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We investigate the dineutron in the 2+
1 state of 6He via analysis of its decay mode by using the complex

scaling method. In this Letter, we propose the cross section for the resonant state to distinguish the resonant
contributions from the nonresonant ones. As a result, it is found that the shoulder peak appears in the cross
section for the resonant state as a function of εn-n. Furthermore, we show that the S = 0 component of the cross
section, where S is the total spin of the two valence neutrons, has a peak around the shoulder peak, which comes
from the dineutron configuration in the 2+

1 state. Thus we conclude that the shoulder peak is expected to indicate
the existence of the dineutron in the 2+

1 state.

DOI: 10.1103/PhysRevC.105.L041601

Introduction. Neutron-rich nuclei have been intensively
pursued since the development of radioactive ion-beam ex-
periments. Two-neutron halo nuclei appear near the neutron
drip line and have two loosely bound neutrons surrounding
a core nucleus. A property of two-neutron halo nuclei is
that the structure is described by a n + n + core three-body
system, referred to as the Borromean structure, which has no
bound subsystems. Besides, there is only one bound state,
i.e., the ground state. In the ground state of two-neutron
halo nuclei, existence of the dineutron, which is a spatially
compact two-neutron pair, has been predicted in various the-
oretical calculations [1–14]. Recently, it has been clarified
that the dineutron develops in the surface region of 11Li by
an experiment for the knockout reaction [12]. Furthermore,
experimental studies for Coulomb breakup reactions indicate
the existence of the dineutron in the ground states of 6He [13]
and 19B [14].

Excited states of two-neutron halo nuclei appear above the
three-body threshold as resonant states. The resonant states
are unbound states and decay into three particles, namely, two
neutrons and a core nucleus. Elucidation of some resonant
states, e.g., the 2+

1 state in 6He [15] and unbound nuclei
6Be [16–18], 16Be [17,19], and 26O [20,21], have attracted
much attention and have been investigated via decay-particle
measurements, which include information on the structure.
However, the decay observables, such as excitation energy
spectra of the cross section, contain not only the resonant con-
tribution but also contributions from the nonresonant states.
To investigate structural information of the resonant states, we
need to eliminate the nonresonant contributions from the cross
section [22]. This point makes it difficult to clarify properties
of the resonant states.
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6He is the lightest two-neutron halo nucleus and has been
investigated intensively so far [13,23–33]. In Ref. [15], the
2+

1 resonant state of 6He was investigated via the 6He + 12C
reaction at 240 MeV/nucleon [23]. In previous work, the
double-differential breakup cross section (DDBUX) with
respect to the two-neutron relative energy (εn-n) and the en-
ergy between the centers of mass (c.m.) of the two-neutron
system and α (εnn-α) was calculated by combining the con-
tinuum discretized coupled channels (CDCC) method [34]
with the complex-scaled Lippmann-Schwinger (CSLS) equa-
tion [10,11]. Furthermore, to extract the contribution from the
resonant state, they calculated the breakup cross section as a
function of εn-n, dσ/dεn-n, by gating the total excited energy
of 6He within the range of the energy of the 2+

1 state, where the
DDBUX was integrated over εnn-α . According to the results,
the shoulder peak appears in dσ/dεn-n around 0.8 MeV. They
suggested that the shoulder peak indicates the existence of the
dineutron in the 2+

1 state. Recently the structure has attracted
much attention because the experimental study [35] reported
the observation of the shoulder peak.

Although the cross section is gated within the res-
onant energy, it cannot completely exclude the non-
resonant contributions from the cross section. There-
fore, the evidence of the dineutron in the 2+

1 state is
insufficient at this stage. To clarify this point, it is necessary
to isolate a resonant state in multichannel systems and analyze
its contribution to the cross section. In order to calculate the
resonant states, various approaches have been used so far, such
as the complex scaling method (CSM) [36–38] and methods
based on the hyperspherical coordinate [19,27,39,40]. In this
study, we propose a method of extracting only the resonant
contribution from the cross section by using the CSM. In the
CSM, the resonant state can be completely separated from
the nonresonant state. Therefore we can evaluate the cross
section to the resonant state calculated by the CSM.

In this Letter, the dineutron in the 2+
1 state of 6He is

investigated via the analysis of the 6He + 12C reaction at
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240 MeV/nucleon in a framework combining the CDCC with
the CSLS. The reaction is described as a n + n + α + 12C
four-body system, and the 2+

1 state is obtained by the CSM. In
this analysis, we calculate the DDBUX and dσ/dεn-n for the
resonant contribution and discuss the dineutron configuration
in the 2+

1 state.
Formalism. The 6He + 12C system is described as a four-

body breakup reaction, and the Schrödinger equation is
written as

[KR + U + h − E ]|� (+)〉 = 0, (1)

with

U = Un + Un + Uα + VC, (2)

where R represents the coordinate between the c.m. of 6He
and 12C. KR is the kinetic energy operator associated with R,
and h is the internal Hamiltonian of 6He. Un (Uα) describes the
optical potential between n (α) and 12C. These potentials are
obtained by the folding model with the Melbourne g matrix
[41] in the same manner as used in Ref. [42]. VC is the
Coulomb potential between the c.m. of 6He and 12C, that is,
Coulomb breakup is neglected in this study.

The CDCC equation is constructed within the model space
P as

P[KR + U + h − E ]P|� (+)〉 = 0, (3)

where P is defined by

P =
∑

n

|�n〉 〈�n| . (4)

A set of eigenstates {�n} is obtained by diagonalizing h with
the Gaussian expansion method (GEM) [43] and includes the
bound and discretized continuum states. In the CDCC, the
transition matrix to the discretized state is represented as

Tn = 〈�nχ
(−)
n (Pn)|U − VC|P� (+)〉 , (5)

where χ (−)
n (Pn) is the Coulomb wave function with the

asymptotic relative momentum Pn and satisfies the incoming
boundary condition. Using the smoothing procedure with the
CSLS [15], the continuous transition matrix is calculated as

Tε(k, K, P) =
∑

n

fε,n(k, K )Tn, (6)

with the smoothing function defined as

fε,n(k, K ) = 〈�(−)
ε (k, K )|�n〉 . (7)

Here �(−)
ε is the three-body scattering wave function of 6He

with the internal energy ε and satisfies the incoming boundary
condition. The asymptotic relative momentum regarding R
is represented by P, and the asymptotic internal momenta
of k and K in 6He satisfy the relation ε = (h̄2k2)/(2μn-n) +
(h̄2K2)/(2μnn-α ), where μn-n and μnn-α are the reduced masses
of the n-n and nn-α systems, respectively.

To calculate fε,n(k, K ), we apply the CSLS that describes
the three-body scattering wave function with the appropriate
boundary condition:

fε,n(k, K ) = 〈φ(k, K )| �n〉

+
∑

ν

〈φ(k, K )|VU −1
θ

∣∣�θ
ν

〉 1

ε − εθ
ν

〈
�̃θ

ν

∣∣Uθ |�n〉,
(8)

where φ represents the plane wave for three-body scatter-
ing. V is the sum of the interactions in h. Uθ is the scaling
transformation operator in the CSM. The νth eigenstate with
the eigenenergy εθ

ν calculated by the CSM is represented by
�θ

ν . It should be noted that a set of eigenstates {�θ
ν} forms a

complete set as
∑

ν |�θ
ν〉 〈�̃θ

ν | = 1, which is referred to as an
extended completeness relation [44–46]. Furthermore, com-
bining U −1

θ Uθ = 1 with the extended completeness relation,
we obtain

∑
ν U −1

θ |�θ
ν〉 〈�̃θ

ν |Uθ = 1.
Using Eq. (6), the DDBUX with respect to εn-n and εnn-α is

calculated as

d2σ

dεn-ndεnn-α
=

∑
n

∑
n′

T †
n Tn′

×
∫

dkdKdP f †
ε,n(k, K ) fε,n′ (k, K )

× δ

(
Etot − h̄2P2

2μR
− εn-n − εnn-α

)

× δ

(
εn-n − h̄2k2

2μn-n

)
δ

(
εnn-α − h̄2K2

2μnn-α

)
, (9)

where Etot is the total energy of the reaction system, and μR is
the reduced mass of the 6He + 12C system.

To extract the resonant contribution from Eq. (9),
we consider the transition matrix to �θ

ν , which is sep-
arated into the resonant and nonresonant states. Insert-
ing

∑
ν U −1

θ |�θ
ν〉 〈�̃θ

ν |Uθ = 1 into Eq. (6), the continuous
transition matrix and its Hermitian conjugate are rewritten as

Tε(k, K, P) =
∑

ν

f θ
ε,ν (k, K )T̃ θ

ν , (10)

with

T̃ θ
ν =

∑
n

〈
�̃θ

ν

∣∣Uθ |�n〉 Tn, f θ
ε,ν = 〈�(−)

ε |U −1
θ

∣∣�θ
ν

〉
. (11)

In Eq. (11), the arguments of k and K are omitted for sim-
plicity. T θ

ν , which has the same definition in Ref. [47], can
be interpreted as the transition matrix to �θ

ν . Using Eq. (10),
Eq. (9) is rewritten as the following summation for ν:

d2σ

dεn-ndεnn-α
=

∑
ν

∑
ν ′

T θ†
ν T θ

ν ′

×
∫

dk dK dP f θ†
ε,ν (k, K ) f θ

ε,ν ′ (k, K )δe.c.,

(12)

where δe.c. represents a set of the three δ functions in Eq. (9).
We confirm that the result of Eq. (12) is consistent with that of
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Eq. (9). In this study, we define the DDBUX for the resonant
state as

d2σνR

dεn-ndεnn-α
≡ T θ†

νR
T θ

νR

×
∫

dk dK dP f θ†
ε,νR

(k, K ) f θ
ε,νR

(k, K )δe.c.,

(13)

where νR represents the resonant state 2+
1 with the resonant

energy εr and decay width �. This cross section is referred as
the resonant cross section in this Letter.

In this study, we apply the same internal Hamiltonian h as
used in Ref. [22]. As a model space for the total spin I and the
parity π in 6He, we take Iπ = 0+, 1−, and 2+. The particle ex-
change between valence neutrons and neutrons in α is treated
with the orthogonality condition model [48]. In the GEM, we
take the Gaussian range parameters ri (i = 1, 2, . . . , N) that
lie in geometric progression. We adopt the same parameters
in Ref. [15] for �n. For �θ,ν in the CSLS and �θ

νR
, (N , r1,

rN ) = (22, 0.1 fm, 75 fm) and (16, 0.1 fm, 25 fm) are taken,
respectively. As a result, we obtain the ground state energy
−0.972 MeV and (εr , �) = (0.823 MeV, 0.121 MeV) for the
2+

1 . The scaling angle θ is set to 12◦. The convergence of the
calculated cross section has been achieved within about 5%
fluctuation.

Results and discussions. First, to discuss the dineutron in
the 2+

1 state, we consider the angular density as

ρ(θ12) ≡ 〈
�̃θ

νR

∣∣δ(ω − θ12)
∣∣�θ

νR

〉
, (14)

where θ12 is the opening angle between the two valence neu-
trons. This density is normalized as

∫
ρ(θ12)dθ12 = 1 and is

independent of the scaling angle in the CSM. The details of
ρ(θ12) are discussed in Ref. [49]. Here it should be noted
that the angular density of a resonant state is complex be-
cause an expected value for a resonant state is defined in
the framework of non-Hermitian quantum mechanics [50].
According to Ref. [51], the real part means the expected value
of an operator, and the imaginary part, which comes from
the interference between the resonant state and nonresonant
states, corresponds to the uncertainty of the expected value.

In Fig. 1(a), we demonstrate the angular density of the
ground state represented by the solid line, which shows the
two peaks at the small and large angles. The peak at the
small angle indicates the dineutron configuration because the
small angle means a short distance between the two valence
neutrons. To discuss this behavior in more detail, we separate
the angular density into the S = 0 and 1 components, where
S represents the total spin of the two valence neutrons. The
dotted and dot-dashed lines represent the angular density for
S = 0 and 1, respectively. One sees that the S = 0 component
has also the two peaks at the small and large angles, and the
S = 1 component behaves almost symmetrically. Therefore,
the dineutron is formed in the case for S = 0.

The solid line in Fig. 1(b) represents the real part of the
angular density of the 2+

1 state, and it takes the maximum

�
�

�

�
�

�

FIG. 1. The angular density of (a) the ground state and (b) the 2+
1

state. This density is a function of the opening angle between the two
valence neutrons.

value in the region θ12 = 60–80◦. Since the imaginary part
of ρ(θ12) shown by the dashed line is negligibly small, we
discuss only the real part of ρ(θ12). The dotted and dot-dashed
lines represent the angular density for S = 0 and 1, respec-
tively. One can see that the S = 0 component has a peak
structure at the small angle. Therefore the dineutron in the
2+

1 state is expected to be clear when we focus on the S = 0
component. Next we discuss the DDBUX for the 6He + 12C
reaction at 240 MeV/nucleon. Figure 2(a) shows the DDBUX
describing the transition to the 2+ continuum states calculated
with Eq. (9). In this analysis, the OCM is not included in V for
Eq. (8) because we avoid the instability of numerical results as
mentioned in Ref. [52]. The peak structure can be seen when
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�n-n�nn-�

d2
� �

R

/d
� n
-n
d�
nn
-�

�n-n�nn-�

d2
�/
d�
n-
nd
� n
n-
�

FIG. 2. The breakup cross sections describing the transition to
(a) the 2+ continuum states calculated with Eq. (9) and (b) the 2+

1

state calculated with Eq. (13). Here the panel (b) shows the real part
of DDBUX.

ε (= εn-n + εnn-α ) is around 0.8 MeV, which corresponds to
the resonant energy of the 2+

1 state. This behavior is the same
as shown in Fig. 1(b) of Ref. [15]. Moreover, as shown in
Fig. 2(b), one clearly sees that the behavior of the DDBUX
for the 2+

1 calculated by using the resonant cross section is
similar to one in Fig. 2(a). It should be noted that the absolute
value of Fig. 2(b) is larger than the one of Fig. 2(a). The large
absolute value can be reduced by the contributions from the
interference between the resonant state and nonresonant states
as discussed later. In order to investigate the dineutron in the
2+

1 state, we calculate the cross section with respect to the εn-n

as

dσνR

dεn-n
≡

∫
D

d2σνR

dεn-ndεnn-α
dεnn-α

(D : εr − �/2 � εn-n + εnn-α � εr + �/2). (15)

ds
n R
/d
n-
n

n-n�

�

FIG. 3. The breakup cross section with respect to εn-n calculated
by using Eq. (15).

This cross section shows the energy distribution of the two
valence neutrons decaying from the resonant state. In Fig. 3,
the solid line shows the cross section, and the same two peaks
discussed in the previous study [15] are seen. One is the clear
peak around 0.2 MeV and the other is the shoulder peak
around 0.7 MeV, which is mentioned as the contribution from
the dineutron in the 2+

1 state. Because the cross section in
Fig. 3 is reduced from only the 2+

1 state, we can conclude that
the shoulder peak confirmed in the previous study comes from
the 2+

1 state, not the nonresonant states.
To investigate the shoulder peak in more detail, we separate

the cross section into the S = 0 and 1 components. To this end,
the scattering wave function is represented as follows

〈�(−)
ε (k, K )| = 〈�(−)

ε,S=0(k, K )| + 〈�(−)
ε,S=1(k, K )| , (16)

where �
(−)
ε,S (S = 0, 1) describes that the two neutrons have the

total spin S in the asymptotic region. Using Eq. (16), Eq. (15)
is rewritten as

dσνR

dεn-n
=

(
dσνR

dεn-n

)
S=0

+
(

dσνR

dεn-n

)
S=1

, (17)

where (dσνR/dεn-n)S corresponds to the cross section obtained
by replacing the �(−)

ε in Eq. (11) with �
(−)
ε,S . The dotted and

dot-dashed lines show the S = 0 and 1 components, respec-
tively. One can see that the S = 0 component has two peaks.
The first peak around 0.2 MeV contributes to the clear peak of
the total component, and the second peak around 0.7 MeV
has effects on the shoulder peak. For the second peak, the
two-neutron pair has a relatively large momentum that means
a spatially compact pair in the coordinate space. Consequently
we can conclude that the shoulder peak indicates the existence
of the dineutron in the 2+

1 state.
Furthermore, to discuss the large absolute value of the res-

onant cross section, we calculate the breakup cross section for
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d�
/d
� n
-n

�n-n

FIG. 4. The breakup cross section with respect to εn-n calculated
by using Eq. (19).

the interference between the resonant and nonresonant states
defined as(

dσ

dεn-n

)
interference

≡
∫

D
dεnn-α 2 Re

[ ∑
ν∈D′

T θ†
ν T θ

νR

×
∫

dkdK dP f θ†
ε,ν (k, K ) f θ

ε,νR
(k, K )δe.c.

]

(D′ : εr − �/2 � Re[εθ
ν ] � εr + �/2, ν �= νR). (18)

Here ν satisfies the region D′, that is, Eq. (18) gives the
interference from the nonresonant states near the resonant
energy of the 2+

1 state. The dashed line in Fig. 3 means the
sum of the solid line and Eq. (18). Therefore the effect of
the interference reduces the breakup cross section without
changing its shape. In this analysis, we confirmed that the non-
resonant contributions, which are the terms for ν = ν ′ �= νR in
Eq. (12), and the interference between the nonresonant states
are negligible. Further the absolute value of the dashed line
would be smaller when we expand the region D′. Next, to
evaluate the contribution from the dineutron in the 2+

1 state
on the cross section, which can be observed practically, we
calculate the cross section with respect to εn-n defined in
Ref. [15] as

dσ2+
1

dεn-n
≡

∫
D

d2σ

dεn-ndεnn-α
dεnn-α. (19)

Here d2σ/dεn-ndεnn-α is the component of the 2+ continuum
states as shown in Fig. 2(a). In Fig. 4, the solid line describes
the obtained cross section, and the shoulder peak is also seen
in the present result. The dotted and dot-dashed lines represent
the results of the S = 0 and 1 components, respectively. The
behavior of the cross section in Fig. 4 is consistent with that in
Fig. 3. Thus the cross section gated within the resonant energy
region corresponds to that for the resonant state.

Finally, we investigate the dependence of the dineutron
structure on the interaction between the two neutrons vnn

d�
/d
� n
-n

�n-n

FIG. 5. Same as Fig. 4, but with the Gogny-Pires-Tourreil inter-
action as vnn.

in 6He. As another vnn, we use the Gogny-Pires-Tourreil
interaction [53], which has been successful in several three-
body calculations for core + n + n [2,54,55]. In Fig. 5, the
solid line shows the breakup cross section calculated with
Eq. (19). The dotted and dot-dashed lines represent the S = 0
and 1 components, respectively. One can see the same shoul-
der peak as the one obtained with the Minnesota interaction
as vnn. Thus the dineutron structure appears in the 2+

1 state
with the reliable vnn. Furthermore we confirm that the optical
potential does not depend on the dineutron structure because
the T matrix including the effect of the optical potential is just
a constant coefficient of the resonant cross section.

Summary. We analyzed the DDBUX of the 6He + 12C re-
action at 240 MeV/nucleon to investigate the dineutron in
the resonant state 2+

1 . To eliminate the nonresonant contri-
bution from the DDBUX, we defined the DDBUX for the
resonant state by reconstructing the transition matrix with the
extended completeness relation in the CSM. The calculated
cross section for the resonant state as a function of εn-n has the
shoulder peak, which is discussed as the contribution from the
dineutron. Thus we found that the shoulder peak comes from
the resonant state, not nonresonant state. Furthermore, we
separated the cross section into the S = 0 and 1 components.
As a result, the S = 0 component of the cross section has
the second peak around the shoulder peak. In the second
peak, the two-neutron pair has a relatively large momentum
that corresponds to a spatially compact configuration between
the two neutrons. Therefore the shoulder peak is expected to
indicate the existence of the dineutron in the 2+

1 state, and
the dineutron structure does not depend on vnn and the optical
potential. In the cross section, which can be observed prac-
tically, the same peak is confirmed in the S = 0 component.
These results strongly support the suggestion in the previ-
ous study. Recently, new experimental data for 6He + 12C
reaction system [35] showed the shoulder peak, and our
calculations thus play an important role in understanding the
data.
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One of the important points of this study is that we can
investigate the structure of a resonant state by using the reso-
nant cross section. In addition, the shape of the resonant cross
section does not depend on the reaction system because the
T matrix is just a constant coefficient for the resonant cross
section. In a forthcoming paper, we analyze several resonant

states of other two-neutron halo nuclei, such as 11Li, 14Be, and
22C, by using the resonant cross section.
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