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4α linear-chain state produced by 9Be + 9Be collisions
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The linear-chain (LC) structure provides significant insights into quantum many-body systems with geometric
configurations. In this study, 4α + 2n LC was assessed in 18O. The excitation energies, moment of inertia,
and α- and 9Be-decay widths of the LC states were predicted using antisymmetrized molecular dynamics. We
predict that there are two 4α LC bands, Kπ = 0+ and Kπ = 3−, which exhibit different decay properties. We
demonstrate that the Kπ = 3− LC states can be verified by the head-on 9Be + 9Be collision experiments because
their states exhibited large decay widths in the 9Be + 9Be channel.
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Introduction. Nuclear clustering has many similarities
with molecules. For instance, extra neutrons surrounding
α-particles behave glue-like, analogous to the covalent elec-
trons of atomic molecules such as beryllium (2α + xn) [1–7],
carbon (3α + xn) [8], and heavier-mass isotopes [9–11]. In
carbon isotopes (3α + xn), it is expected that the extremely
deformed states which have the intrinsic structure of three
linearly aligned α particles, called the linear-chain (LC) struc-
ture, will be stabilized by the assistance of the glue-like
covalent neutrons. Recent experimental [12–16] and theoreti-
cal [17–22] studies have identified LC states in 14C(3α + 2n),
and researches on 16C (3α + 4n) have also been reported
[23–25].

A longstanding open question is how many α particles can
compose an LC structure. Unlike the 3α LCs, LCs containing
four or more α particles have not been experimentally con-
firmed. ABe + ABe resonant scattering can be a natural way
to produce the 4α LC state in oxygen isotopes. Although the
formation of the 4α LC in 16O has been predicted by sev-
eral theoretical studies [26–31], 8Be is an unbound nucleus;
therefore, its existence from the 8Be + 8Be reaction is not
easy. Given that 9Be is the only stable Be isotope, 9Be + 9Be
scattering is the most feasible way to confirm the 4α + 2n LC.
Therefore, in this study, the excited states of 18O were studied
to identify a candidate 4α + 2n LC.

Linear chain produced by 9Be + 9Be collision. Let us con-
sider the 4α LC configurations that will be produced by the
head-on 9Be + 9Be collisions. For simplicity, we approximate
the ground state of 9Be (3/2−) as an α + α + n system with a
valence neutron occupying the p3/2 orbit with jz = ±3/2. As
illustrated in Fig. 1, there are two ways to linearly align two
9Be, which yield different valence neutron configurations: (a)
the antiparallel and (b) the parallel alignments with respect

to the jz of the valence neutrons. The antiparallel alignment
yields the intrinsic state with K = 0, where K denotes the z
component of the intrinsic angular momentum and is equal
to the sum of the jz of valence neutrons. Because this con-
figuration is an admixture of positive- and negative-parity
states, we expect that it leads to a pair of rotational bands:
Jπ = 0+, 2+, 4+, . . . and 1−, 3−, 5−, . . . bands. Indeed, we
obtained both the bands in this study. However, we focus only
on the Jπ = 0+, 2+, 4+, . . . band, because the negative-parity
bands are located at higher energies than the positive-parity
band.

Parallel alignment [Fig. 1(b)] yields an intrinsic state with
K = 3. The parity of this configuration is uniquely determined
as negative for the following reasons. The spin wave function
is symmetric (S = 1), as both neutron spins are aligned to sz =
1/2. Because the isospin wave function is also symmetric,
the spatial wave function must be asymmetric with respect to
the exchange of two valence neutrons (parity transformation).
Thus, this configuration forms a Jπ = 3−, 4−, 5−, . . . band.
Briefly, the antiparallel alignment yields a pair of positive-
and negative-parity bands with K = 0, whereas the parallel
alignment yields a negative-parity band with K = 3.

Calculated properties of the linear-chain states. To de-
scribe the LC states, we use antisymmetrized molecular
dynamics (AMD). The Hamiltonian with the Gogny D1S
nucleon-nucleon interaction is applied [32]. The AMD wave
function �π

AMD is a parity-projected Slater determinant of
single-particle wave packets,

�π
AMD = P̂π�AMD = P̂πA{ψ1, ψ2, ..., ψA}. (1)

Here, P̂π is the parity-projection operator, and ψi is the single-
particle wave packet, which is a direct product of the deformed
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FIG. 1. Schematic illustration of the 4α LCs constructed by
(a) antiparallel and (b) parallel alignments with respect to the jz of the
valence neutrons in 9Be. The black arrows indicate jz = +3/2 orbit
of the valence neutron, while the red arrow indicates jz = −3/2.

Gaussian for the spatial part, spin (χi), and isospin (ξi) parts
[33],

φi(r) =
∏

σ=x,y,z

exp

{
− νσ

(
rσ − Ziσ√

νσ

)2
}

⊗ χi ⊗ ξi,

χi = aiχ↑ + biχ↓, ξi = proton or neutron. (2)

The centroids of the Gaussian wave packets Zi; directions of
nucleon spin ai and bi; and width parameter νσ are variables
determined using the frictional cooling method [34]. In this
study, we imposed a constraint on the quadrupole deformation
parameter, β, to describe an extremely deformed 4α LC. Af-
ter variational calculation, the eigenstate of the total angular
momentum, J , is projected. We apply the generator coordi-
nate method [35] by employing the quadrupole deformation
parameter, β, as the generator coordinate.

In our previous work [36], we showed that AMD plausibly
describes the low-lying states of 18O. The binding energy of
18O was calculated as 139.97 MeV, whereas the observed
value was 139.81 MeV. The low-lying excited states, in-
cluding the 14C + 4He cluster states, were also reasonably
described. Therefore, we expect that AMD can precisely de-
scribe the higher-lying states of 18O.

It is noteworthy that the present calculation does not as-
sume a prior LC configuration. In fact, we obtained many
excited states with various cluster and noncluster states.
Among these excited states, we assign two rational bands as
the LC candidates shown in Fig. 2: a positive-parity band
built on the 0+ state followed by the 2+, 4+, . . . states, and
a negative-parity band built on the 3− state followed by
4−, 5−, . . . states. The spin-parity of these bands is consistent
with that expected from the head-on 9Be + 9Be configurations
discussed above. This assignment is uniquely determined be-
cause of rather large B(E2) strengths listed in Table I. In
addition, the member states of each band dominantly have the
same intrinsic structure, respectively. All the positive-parity
band members have a large overlap with the intrinsic wave
function shown in Fig. 3(a). Its proton density distribution
shows a linear alignment of four α particles, and the two va-
lence neutrons occupy negative-parity orbits with jz = ±3/2.
This intrinsic structure is approximately an antiparallel con-
figuration, as shown in Fig. 1(a). However, in contrast to
Fig. 1(a), the two valence neutrons are localized around two

FIG. 2. Calculated energies above the 9Be + 9Be threshold of the
LC states as functions of angular momenta. The energy is relative to
23.64 MeV.

α particles at the center because of the attraction between va-
lence neutrons and the absence of Pauli exclusion. Therefore,
the entire system forms an α + 10Be +α-like structure.

The intrinsic state of the negative-parity band is shown in
Fig. 3(b1) and (b2). The proton density distribution indicates
that this band also has a 4α LC core. One valence neutron
occupies the negative-parity orbit with jz = 3/2 [Fig. 3(b1)],
and the other occupies the positive-parity orbit with jz = 3/2
[Fig. 3(b2)]. These single-particle orbits can be understood as
linear combinations of the p3/2 orbits of the two 9Be. Let us
denote the p3/2 ( jz = 3/2) orbit of the left (right) side 9Be as
ϕL (ϕR), which is schematically illustrated by black arrows in
Fig. 1(b). The single-particle orbits are then represented as

ϕ± = 1√
2

(ϕL ± ϕR). (3)

They generate an orthogonalized pair of negative- and
positive-parity orbits with jz = 3/2, which correspond to
Fig. 3(b1) and (b2), respectively. This intrinsic state cor-
responds to the parallel configuration shown in Fig. 1. In
contrast to the antiparallel configuration, the two valence neu-
trons are located separately on the left Be and right Be because
of the Pauli principle, which results from their parallel spin.
We found that only these two bands have a structure corre-
sponding to the head-on 9Be + 9Be collision in the vicinity
of the energies near the 9Be + 9Be threshold. Since the pure
head-on collision cannot be experimentally realized because
of the angular momentum projection effect, the production
probability of the LC configuration is suppressed. However,

TABLE I. Calculated B(E2; Ji → Jf ) strengths for the Kπ = 0+

and Kπ = 3− bands. The unit is e2fm4.

band Ji → Jf B(E2; Ji → Jf )

Kπ = 0+ 2+ → 0+ 1072
4+ → 2+ 1418
6+ → 4+ 1692

Kπ = 3− 4− → 3− 734
5− → 4− 546
6− → 5− 983
7− → 6− 807
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FIG. 3. Density distributions of the intrinsic states of the LC
bands. The contour lines show the proton density distributions, and
the color plots show the valence neutron orbits. (a) shows the intrinsic
state of the positive-parity band, in which two valence neutrons
occupy negative-parity orbits with jz = ±3/2. (b1) and (b2) show the
intrinsic state of the negative-parity band, in which a valence neutron
occupies the negative-parity orbit with jz = 3/2 (b1) and the other
occupies the positive-parity orbit with jz = 3/2 (b2).

the experimental 9Be + 9Be collision is still a promising way
to produce the LC states discussed later.

These two bands have strongly deformed intrinsic shapes
that are compatible with a 4α LC. The quadrupole deforma-
tion parameters of the positive- and negative-parity intrinsic
states are equal to β = 1.34. Consequently, they have an enor-
mous moment of inertia as large as h̄/2� = 55 keV for the
positive-parity band and 58 keV for the negative-parity band.
These values are larger than that estimated for the rigid rotor,
h̄/2� = 85 keV, as follows. The classical moment of inertia of
the prolate spheroid with 2 : 1, 3 : 1, and 4 : 1 deformations
satisfies the following relation:

�2:1 : �3:1 : �4:1 = 5 : 15 : 34. (4)

Because the moment of inertia of the 2α and 3α LCs are mea-
sured as h̄/2� = 590 keV (2α + 2n) [37] and h̄/2� = 190
keV in (3α + 2n) [15], respectively, the moment of inertia of
4α LC is estimated as h̄/2� = 85 keV.

Decay properties of the linear-chain states. To better un-
derstand the difference between the two LC bands, we discuss
their α- and 9Be-decay properties. Neutron emission channels
are also open. However, in the present framework, it requires
much computational cost to calculate their widths because of
compound states. The calculated excitation energies, partial
α-decay widths, and dimensionless reduced widths are listed
in Table II. A dimensionless reduced width θ2

l (a) is defined by

the ratio of the reduced width to the Wigner limit as follows:

θ2
l (a) = a

3
|ayl (a)|2, (5)

where yl (a) is the reduced width amplitude,

yl (r) =
√

A!

AC1!AC2!
〈φC1[φC2Yl0(r̂)]Jπ M

∣∣�Jπ
Mn

〉
. (6)

In the α + 14C channel, the daughter nucleus 14C is assumed
to be the 0+ and 2+ states of the 3α LC states of 14C re-
ported previously in literature [19]. The reduced width in
α + 14C(g.s.) is almost zero because of the extreme deforma-
tion of the 4α LC. The α-decay properties are different for the
Kπ = 0+ and Kπ = 3− LCs. The Kπ = 0+ LC states have
very large α-decay widths in the LC states of 14C. Partic-
ularly, the widths of the α + 14C(2+; LC) channel are large
because of the strong angular correlation between the linearly
aligned α particles. This is in contrast to the Hoyle state,
where α particles are weakly bound with l = 0; hence, the
8Be(0+

1 ) component dominates [38]. The large reduced width
amplitude for Jπ = 0+, 2+, . . . is a significant LC structure
feature. As the 14C orientation is fixed, it does not become an
eigenstate but a mixed state of angular momentum. A similar
character has also been observed for the 3α LC of carbon
isotopes [19,23,26]. The Kπ = 3− LC states have almost zero
α-decay widths in the LC of 14C. It is clear that the both
valence neutrons in the LC states of 14C have negative parity;
they are orthogonal to the LC of 18O, with the positive- and
negative-parity valence neutrons shown in Fig. 3(b). Addition-
ally, no negative-parity 3α LC states of 14C with the positive-
and negative-parity valence neutrons are found [19]. There-
fore, in the present calculation, the Kπ = 3− LC states do not
decay to any α + 14C channels.

Partial 9Be-decay widths and dimensionless reduced
widths are listed in Table III. Angular momentum projec-
tion was performed for both 9Be while calculating the decay
widths. The 9Be in the developed LC structure has a mixed an-
gular momentum. Therefore, the LC states branch into various
channels, such as 9Be(3/2−) + 9Be(3/2−) and 9Be(3/2−) +
9Be(5/2−). We consider only these two channels, where
9Be(3/2−) and 9Be(5/2−) are the ground and excited states
of 9Be, respectively. The characteristics of the decay widths
are different for Kπ = 0+ and Kπ = 3− LCs. The Kπ = 0+

TABLE II. Excitation energies, energies above 9Be + 9Be threshold, partial α-decay widths, and dimensionless reduced widths of the 4α

LC states. 14C has been assumed to be the 0+ and 2+ states of the LC band. The channel radius is 7.0 fm.

Jπ Ex [MeV] EBe [MeV] �α (0+; LC) [keV] θ2
α (0+; LC) [×10−2] �α (2+; LC) [keV] θ2

α (2+; LC) [×10−2]

0+ 27.85 4.21 382 8.21 1136 31.8
2+ 28.32 4.68 346 7.70 1044 13.4 (l = 4)
4+ 29.37 5.73 288 3.51 918 5.37 (l = 2)
6+ 30.16 6.51 160 5.39 572 10.2 (l = 4)
3− 31.09 7.45 0 0.00 0 0.00
4− 31.46 7.82 0 0.00 0 0.00
5− 31.86 8.22 0 0.00 0 0.00
6− 32.58 8.95 0 0.00 0 0.00
7− 33.68 10.0 0 0.00 0 0.00
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TABLE III. Partial 9Be-decay widths and dimensionless reduced widths of the 4α LC states. 9Be(3/2−) + 9Be(3/2−) and 9Be(3/2−) +
9Be(5/2−) are assumed. The channel radius is 7.0 fm.

Jπ Ex [MeV] EBe [MeV] �Be(3/2−) [keV] θ2
Be(3/2−)[×10−2] �Be(5/2−) [keV] θ2

Be(5/2−)[×10−2]

0+ 27.85 4.21 6 0.31 9 0.52 (l = 2)
2+ 28.32 4.68 6 0.30 8 0.23 (l = 4)
4+ 29.37 5.73 6 0.14 8 0.10 (l = 2)
6+ 30.16 6.51 4 0.32 7 0.25 (l = 4)
3− 31.09 7.45 264 5.37 (l = 1) 253 1.84 (l = 1)
4− 31.46 7.82 151 3.02 (l = 3) 144 0.92 (l = 3)
5− 31.86 8.22 335 5.81 (l = 3) 278 2.21 (l = 3)
6− 32.58 8.95 307 6.33 (l = 5) 245 2.10 (l = 5)
7− 33.68 10.0 281 4.87 (l = 5) 251 1.51 (l = 5)

LC states have very small widths in the 9Be + 9Be channel,
which is consistent with the α + 10Be +α picture shown in
Fig. 3(a). In contrast, the Kπ = 3− LC states exhibit large
9Be widths. This strong 9Be + 9Be correlation exhibits that
the experimental 9Be + 9Be collision is still a promising way
to produce the Kπ = 3− LC states if the head-on collision
cannot be realized.

To clarify the characteristic 9Be-decay modes, we calculate
overlaps between the Brink and AMD wave functions defined
as

O(r) =
∣∣〈�Kπ

BB (r)
∣∣P̂J

KK

∣∣�π
AMD

〉∣∣2∣∣〈�Kπ
BB (r)

∣∣P̂J
KK

∣∣�Kπ
BB (r)

〉∣∣∣∣〈�π
AMD

∣∣P̂J
KK

∣∣�π
AMD

〉∣∣ , (7)

where P̂J
KK is the angular momentum projection operator. The

Brink wave function, �Kπ
BB (r), is constructed by the linear

alignment of two 9Be nuclei, as shown in Fig. 1(a) antiparallel
�0+

BB(r) and (b) parallel �3−
BB(r) alignments:

�0+
BB(r) = P̂πA{

φ
jz=3/2
Be (−r/2)φ jz=−3/2

Be (r/2)
}
, (8)

�3−
BB(r) = P̂πA{

φ
jz=3/2
Be (−r/2)φ jz=3/2

Be (r/2)
}
. (9)

Here, the wave function of 9Be can be described as

φ
jz
Be = A{φα ⊗ φα ⊗ (0p3/2)}, (10)

where (0p3/2) is represented by an infinitesimally shifted
Gaussian wave packet based on the antisymmetrized quasi-
cluster model [39]. Figure 4 shows the calculated overlap as a
function of the distance r. The Kπ = 3− LC has a large over-
lap 0.84 with the Brink wave function �3−

BB(r = 6.5 fm) shown
in Fig. 1(b). In contrast, the Kπ = 0+ LC has an overlap of
0.52 with �0+

BB(r = 5.0 fm) shown in Fig. 1(a). Compared
with the Kπ = 3− linear chain, the 9Be + 9Be correlation is
small in the Kπ = 0+ LC. The Kπ = 3− and Kπ = 0+ states
exhibit different features in the outer region. The Kπ = 3−
state has a greater overlap in the outer region than that of the
Kπ = 0+ state with the outer peak position. At the present
channel radius of 7.0 fm, the overlap of Kπ = 3− is one order
of magnitude larger than that of Kπ = 0+, which leads to
the much larger 9Be + 9Be decay width. This difference is
reflected in the difference in the 9Be-reduced widths listed
in Table. III. The Kπ = 0+ LC has a weak 9Be + 9Be cor-
relation such that the 9Be-reduced widths are small, whereas

the Kπ = 3− LC has a strong 9Be + 9Be correlation such
that the member states have large 9Be-reduced widths. There-
fore, we conclude that the K = 3− LC states of 18O can
be observed via 9Be + 9Be resonant scattering shown in
Fig. 1(b).

Summary. In summary, we presented the first assessment of
the 4α + 2n LC configuration in 18O using AMD calculation.
There are two different 4α LC bands, Kπ = 0+ and Kπ = 3−.
We predicted their excitation energies, moment of inertia, and
α- and 9Be-decay widths. In both bands, the moment of inertia
was found to be rather large, which is strong evidence of ex-
treme deformation. The two types of LCs exhibited different
decay properties. The Kπ = 0+ LC states exhibited large de-
cay widths in the α + 14C(LC) channel, whereas the Kπ = 3−
LC states exhibited large decay widths in the 9Be + 9Be chan-
nel. To clarify this difference, we calculated overlaps with the
9Be + 9Be Brink wave functions. Consequently, the Kπ = 0+
LC was found to have a small overlap, whereas the Kπ = 3−
LC has large overlap, implying that the Kπ = 3− LC exhibited

FIG. 4. Calculated overlaps between the 9Be + 9Be Brink and
AMD wave functions. �+

LC and �−
LC correspond to Fig. 3(a) and (b),

respectively.
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a strong 9Be + 9Be correlation. Therefore, we expect that an
LC of 18O can be produced by head-on 9Be + 9Be collision.
We believe that these are promising characteristics that can be
investigated in future experiments to establish the existence of
the exotic 4α LC. Neutron emission channels, which we have
not calculated, also have a key role in the experimental search
for the LC states. It still remains a challenge for the future.
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