momentum projection, it was esti-
mated that the projection of the HF state lowers the HF energy
by about 3–5 MeV in the sd shell [29], which corresponds to
the static correlation and is not size extensive. The modern
ab initio calculations already include some of the correlations
that are associated with the projection, therefore, the projec-
tion of the ab initio wave function would lead to a slightly
smaller energy correction than the HF projection correction
[29,30]. In the present work, we consider the angular momen-
tum projection effect by taking the HF projection correction.
The projection correction to the ground-state energy is esti-
mated by

�Eproj = 〈�|HP|�〉
〈�|P|�〉 − 〈�|H |�〉

〈�|�〉 , (9)

where PJ
MM ′ = 2J+1

8π2

∫
dωDJ∗

MM ′ (ω)R(ω) is the angular mo-
mentum projection operator. This provides a D-IMSRG
ground-state energy given by E + �Eproj with the projection
correction estimated by the HF wave function [here E is
obtained by Eq. (7), i.e., the ground-state energy without the
projection].

In the spherical j scheme, single-particle levels of the
same j shell are degenerate. The degeneracy is broken with
deformation appearing, though a twofold degeneracy with
respect to ±m remains at an axially symmetric shape. This
increases dramatically the model-space dimension. The D-
IMSRG space dimension depends on the nucleon number A
and the basis-space size Nshell (the number of spherical HO
major shells considered in solving the deformed HF). We have
checked that the number of D-IMSRG Hamiltonian matrix
elements in 40Mg is already over 109 at Nshell = 10. However,
such a large model space may still not be sufficient to make the
calculation converged. To estimate the converged ground-state
energy, we have used a simple exponential fit with respect to
Nshell to extrapolate the D-IMSRG result to an infinite basis
space, as done in, e.g., NCSM-type [40–44] and multirefer-
ence IMSRG [16] calculations,

E (Nshell ) = b0 + b1 exp(−b2Nshell ), (10)

where b0, b1, and b2 are parameters of the fit. The value of
b0 ≡ E (Nshell → ∞) provides the estimate of the fully con-
verged energy.

The chiral NNLOopt interaction has been used with
h̄ω = 24 MeV. The D-IMSRG calculations were performed
within the maximum basis-space size Nshell = 10 of our
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FIG. 1. Ground-state energies calculated by D-IMSRG with and without the projection correction for 8Be and 10Be, with respect to the
basis-space size Nshell. Symbols below “Extrap” represent the exponential extrapolated energies to infinite basis space, based on different data
points, from left to right, Nshell =3–7, 3–10, and 6–10, respectively, with the fitting uncertainties given by error bars. Extrapolation uncertainties
in NCSM and VS-IMSRG calculations are also given by error bars there. Experimental data are taken from AME2020 [39].

computational feasibility. Figure 1 shows the calculated
ground-state energies of 8Be and 10Be with respect to the
basis-space size Nshell, with and without the approximate
angular momentum projection. As seen in NCSM [40–44]
and multireference IMSRG [16] calculations, the calculated
energy has an exponential form with respect to the basis-
space size. In Fig. 1, we give the exponential extrapolated
energies to infinite model space. In the exponential fit of the
extrapolation using Eq. (10), different data points have been
tested with the first five points (i.e., Nshell = 3–7, indicated
by dotted line in Fig. 1), with all the points (Nshell = 3–10,
dashed line), and with the last five points (Nshell = 6–10, solid
line). The results are given below “Extrap” in Fig. 1. As
shown in the figure, the extrapolations based on different data
points follow almost the same exponential form (the dotted,
dashed, and solid lines well overlap), and the calculations with
Nshell = 10 are almost converged in 8Be and 10Be. The three
extrapolated energies are close to each other. These indicate
that the exponential extrapolation is valid. The uncertainty
for the extrapolated energy can be estimated by the mean
square deviations of the fit parameters in the least-square
fitting procedure, shown by error bars in Fig. 1. We see that
the uncertainty is smaller when data points with larger Nshell

are fitted.
In Fig. 1, we see that the angular momentum projection

corrections are −7.2 and −5.9 MeV for 8Be and 10Be, re-
spectively. The two nuclei have elongated (or 2α cluster)
shapes, therefore the projection corrections are significant.
The calculated D-IMSRG energies with the projection cor-
rections nicely agree with the experimental data and NCSM
calculations, though there is still a visible discrepancy be-
tween the calculation and datum in 10Be. The NCSM and
VS-IMSRG calculations shown in Fig. 1 take the same in-
teraction NNLOopt, and are also extrapolated to infinite model
space using the exponential fit. For the VS-IMSRG calcula-
tion, the 0p3/2,1/2 model space was chosen for both valence
protons and neutrons outside the 4He core. We find that the
VS-IMSRG result underestimates the ground-state energy in
8,10Be. This may be due to the missing of higher-order collec-
tive excitations, which are not well treated in VS-IMSRG at
the IMSRG(2) level, as discussed in Refs. [45,46].

In Fig. 2, we show the calculated D-IMSRG ground-state
energies (top panel) and two-neutron separation energies (bot-
tom panel) for beryllium isotopes from 6Be to 16Be, along
with VS-IMSRG calculations and experimental data. The D-
IMSRG energies are extrapolated based on Nshell = 6–10 data
points, while the VS-IMSRG results are extrapolated based on
Nshell = 8–13 data points (VS-IMSRG can go to larger basis
space). Shell model spaces for the VS-IMSRG Hamiltonian
are protons and neutrons in 0p3/2,1/2 space for 6–12Be, and
protons in 0p3/2,1/2 and neutrons in 1s1/20d5/2,3/2 for 12–16Be.

FIG. 2. 6-16Be ground-state energies (top panel) and two-neutron
separation energies S2n (bottom panel) calculated by D-IMSRG with
and without the projection correction, compared with VS-IMSRG
calculations and experimental data [39].
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FIG. 3. Ground-state energies of C, O, Ne, and Mg isotopes. D-IMSRG results are extrapolated to infinite basis space based on
Nshell = 6–10 data points, and the VS-IMSRG results are extrapolated based on Nshell = 8–13. The model space of VS-IMSRG calculations
is both protons and neutrons in 0p3/2,1/2 for 6–14C, protons in 0p3/2,1/2 and neutrons in 1s1/20d5/2,3/2 for 14-22C, both protons and neutrons in
1s1/20d5/2,3/2 for O, Ne, and Mg isotopes. Experimental data are taken from AME2020 [39].

A change in model space may bring some variation in calcu-
lated energy, e.g., a variation of about 1 MeV in 12Be with the
two different model spaces above. This small uncertainty from
different model spaces is common in VS-IMSRG calculations
[51]. We see that the angular momentum projection lowers
the ground-state energies of 8–16Be by about 5–6 MeV, which
makes calculated energies closer to data. The coupling to con-
tinuum can further lower the energy, which is more significant
in nuclei near the dripline [26,27,36,52–54]. However, the
inclusion of continuum partial waves increases dramatically
the model dimension. D-IMSRG (with and without the pro-
jection) and VS-IMSRG calculations give the neutron dripline
at 12Be, while the experimental dripline position is at the
next even-even isotope 14Be. It is known that using different
nuclear forces may lead to slightly different dripline positions.
The continuum coupling can also affect the dripline position
[26,27,36,55].

The D-IMSRG has also been applied to heavier nuclei
of C, O, Ne, and Mg isotopes, as shown in Fig. 3 along
with VS-IMSRG calculations and experimental data. The
D-IMSRG calculations with the projection correction agree
well with VS-IMSRG results and experimental data. For the
closed-shell nuclei of 14C and 14,16,22,24,28O, we find that
single-particle levels given by the m-scheme HF are degen-
erate with respect to the spin projection quantum number
m, which indicates spherical characteristic. Within the esti-
mated uncertainty, the D-IMSRG calculation is identical to
the VS-IMSRG result. However, for the expected closed-shell
nuclei of 12,22C, the m-scheme HF gives nondegenerate single-
particle levels with respect to m, indicating a deformation.
The resulted angular momentum projection corrections are
−5.5 and −2.7 MeV for the ground states of 12C and 22C,

respectively, making the energies closer to VS-IMSRG results
and data. For Ne and Mg isotopes near the neutron number
N = 20 island of inversion [56,57], the projection results in
the energy gains of about 3–6 MeV. In the island-of-inversion
nuclei, there is strong configuration mixing between sd and
p f shells. The cross-shell mixing is missing in the present
VS-IMSRG calculation, though the multishell VS-IMSRG
has been proposed in Ref. [58]. In the D-IMSRG, the deforma-
tion effectively brings the deformation orbitals into the wave
function of the state.

The charge radius is another important observable for nu-
clei. In the present work, we calculated the radii of the studied
isotopes. The expectation value of the squared charge radius
can be written as [11,29,59]:

〈
R2

ch

〉 = 〈
R2

p

〉 + 〈
r2

p

〉 + N

Z

〈
r2

n

〉 + 〈
r2

DF

〉 + 〈
r2

so

〉
, (11)

where R2
p is the square of the intrinsic point-proton radius,

and r2
so is the spin-orbit correction, which can be calculated

by the D-IMSRG. For other quantities in the equation, we
usually take the proton radius squared 〈r2

p〉 = 0.709 fm2, the
neutron radius squared 〈r2

n〉 = −0.106 fm2, and the Darwin-
Foldy term 〈r2

DF〉 = 3h̄2

4m2
pc2 = 0.033 fm2 [11,29,59].

The convergence of the radius calculation shows a different
trend with increasing the basis-space size, compared with
the calculation of the ground-state energy, as discussed in
[44,60,61] and also found in the present D-IMSRG calcula-
tions. This indicates that the exponential fit is not applicable
to the radius extrapolation, therefore no extrapolation has been
attempted for the radius. In the D-IMSRG radius calculation,
the angular momentum projection correction is also estimated
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FIG. 4. Charge radii of Be, C, O, Ne, and Mg isotopes, calculated by D-IMSRG in a basis space with Nshell = 10 and by VS-IMSRG with
Nshell = 13. Experimental data are taken from [35,47–50].

using the HF wave function. The charge radii of Be, C, O, Ne,
and Mg isotopes have been investigated with a basis space of
Nshell = 10, as shown in Fig. 4, along with the VS-IMSRG
calculations and experimental data available. The VS-IMSRG
calculations were done with the Nshell = 13 basis space, and
the valence spaces were chosen as the same as in the energy
calculations above. For 20Ne and 34Mg, our D-IMSRG charge
radii are consistent with the recent projected CC calculations
given in Ref. [30]. The projection correction to the charge
radius is small. The D-IMSRG radii with and without the pro-
jection correction are close to each other, and also well agree
with the VS-IMSRG calculations except for 8Be in which the
D-IMSRG radius is larger than the VS-IMSRG radius. This
difference may be due to the large deformation of 8Be. In
the calculation with the deformation degree of freedom, the
deformation-sensitive orbitals descend and effectively enter
the wave function of the deformed nucleus. The deformed
basis states carry more correlations. In general, see Fig. 4,
the calculated charge radii by D-IMSRG and VS-IMSRG
are reasonable compared with experiment data, although the
NNLOopt interaction underestimates nuclear radii as com-
mented in Ref. [35].

In summary, starting from the chiral interaction, we have
developed an ab initio deformed in-medium similarity renor-
malization group (D-IMSRG) in the deformed HF basis. The
effect of the angular momentum projection was estimated
through projecting the HF state. Due to heavy computational
cost, the D-IMSRG calculation was performed in a finite basis
space, and the ground-state energy was extrapolated to the in-
finite basis space by an exponential fit to obtain the converged
value. We calculated the ground-state energies of 8,10Be, and
compared with the NCSM and VS-IMSRG calculations. The

D-IMSRG calculations with the HF angular momentum pro-
jection correction are in good agreement with the NCSM
results. We then investigated systematically the ground-state
energies and charge radii of nuclei from light beryllium to
medium-mass magnesium isotopes with the chiral NNLOopt

interaction, giving reasonable results compared with the VS-
IMSRG calculations and experiment data. The D-IMSRG is
a single-reference method, providing a straightforward calcu-
lation of open-shell nuclei. By introducing the deformation
degree of freedom, important deformed configurations can be
efficiently included in the wave function, which makes the
calculation more efficient for deformed nuclei. As a next step,
the full angular momentum projection at the IMSRG level is
well worth exploring. 3NF is another important point. which
should be considered in future D-IMSRG calculations. Actu-
ally, a normal-ordered 3NF at two-body level can be easily
incorporated into the D-IMSRG calculation.
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