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Searches for neutrinoless double-β decay rates are crucial in addressing questions within fundamental sym-
metries and neutrino physics. The rates of these decays depend not only on unknown parameters associated with
neutrinos, but also on nuclear properties. In order to reliably extract information about the neutrino, one needs
an accurate treatment of the complex many-body dynamics of the nucleus. Neutrinoless double-β decays take
place at momentum transfers on the order of 100 MeV/c and require both nuclear electroweak vector and axial
current matrix elements. Muon capture, a process in the same momentum transfer regime, has readily available
experimental data to validate these currents. In this Letter, we present results of ab initio calculations of partial
muon capture rates for 3He and 6Li nuclei using variational and Green’s function Monte Carlo computational
methods. We estimate the impact of the three-nucleon interactions, the cutoffs used to regularize two-nucleon
(2N) interactions, and the energy range of 2N scattering data used to fit these interactions.
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Introduction, conclusions, and outlook. Nuclei play a cru-
cial role in high-precision tests of the standard model and
searches for physics beyond the standard model. These in-
vestigations, including neutrinoless double-β decay (0νββ)
searches [1] and high-precision β-decay experiments [2–4],
require a thorough understanding of standard nuclear ef-
fects in order to separate them from new physics signals.
In particular, 0νββ-decay experiments aim to establish the
origin and nature of neutrino masses and test leptogenesis
scenarios leading to the observed matter-anti-matter asym-
metry in the universe [1]. Rates of these decays depend
not only on unknown neutrino parameters, but also on nu-
clear matrix elements. The latter can be provided only from
theoretical calculations. Thus, a prerequisite of this exper-
imental program is an accurate treatment of the complex
many-body dynamics of the nucleus and its interactions with
neutrinos. If one assumes that 0νββ-decay proceeds via the
exchange of a light Majorana neutrino between two nu-
cleons, then the momentum carried by the neutrino is on
the order of 100 MeV/c [1,5]. Muon captures on nuclei—
processes where a muon captures on a proton in the nucleus
releasing a neutron and a neutrino—involve momentum trans-
fers on the order of the muon mass. The scope of this
Letter is to validate our nuclear model in this kinematic
regime by calculating muon capture rates in A = 3 and
A = 6 nuclei for comparison with available experimental
data.

Muon capture reactions have been treated extensively from
both the theoretical and the experimental points of view
[6–9], and rates have been obtained in light systems with
several methods [10–21]. Here, we present calculations of par-

tial muon capture rates using quantum Monte Carlo (QMC)
methods [22]—both variational (VMC) and Green’s func-
tion Monte Carlo (GFMC) methods—to solve the nuclear
many-body problem. QMC methods allow one to fully re-
tain the complexity of many-body physics and have been
successfully applied to study many nuclear electroweak prop-
erties over a wide range of energy and momentum transfer,
including total muon capture rates in 3H and 4He [23], low-
energy electroweak transitions [24–28], nuclear responses
induced by electrons and neutrinos [29–31], 0νββ-decay ma-
trix elements [5,32–34], and matrix elements for dark matter
scattering [35].

The Norfolk two-nucleon (2N) and three-nucleon (3N)
(NV2+3) local chiral interactions [36–39] have been used in
combination with QMC methods to study static properties of
light nuclei [37,40–43], and in auxiliary-field diffusion Monte
Carlo [44], Brueckner-Bethe-Goldstone [45,46], and Fermi
hypernetted chain/single-operator chain [47,48] approaches to
investigate the equation of state of neutron matter [49,50].
Reference [51], a study which included the current authors,
reports on Gamow-Teller (GT) matrix elements calculated for
A � 10 nuclei using the NV2+3 models and their consistent
axial-vector currents at tree level from Refs. [38,39,52]. The
study validated the many-body interactions and currents in the
limit of vanishing momentum transfer. In the present Letter,
we use the same nuclear Hamiltonians and axial currents,
along with chiral vector currents retaining loop corrections
developed in Refs. [24,25,53,54] to test the model at moderate
momentum transfers on the order of 100 MeV/c and to assess
the sensitivity of partial muon capture rates to the dynamical
input.
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In the A = 3 system, we obtain an average rate for all Nor-
folk models of �(A = 3; VMC) = 1512 ± 32 s−1 at the VMC
level that agrees with the experimental result of 1496.0 ±
4.0 s−1 [55] within error bar. In the A = 6 system, the VMC
partial capture rate of �(A = 6; VMC) = 1243 ± 59 s−1 is
significantly slower than the available experimental data point
of 1600+330

−129 s−1 [56] but falls into the range of previous the-
oretical estimates [57–63]. We analyzed uncertainties due to
(i) the choice of cutoffs used to regularize the NV2 interac-
tions, (ii) the energy range of 2N scattering data used to fit
the model low-energy constants (LECs), (iii) two different
versions of NV3 interactions, i.e., the nonstarred model fit to
the nd scattering length and the trinucleon binding energies,
and the starred model fit to the triton GT matrix element and
the trinucleon binding energies, and (iv) a 10% variation in the
nucleonic axial radius. In the A = 3 system, the largest source
of uncertainty comes from the choice of the 3N interaction
model, whereas for A = 6 we find that the uncertainty due to
the 3N interaction is slightly less than but on the order of the
cutoff and energy range uncertainties. On average, there is a
change in the rate by ±0.6% when the axial radius is varied
in the interval rA = [0.5859, 0.7161] fm.

We improved upon our VMC estimate by performing
GFMC propagations using models NV2+3-Ia and NV2+3-
Ia*, or Ia and Ia* for short in both the A = 3 and the
A = 6 systems. These models share the same 2N inter-
action but differ in how the 3N interaction is fit with
(cD, cE ) = (3.666,−1.638) for Ia [40] and (cD, cE ) =
(−0.635,−0.090) for Ia* [39]. Model Ia, constrained by
strong interaction data only, achieves 1.5% agreement with
the experimental datum for A = 3 with a calculated rate of
1519 ± 3 s−1. Its counterpart, model Ia*, constrained to both
strong and electroweak data, underpredicts the experimental
rate by a few percent. For A = 6, we find that the model
Ia* propagation significantly decreases the rate due to the
monotonic growth of the 6He ground state rms radius at early
imaginary times. By contrast, model Ia has a stable radius
throughout the GFMC propagation, and the rate decreases by
less than 1%; nevertheless, it still underpredicts the experi-
mental datum.

Given the large error bars on the 6Li datum and the wide
range of values from past theoretical calculations, we ad-
vocate for renewed experimental and theoretical attention
to this partial capture rate. Whereas in this Letter we fo-
cus on 3He and 6Li to demonstrate the impact of this sort
of study, there are other muon capture rates with available
experimental data which the combination of QMC methods
and NV2+3 chiral Hamiltonians could be made to address
with future development; examples are 10B, 11B, 12C, 16O,

and 40Ca [7]. Calculations of these rates, particularly, for the
heavier nuclei, would be valuable in further validating the
present ab initio approach in the kinematic regime relevant
to 0νββ-decay.

Partial muon capture rate. The muon capture processes
3He(μ−, νμ) 3H and 6Li(μ−, νμ) 6He are induced by the
weak-interaction Hamiltonian HW [64,65],

〈kν, hν |HW |kμ, sμ〉 = GV√
2

∫
d3x e−ikν ·x l̃σ (x) jσ (x), (1)

where GV = GF cos θC = 1.1363 × 10−5 GeV−2 is the
Fermi coupling constant extracted from analyses of superal-
lowed β-decays [66], jσ and l̃σ are the hadronic and leptonic
four-current density operators [10], sμ is the muon spin, hν is
the neutrino helicity, and kμ and kν are the muon and neutrino
momenta, respectively. The value of GV adopted here is from
a more recent analysis and is ≈1.1% smaller than that used in
previous calculations based on the hyperspherical harmonics
method with chiral currents from Ref. [12].

For a transition from an initial nuclear state |i, Ji Mi〉—
where Ji/ f and Mi/ f denote the nuclear spin and its
projection—to a final nuclear state | f , Jf M f ,−kν〉 recoiling
with momentum −kν , the general expression for the capture
rate (�), summed over the final states and averaged over
the initial states, is given (in the limit of vanishing kμ) by
[10,64,65]

d� = 1

2(2Ji + 1)

∑
sμ,Mi

∑
hν ,M f

2π δ(ω)

×|〈kν, hν ; f , Jf M f ,−kν |HW|sμ; i, JiMi〉|2 d3kν

(2π )3
, (2)

where the argument of the δ function is

ω = Eν +
√

E2
ν + (m f + E f )2 − (mμ + mi + Ei ), (3)

and Ei and E f are the initial and the final state energies of
the nucleus [67–69]—we have neglected internal electronic
energies since they are on the order of tens of eVs for the
light atoms under consideration. We also used the following
definitions:

mi = Zmp + Nmn + (Z − 1)me,

m f = (Z − 1)(mp + me) + (N + 1)mn (4)

for an initial nucleus with charge number Z and neutron
number N , and we denoted with mp, mn, and me the proton,
neutron, and electron masses, respectively.

The final integrated rate can be conveniently written in
terms of matrix elements of the nuclear electroweak current
components [11],

� = G2
V

2π

|ψav
1s |2

(2Ji + 1)

E∗2
ν

recoil

∑
M f ,Mi

{|〈Jf , M f |ρ(E∗
ν ẑ)|Ji, Mi〉|2 + |〈Jf , M f | jz(E∗

ν ẑ)|Ji, Mi〉|2

+ 2 Re[〈Jf , M f |ρ(E∗
ν ẑ)|Ji, Mi〉〈Jf , M f | jz(E∗

ν ẑ)|Ji, Mi〉∗] + |〈Jf , M f | jx(E∗
ν ẑ)|Ji, Mi〉|2

+ |〈Jf , M f | jy(E∗
ν ẑ)|Ji, Mi〉|2 − 2 Im[〈Jf , M f | jx(E∗

ν ẑ)|Ji, Mi〉〈Jf , M f | jy(E∗
ν ẑ)|Ji, Mi〉∗]}, (5)
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TABLE I. VMC calculations of partial muon capture rates in 3He and 6Li obtained with chiral one-body only [�(1b)], and one- and
two-body [�(2b)] axial and vector currents corresponding to the eight NV2+3 models. The third column gives the factor R used to account
for the finite nuclear charge distribution. The experimental result is given in the last column. All uncertainties on the theoretical predictions are
Monte Carlo errors.

Capture Model R �(1b) (s−1) �(2b) (s−1) Expt. (s−1)

3He ( 1
2

+
; 1

2 ) → 3H( 1
2

+
; 1

2 ) Ia (Ib) 0.995 (0.995) 1350.3 ± 0.8 (1363.4 ± 0.2) 1564.4 ± 0.9 (1545.7 ± 0.3) 1496.0 ± 4.0 [55]
Ia* (Ib*) 0.995 (0.995) 1357.4 ± 0.2 (1358.5 ± 0.2) 1473.9 ± 0.3 (1483.6 ± 0.3)
IIa (IIb) 0.995 (0.995) 1369.7 ± 0.2 (1372.8 ± 0.2) 1533.8 ± 0.3 (1512.4 ± 0.3)

IIa* (IIb*) 0.995 (0.995) 1364.5 ± 0.2 (1372.5 ± 0.2) 1484.4 ± 0.3 (1497.0 ± 0.3)
6Li (1+; 0) → 6He(0+; 1) Ia (Ib) 0.990 (0.990) 1196 ± 2 (1243 ± 2) 1282 ± 2 (1331 ± 2) 1600+330

−129 [56]
Ia* (Ib*) 0.990 (0.990) 1154 ± 3 (1188 ± 2) 1177 ± 3 (1233 ± 2)
IIa (IIb) 0.990 (0.990) 1227 ± 2 (1142 ± 2) 1294 ± 2 (1185 ± 2)

IIa* (IIb*) 0.990 (0.990) 1215 ± 2 (1151 ± 2) 1257 ± 2 (1185 ± 2)

where we have chosen k̂ν = −ẑ and have introduced the
outgoing neutrino energy [11],

E∗
ν = (mi + Ei + mμ)2 − (m f + E f )2

2(mi + Ei + mμ)
, (6)

and recoil factor,

1

recoil
=

(
1 − E∗

ν

mi + Ei + mμ

)
. (7)

The factor |ψav
1s |2 is written as R |ψ1s(0)|2, where ψ1s(0) is the

1s wave function, evaluated at the origin of a hydrogenlike
atom, and R approximately accounts for the finite size of
the nuclear charge distribution [11], here calculated with the
NV2+3 Hamiltonians.

Nuclear Hamiltonians and electroweak currents. To cal-
culate the nuclear matrix elements required by Eq. (5) we
employ VMC [70] and GFMC [71] methods. For a com-
prehensive review of these methods, see Refs. [22,41] and
references therein. Details about the calculation of matrix
elements using GFMC wave functions are found in Eqs. (19)–
(24) of Ref. [72].

The many-body Hamiltonian is composed of a (one-body)
kinetic energy term, and the Norfolk 2N and 3N local inter-
actions that include next-to-next-to-next-to-leading order and
next-to-next-to-leading order terms in the chiral expansion,
respectively. Details about the derivation of the interaction
in chiral effective field theory can be found in Refs. [36–39].
Here, we briefly summarize the differences between the model
classes employed in this Letter. Models in class I (II) fit
the 2N interaction to about 2700 (3700) data points up to
laboratory energy of 125 (200) MeV in the nucleon-nucleon
scattering database with a χ2/datum of about �1.1 (�1.4).
Within each class, models a and b differ in the set of cutoffs
adopted to regularize the short- and long-range components
of the interaction either (RS, RL ) = (0.8, 1.2) fm for model a
or (RS, RL ) = (0.7, 1.0) fm for model b [36,37]. The different
fitting procedures result in different values for the 26 unknown
LECs governing the strength of short-range terms in the inter-
actions. Accompanying these 2N interactions is the leading
chiral 3N interaction which introduces two unknown LECs
cD and cE (in standard notation) constrained to reproduce
the trinucleon binding energies and, concurrently, either the

GT matrix element contributing to tritium β-decay [39] in
the starred model or the nd-doublet scattering length in the
nonstarred one [40].

Lastly, the vector and axial current operators entering
the calculation were derived with time-ordered perturba-
tion theory by the JLab-Pisa group using the same χEFT
formulation as the NV2+3 interactions. Details about the
electroweak currents used in this Letter can be found in
Refs. [24,25,38,39,52–54].

Results. The results of the VMC calculation of the partial
muon capture rate in A = 3 and A = 6 using the NV2+3
nuclear Hamiltonian are presented in Table I. Capture rates
were determined using nuclear axial and vector current op-
erators consistent with the NV2+3 model. The nuclear axial
currents [38] contain only tree-level diagrams whereas the
vector current operators account for loop corrections derived
in Refs. [24,25,53,54].

Calculations of the rate with the leading order one-body
only [�(1b)] and one- plus two-body electroweak currents
[�(2b)] were performed for ground state to ground state tran-
sitions. The partial capture rate on 3He has been precisely
measured [55], and the one-body contribution alone cannot
reproduce this measurement. With the two-body electroweak
currents included, the VMC rates increase by about 9%–16%.
At this level, the agreement with the datum ranges from about
0.1%–4.6%. How the 3N interaction was fit has the most sig-
nificant impact on the rate, leading to differences on average
of 54 s−1 whenever the 3N interaction is changed. Note that
the LEC cD entering the 3N interaction governs the strength
of the axial contact current at next-to-next-to-next-to-leading
order in the chiral expansion [51]. Therefore, variations in
the 3N interaction lead to variations in the current as also
observed in the study of Ref. [51] on β-decay matrix elements.
The cutoff and energy range of the fit lead to changes in
the rate of 16 and 22 s−1 on average, respectively, which is
consistent with the findings of Refs. [12,15].

In the 6Li capture, the inclusion of two-body electroweak
currents also increases the rate with a greater enhancement
in the nonstarred models relative to their starred counter-
parts. Even with this increase, ranging approximately from
3% to 7%, the rates predicted at the VMC level for the NV2+3
models are about 11–21% slower than the available exper-
imental datum [56]. Here, the difference due to the 3N
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TABLE II. VMC and GFMC calculations of partial muon capture rates in 3He and 6Li obtained with chiral one- and two-body axial and
vector currents with the NV2+3 models. The experimental result is given in the last column. All uncertainties on the theoretical predictions
are Monte Carlo errors.

Capture Model � (VMC) (s−1) � (GFMC) (s−1) Expt.

3He( 1
2

+
; 1

2 ) → 3H( 1
2

+
; 1

2 ) Ia 1564.4 ± 0.9 1519 ± 3 1496.0 ± 4.0 [55]
Ia* 1473.9 ± 0.3 1433 ± 2

6Li(1+; 0) → 6He(0+; 1) Ia 1282 ± 2 1277 ± 10 1600+330
−129 [56]

Ia* 1177 ± 2 926 ± 8

interaction is no longer the dominant contribution to the un-
certainty. We find that, on average, the cutoff and energy range
of the fit both change the rate by 72 s−1, whereas the 3N
interaction changes the rate by 60 s−1.

We compute a VMC average for both rates under study
and use the average changes due to the chiral 2N interac-
tion cutoffs, the energy range used to fit the interaction, and
the 3N interaction to assign a total error bar. An additional
source of uncertainty was considered by varying the nucle-
onic axial radius parameter by ±10%. We found that, on
average, the difference in the rate was ±0.6% due to this
variation. We combine the four uncertainties in quadrature to
determine the overall uncertainty on the VMC averages, ob-
taining �(A=3; VMC) = 1512 ± 32 and �(A=6; VMC) =
1243 ± 59 s−1.

In addition to the VMC calculation, a GFMC propagation
was performed for models Ia and Ia*, and corresponding
results are reported in Table II. These two models provided
the fastest and slowest VMC partial capture rates for A = 3
and should give an upper and a lower limit on GFMC rates.
The GFMC method removes spurious contamination from
the VMC wave functions by propagating them in imaginary
time τ and should, thus, provide more reliable results for
these two nuclear Hamiltonians. Figure 1 displays our average
VMC results as well as both VMC and GFMC results for
models Ia and Ia*, compared with experimental data and past
theoretical calculations. The GFMC error is taken to be half
the difference between the two available calculations.

FIG. 1. The partial muon capture rate in (a) 3He and (b) 6Li
from the the NV2+3-Ia and NV2+3-Ia* models in VMC (light
blue circle) and GFMC (dark blue star) calculations compared with
other work (orange squares) [12–16,57–63]. The experimental val-
ues (dashed gray line) and their errors (shaded region) [55,56] are
included for comparison with the theory predictions.

At the VMC level, model Ia overpredicted the A = 3 muon
capture rate by 4.6%. After propagation, the rate is decreased
and reaches a 1.5% agreement with the datum. By contrast,
model Ia*, which had 1.4% agreement with the experimental
datum at the VMC level, now underpredicts the rate by 4.2%.

In Fig. 1(a), one sees that the results of past chiral calcu-
lations in Refs. [12,15] fall within the bounds for the NV2+3
GFMC rate provided by models Ia and Ia*. Even when using
the more recent value of GV , the rate of Ref. [12] falls within
our GFMC band. Although there is this agreement, because
these past calculations use a different set of chiral currents and
underlying nuclear interactions than the present Letter, it is
difficult to directly compare them to our GFMC results. In the
future, benchmark calculations with other ab initio methods
based on the same dynamical inputs would be useful to further
validate the present microscopic approach.

Whereas the A = 3 GFMC rates exhibit few percent de-
creases from the VMC ones, the A = 6 rates display a
dramatically different behavior for models Ia and Ia*. The
matrix elements for the model Ia calculation were fairly sta-
ble when propagated from VMC to GFMC, resulting in a
modest subpercent change in the overall rate. However, for
model Ia*, the dominant matrix elements changed at the few
percent level, but since the rate is proportional to the square
of the matrix element, this leads to a roughly 20% change in
the rate.

To further understand this behavior, one can look at the
system size as a function of τ during the GFMC propagation
of the A = 6 nuclei. The system size for 6Li(1+; 0) grows at
the same rate in τ for both models; however, the 6He(0+; 1)
ground state size is stable for model Ia, but increases mono-
tonically in τ before beginning to converge for model Ia*
(see the Supplemental Material [73]). Because of the e−iq·ri

dependence in the dominant one-body terms of the current
operator, the matrix elements at a finite value of q experience a
more significant drop for model Ia* due to the diffuseness of
6He(0+; 1) with that interaction. Performing the same anal-
ysis for the A = 3 system, we find that the system size is
consistent between both models as a function of τ , explaining
the similarity in their decreasing trend for this partial muon
capture rate.

The difference with experiment in A = 6 is significant
for both models Ia and Ia*, especially when compared with
the few percent agreement obtained in GFMC calculations of
the GT matrix element for the 6He → 6Li β-decay [51]. As
detailed in Ref. [63], calculations of this rate [57–63] have
ranged from 1160 to 1790 s−1. The calculation of Ref. [63]
matched the experimental datum by modeling 6Li as a 3He + t
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cluster and using the Fujii-Primakoff [57] effective Hamil-
tonian for muon capture. Subpercent agreement was also
obtained by Ref. [59], which treated the 6Li and 6He nuclei
as elementary particles with magnetic and axial form factors
extracted from experiment. The two calculations presented
by the authors of that work adopted different formulations
of the partially conserved axial current relation to obtain the
pseudoscalar form factor with the faster rate using the Gell-
Mann-Lévy version [74] and the slower rate using the Nambu
one [75]. The Nambu definition is consistent with the induced
pseudoscalar term in the weak axial current from χEFT.

It is difficult to compare our result with those of other the-
oretical treatments of the 6Li partial capture rate, particularly,
since most of these treatments are decades old. For example,
in the work of Ref. [61] the weak-interaction Hamiltonian
is that of Eq. (1); however, the 6Li and 6He bound states
are described by shell model wave functions with valence
configurations restricted to the 1p shell; moreover, the nuclear
electroweak current neglects meson-exchange contributions
[61]. We find that our result at leading order (obtained with
one-body currents) is quenched relative to the shell model
one as we would have expected (see Ref. [51]). More mod-
ern calculations with other ab initio methods and a novel

measurement of the rate would be valuable in establishing the
validity of our nuclear inputs and the many-body approach.
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