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Effects of nucleon-nucleon short-range correlations on inclusive electron scattering
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The nucleon-nucleon short-range correlation (NN-SRC) is one of the key issues of nuclear physics, which
typically manifest themselves in high-momentum components of the nuclear momentum distributions. In this
paper, the nuclear spectral functions based on the axially deformed relativistic mean-field model are developed
to involve the NN-SRC. With the spectral functions, the inclusive electron scattering (e, e′) cross sections are
calculated within the plane-wave impulse approximation (PWIA) framework, including the quasielastic (QE)
part and � production part. Especially in the � production region, we reconsider the electromagnetic structures
of the nucleon resonance �(1232) and the scattering mechanisms, and thereby the theoretical calculations are
improved effectively and the cross sections are well consistent with the experimental data. The theoretical (e, e′)
cross sections are further divided into NN-SRC and mean-field contributions. It is found that, at the kinematics
0.5 GeV2 < Q2 < 1 GeV2, the QE peak and � production peak not only reflect the mean-field structure but also
are sensitive to the NN-SRC information. Finally, we provide another method to extract the strengths of NN-SRC
from experimental cross sections for selected nuclei at the suitable kinematics.

DOI: 10.1103/PhysRevC.105.L051602

Introduction. Many-body Fermi systems including the
short-range correlation (SRC) are common in nature, such as
nuclear matter system and finite nuclei. The information on
nucleon-nucleon short-range correlation (NN-SRC) is useful
to answer several key issues about the properties of matter at
high densities, such as neutron stars and relativistic heavy-ion
collisions [1,2]. The research of the European Muon Col-
laboration (EMC) effect would benefit from the details of
NN-SRC, which describes the modification of the quark-gluon
structure of a nucleon bound in an atomic nucleus by the
surrounding nucleons [3].

The information on NN-SRC can be obtained by new
experimental data on electron scattering off nuclei. Corre-
sponding experiments have been carried out at the Jefferson
Laboratory [4–6], which are categorized into two groups:
the exclusive electron scattering (e, e′ p) and the inclusive
electron scattering (e, e′). Previous measurements of (e, e′ p)
experiments on 12C to 208Pb [7,8] pointed out that there are
approximately 20 times as many np-SRC pairs as there are pp-
SRC and nn-SRC pairs, which originate from the tensor part
of the nuclear force [9]. The (e, e′) experiments have shown
that SRC pair nucleons are shifted from low-momentum states
to high-momentum states [10]. According to the (e, e′) ex-
periments at SLAC and Jefferson Laboratory [11–13], the
ratios of (e, e′) cross sections on heavy nuclei to those of
the deuteron exhibit a plateau, at the squared four-momentum
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transfer Q2 > 1.4 GeV2 and large Bjorken scaling variable
1.5 < xB < 2. The plateau indicates that the high-momentum
components of different nuclei have a similar shape, and the
value of the plateau provides a chance to extract the proportion
of high-momentum nucleons. As the development of experi-
ment mentioned above, new theoretical works in the field of
electron scattering are also stimulated to explain the exper-
imental phenomenon and extract the information of nuclear
structure information.

The plane-wave impulse approximation (PWIA) is a con-
venient theory widely applied to explain the quasielastic (QE)
scattering and � production scattering [14]. Within the PWIA
framework, the spectral function can be introduced into the
descriptions of the (e, e′) scattering reaction. The spectral
function S(p, E ) is the probability of finding a nucleon with
given momentum p and removal energy E in nuclei [14].
The (e, e′) cross sections can be obtained by the two phys-
ical quantities: the spectral functions S(p, E ) representing
the nuclear structure, and the elementary cross section σeN

describing the process of an electron scattered by an off-
shell nucleon. It is a key problem for (e, e′) scattering to
calculate the elementary cross section, which depends on the
information the electromagnetic structure of the nucleon. For
the QE region, the cross sections have been well reproduced
at the quantitative level. However, because of the uncertain-
ties associated with the form factors in the � production
region, there are disagreements between theory and experi-
mental data, and the � production region still needs further
studies [15].
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Another key problem in (e, e′) scattering is accurate calcu-
lations of spectral function. The theoretical calculations of the
spectral function S(p, E ) can be assumed to consist of the MF
part SMF(p, E ) and the NN-SRC part Scorr (p, E ) [10,14,16].
The MF part SMF(p, E ) gives the descriptions that the nu-
cleons move in well-defined quantum states, under the effect
of an average field created by their interactions. Compared
with the SMF(p, E ), the NN-SRC part Scorr (p, E ) provides
supplementary description of nucleons with high momentum
and high removal energy above the Fermi surface, which are
caused by tensor attraction and short-range repulsion. The
ab initio method [17,18] is a fundamental method to describe
the NN-SRC of light nuclei, but it is still difficult to apply
to the medium and heavy nuclei. Because the NN-SRC is
unaffected by surface and shell effects [3], the Scorr (p, E ) of
the finite nuclei can be evaluated from rescaling the strength
of NN-SRC of deuteron [19].

In this paper, the (e, e′) scattering theory is linked with
the microscopic nuclear structure model, and the influences
of NN-SRC on the (e, e′) cross sections are studied. In the
calculations of � production scattering, the appropriate form
factors are used, in addition, the conservation of energy and
momentum in the scattering process and the decay width
of �(1232) are also considered. Therefore, the calculation
results have been significantly improved. On the basis of theo-
retical results, we study the effect of the NN-SRC part and the
mean-field part on the (e, e′) cross sections, respectively. Fur-
thermore, this paper analyzes the sensitivity of the inclusive
electron scattering to the NN-SRC at the different kinematics.
Finally, another method is proposed to extract the strength of
NN-SRC from the experimental cross sections.

Formulas. The calculations of spectral function in this pa-
per are divided into two categories: the MF part SMF(p, E ) and
the Scorr (p, E )

S(p, E ) = SMF(p, E ) + Scorr (p, E ), (1)

with the normalization requirement
∫

d3 pdES(p, E ) = A. In
this paper, the MF parts are calculated by the axially deformed
relativistic mean-field (RMF) model. At low energy E and
low momentum p, the MF part SMF(p, E ) is dominated by the
single-particle properties,

SMF(p, E ) =
∑

i

Ci(| fi(p)|2 + |gi(p)|2)Li(E − Ei ), (2)

where fi(p) and gi(p) are the two-dimensional Dirac spinors
in momentum space for the single-particle state i, and Ci is the
corresponding occupation number of the single-particle state
i. The finite width in energy dependence can be described by
Lorentzian function Li [20].

At the region of high energy E and high momentum p,
the NN-SRC part Scorr (p, E ) plays a leading role because
the strong dynamical NN-SRC leads to virtual scattering pro-
cesses exciting the nucleons to the states above the fermi
surface. The Scorr (p, E ) is determined by ground-state con-
figurations with the NN-SRC pair and the (A − 2) nucleon
residual system. The NN-SRC pair has a high relative mo-
mentum prel and a low center-of-mass momentum pc.m..
At the region of high p, the NN-SRC momentum distri-
bution originates from the relative momentum distribution

ncorr (p) = nrel (p), because of the low center-of-mass momen-
tum. Assuming the nc.m.(pc.m.) = (α/π )3/2 exp(−αp2

c.m.), the
Scorr(p,E) can be obtained by the integral of pc.m.[16]

Scorr (p, E ) = ncorr (p)
m

|p|
√

α

π

× [
exp

(−αp2
min

) − exp
(−αp2

max

)]
, (3)

where the α = 3/[4〈p2〉(A − 2)/(A − 1)]. The pmin and the
pmax are the lower and upper limits of the pc.m..

There are many microscopic or phenomenological methods
to calculate the ncorr (p), and the light-front dynamics (LFD)
method is adopted in this paper. In the LFD method, the
ncorr (p) can be obtained by rescaling the NN-SRC part of the
precise momentum distribution of deuteron. The momentum
distribution can be expressed as follows:

nτ
corr (p) = Nτ τCA[n2(p) + n5(p)], (4)

where the two components n2(p) and n5(p) reflect of
deuteron, which are deduced from LFD wave functions [21].
The n2(p) term is mainly induced by the tensor force, the
n5(p) term is mainly induced by the π exchange [22]. The
scaling factor CA is the ratio of high-momentum components
between other nuclei and deuteron. For different nuclei, the
scaling factor CA represents the strength of NN-SRC, which
needs to be extracted by electron scattering.

During the inclusive electron scattering (e, e′) process,
the incident electrons are interacted with the target nucleus
and scattered off from four-momentum k ≡ (Ek, k) to k′ ≡
(Ek′ , k′), The four-momentum transfer of scattered electrons
is q ≡ (ω, q). Neglecting the final-state interactions, the dou-
ble differential cross sections can be written as [14]

d2σ

d�dEk′
= α2

Q4

Ek′

Ek
LμνW μν, (5)

where α is the fine structure constant and the squared four-
momentum transfer Q2 = −q2 = ω2 − q2. In Eq. (5), the
leptonic tensor Lμν is completely determined by the electron
kinematics, and the nuclear tensor W μν includes all the infor-
mation of target nuclear

W μν =
∑

X

〈0|Jμ|X 〉〈X |Jν |0〉δ(4)(p0 + q − pX ), (6)

where Jμ is nuclear currents, and p0 and pX are the four-
momentums of hadronic initial states and final states. In the
impulse approximation (IA) scheme, the scattering process
is considered the incoherent sum of elementary scattering
reaction involving only one nucleon. Therefore, the nuclear
tensor can be described as

W μν =
∑

i

∫
d3 pdEw

μν
i (q̃)

(
m

Ep

)
S(p, E ). (7)

The nucleon tensor w
μν
i reflects the electromagnetic interac-

tions of a bound nucleon carrying momentum p.
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Combining with Eqs. (5) and (7), the (e, e′) cross sec-
tions can be written in the form

d2σ

d�dEk′
=

∫
d3 pdE

[
Sp(p, E )

d2σep

d�dEk′

+Sn(p, E )
d2σen

d�dEk′

]
δ(ω − E + m − E|p+q|),

(8)

where the elementary cross section d2σeN/d�dEk′ represents
the scattering of an electron by a nucleon for the QE and the
� production process [14]. We calculate the d2σeN/d�dEk′

using the form factors in QE process [14] and the � produc-
tion process [23], which reflect the electromagnetic structure
of the nucleon and the �(1232). For the integration process,
we determine the limits of integration by considering the con-
servation of energy and momentum in the scattering process.

In particular, for the � production process, the Lorentzian
shape � width is used as a substitute for the energy-
conserving δ function in Eq. (8) to produce a broadening of
the � peak and correspondingly a decrease of the strength

δ → 1

π

Γ (W )/2

(W − m�)2 + Γ (W )2/4
, (9)

where the parameter W is the invariant mass. The pa-
rameter Γ (W ) is the decay width of �(1232) [23]. The
integration interval of W goes from threshold to the maxi-
mum value allowed in the Fermi gas model m + mπ < W <√

(EF + ω)2 − (q − pF )2.
Momentum distribution and spectral function. The nucleon

momentum distributions n(p) and the nuclear spectral func-
tions S(p, E ) are calculated with the formulas above. The
corresponding nuclear wave functions in momentum space
are obtained from the axially deformed RMF model with
the NL3* parameter set. The correlation part Scorr (p, E ) is
obtained from the LFD method with the strength CA = 4.5 in
Eq. (4).

In Fig. 1(a), we present the logarithm of spectral function
S(p, E ) of 56Fe to highlight the NN-SRC part. We observed
that in the region of high removal energy (E > 100 MeV)
and high momentum (p > 1.5 fm−1), the spectral function is
mainly from the contributions of NN-SRC, which has no shell
structure and shows in a smooth ridge. Unlike the NN-SRC
part, one can clearly distinguish the different orbits from the
mean-field SMF(p, E ) in the region of E < 90 MeV and p <

1.5 fm−1 (region enclosed by a curve). The corresponding
nucleon momentum distribution n(p) of 56Fe are calculated
by S(p, E ) and presented in Fig. 1(b). The momentum distri-
bution extracted from the (e, e′) cross sections and analyzed
in terms of y scaling in Refs. [24,25] are also provided in
this figure for comparison. From Fig. 1(b), the mean-field
calculations only provide good descriptions on n(p) below
the Fermi momentum pF ≈ 1.39 fm−1. For p > pF , the n(p)
from the pure mean-field calculations decrease rapidly and
deviate from the n(p) from the y-scaling analyses. By con-
sidering the NN-SRC contributions, the value of n(p) on the
tail is enhanced and consistent with the result of the y-scaling
analyses.

FIG. 1. Momentum distribution n(p) and spectral functions
S(p, E ) of 56Fe for the deformation β = 0.17 calculated from the
deformed RMF model with the LFD method. In Fig. 1(a), the loga-
rithm of S(p, E ) is presented to highlight the NN-SRC part, and the
region enclosed by a curve describes the mean-field part. The open
squares represent the n(p) obtained from y-scaling analyses on (e, e′)
cross sections [25].

Inclusive electron scattering cross sections. In Fig. 2, we
present theoretical (e, e′) cross sections of 56Fe from the
spectral function of Fig. 1(a). The theoretical results of the
inclusive electron scattering can be divided into the QE peak
and � production peak. Good agreements with the experimen-
tal data are obtained in the total theoretical cross sections.
Especially for the � production region, we observed that
the location and the value of the experimental peak can be
reproduced well by Eqs. (8) and (9). The calculations of
� production cross sections rely on the nucleon structure
functions including the magnetic, electric, and Coulomb ex-
citation form factors. Thus, the � production peak contains
information about the nucleon’s excited states and the elec-
tromagnetic structure of �(1232) baryon, which is beneficial
for understanding strong interactions in the domain of quark
confinement.

Both the QE scattering and � production scattering fol-
low the energy and momentum conservations. The QE peak
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FIG. 2. The total (e, e′) cross sections of 56Fe calculated by
PWIA method at the kinematics Ek = 1.299 GeV and θ = 37.5◦,
where the spectral function is from RMF+LFD calculations. The ex-
perimental data are from Ref. [26]. Dotted lines, the cross sections of
the � production peaks; dashed lines, the cross sections of the QE
peaks.

locates at the energy transfer ωQE = Q2/2m = 0.33 GeV,
which reflects the process of the electron scattered by a free
nucleon [27]. For the � production scattering, the peak locates
at ω� = m� − m + ωQE = 0.62 GeV, which corresponds to
the excitation of a free nucleon to form a �(l232).

Effects of NN-SRC. In this part, we further separate the
(e, e′) cross sections into the MF part and the NN-SRC part.
The results of 56Fe are exhibited in Fig. 3, calculated with the
kinematics Ek = 1.108 GeV and θ = 37.5◦. For the strength
of NN-SRC, the corresponding proportion of high-momentum

FIG. 3. The (e, e′) cross sections of 56Fe at the kinematics Ek =
1.108 GeV and θ = 37.5◦, calculated with the S(p, E ) of Fig. 1(a).
Solid line, the total inclusive cross sections. Dotted line, the contri-
butions of MF part. Dashed line, the contributions of NN-SRC par.
The experimental data are from the Ref. [28].

nucleons is Y = 21.4% in total nucleon number. However, in
Fig. 3 the contributions of NN-SRC part to the total cross
sections are about 16%. It means that parts of the NN-SRC
nucleons with high E and p cannot take part in the (e, e′) re-
action, because of the conservation of momentum and energy.
With the increase of incident energy and angle, the contri-
butions of NN-SRC nucleons to the total cross sections are
enhanced. Therefore, it is suitable to extract the strength of
NN-SRC from the (e, e′) reaction at the kinematics with high
Q2.

It was pointed out that the ratio of the (e, e′) cross sec-
tions per nucleon of nucleus A to that of deuterium have a
plateau [11–13], in the range of the Bjorken scaling vari-
able 1.5 < xB < 2 and the squared four-momentum transfer
Q2 > 2 GeV2. At this condition, the (e, e′) cross sections are
mainly from the NN-SRC nucleons, and the contributions of
mean-field nucleons can be negligible because of the energy
and momentum conservations. From the analyses of Fig. 3,
we also found that the kinematics with high Q2 are suitable to
extract the strength of NN-SRC, which agrees with previous
studies.

Extract the strength of the NN-SRC. In Fig. 4, we present
the inclusive cross sections of 16O, 27Al, 56Fe, and 186W cal-
culated by the spectral function for the different strength of
NN-SRC. To extract the information of NN-SRC form nuclei,
we choose the squared four-momentum transfer ranges from
0.5 to 1 GeV2, and the corresponding kinematics are given
in Fig. 4. From Fig. 4, one can observe there are noticeable
changes of (e, e′) cross sections near the QE and � pro-
duction peaks for different correlation strength. For 16O in
Fig. 4(a), the correlation strengths are CA = 1.0, 4.2, and 8.0,
and the high-momentum nucleons account for 6.5%, 22.4%,
and 35.2% in total nucleon number, respectively. Comparing
the theoretical (e, e′) cross sections with the experimental
data, the strengths of NN-SRC are constrained to be CA = 4.2
for 16O, which indicates the correlated nucleons contribute to
about 22.4% of the total nucleon number. For 27Al, 56Fe, and
186W, the corresponding analysis are also carried out. Finally,
we obtain that the strengths of NN-SRC are CA = 5.3 for 27Al,
CA = 4.5 for 56Fe, and CA = 5.0 for 186W. The percentages
of high-momentum nucleons in total nucleon number are
Y = 25.5% for 27Al, Y = 21.4% for 56Fe, and Y = 20.2%
for 186W. In this analysis, we found that the correlated terms
contribute to about 20% of the total nucleon in medium and
heavy nuclei, which verifies the ab initio calculation from
Ref. [31] and is consistent with the result from exclusive
electron scattering in Refs. [7,8].

In previous (e, e′) studies [11–13], at the region 1.5 <

xB < 2 the strengths of NN-SRC are also extracted to be 5.2
for 56Fe and 5.3 for 27Al from the plateau of the ratios of
(e, e′) cross sections between heavy nuclei and the deuteron.
The method of extracting the strengths of NN-SRC from
the plateau can remove interference of the mean-field part.
However, this region 1.5 < xB < 2 corresponds to a narrow
range of low energy transfer, as shown in the shaded area
of Figs. 4(b) and 4(c). At kinematics Q2 > 2 GeV2, the QE
peak and � production peak are not obvious, and the deep
inelastic scattering (DIS) plays a dominate role in total (e, e′)
cross sections, which is sensitive to the internal structure of
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FIG. 4. (a) The inclusive cross sections of 16O at the kinematic Ek = 1.5 GeV and θ = 32◦ for different NN-SRC strengths, calculated from
the spectral function from RMF+LFD method. (b) Same as panel (a) but for 27Al at the kinematic Ek = 2.02 GeV and θ = 15.022◦. (c) Same
as panel (a) but for 56Fe at the kinematic Ek = 2.02 GeV and θ = 15.022◦. (d) Same as panel (a) but for 186W at the kinematic Ek = 1.108 GeV
and θ = 37.5◦. The shaded areas in panels (b) and (c) represent the region of the Bjorken scaling variable 1.5 < xB < 2. The experimental data
are from Refs. [26,29,30].

a proton or neutron. In Fig. 4 of this paper, the Q2 region
0.5–1 GeV2 is selected for different nuclei. One can see that at
this kinematics, the inclusive cross sections are mainly from
the contributions of QE process and � production process,
which can better reflect the information of NN-SRC effects
and mean-field structure in nuclei.

Summary. The short-range correlation is an important
nuclear property associated with the high-momentum compo-
nents of the nuclear momentum distributions. In this paper,
the effects of NN-SRC on the inclusive electron scattering
process are systematically studied, where the nuclear spectral
functions are obtained from the combinations of the deformed
RMF model and the LFD method. By using the appropriate
form factors and the decay width, we improve the theoretical
cross sections in the � production region.

We further separate (e, e′) cross sections into MF and the
NN-SRC parts. One can see that the increase of NN-SRC
strength causes a reduction of the cross sections near the QE
and the � production peaks. By the method proposed in this
paper, the strength of NN-SRC for the 16O, 27Al, 56Fe, and

186W are constrained from the experimental data at suitable
kinematics to be CA = 4.2, 5.3, 4.5, and 5.0, respectively,
which correspond the proportions of high-momentum nucle-
ons Y = 22.4%, 25.5%, 21.4%, and 20.2%.

The research in this paper can help to distinguish the
nuclear effects and beyond the standard model effects in
neutrino-nucleus scattering experiments. Furthermore, the
studies are useful for understanding the nuclear structure and
comprehending the strong interactions.
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