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Single-nucleon energies changing with nucleon number
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Accumulated experimental data on the binding energies for single-particle states in a broad range of nuclei
is examined as a function of the constituent number of neutrons and protons and a simple pattern emerges. The
dependence of the energies of neutron states on the number of constituent protons, or of proton states on the
number of neutrons, behave similar to each other across the nuclear chart, and the sign reflects the well-known
strong attraction. The change in energy of neutron states with neutron number or proton states with protons is
approximately a factor of four weaker in magnitude and slightly repulsive, except when the changing nucleons
are only within the same orbit as the state. These patterns in the experimental data underlie much of what is
implicitly understood from nuclear models, but the consistency throughout the periodic table is remarkable.
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The representation of the structure of nuclei in terms of
the shell model [1,2] was enormously successful over the
past approximately 70 years, providing the framework for
our understanding. In this approximation nucleons are con-
tained in a mean field in relatively unperturbed single-particle
orbits. The mean field is taken to be provided by the rest
of the nucleons, and the structure is dependent on the re-
maining residual effective interaction between the valence
nucleons.

The evolution of shell structures in exotic nuclei, the
change in the relative energies, and gaps in the energies of
single-particle states, was a central theme of the field both
experimentally and theoretically, and in particular how they
evolve with nucleon number [3,4]. They have provided in-
sights into components of the nucleon-nucleon interaction,
such as the role of the tensor force in shell evolution [5] and
of three nucleon forces [6,7].

Looking at the absolute changes in these energies, the gross
behavior of the binding energy of the last nucleon shows a
pronounced difference in how the energies change for va-
lence protons and neutrons, a pattern that was well known
[8,9]. For instance, as neutrons fill across the chain of stable,
even tin isotopes [10,11], proton states become more bound
moving from A = 112–124 by about 0.4 MeV per additional
neutron, whereas neutron states become less bound over the
same range by about 0.1 MeV per neutron. This observation,
which reflects the approximately fourfold difference in the
magnitudes of the strengths of the np (isospin mixed) and
T = 1 interactions between nucleons, is apparent simply from
the experimentally determined binding energies [12], more
commonly referred to as effective single-particle energies.

Here we study these trends more globally, exploring sys-
tems across the nuclear chart, taking advantage of the large
body of data collected over the past decades. Early attempts
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in this direction, notably those of Cohen [13] and Bansal and
French [14], observed some of the features, but were focused
more narrowly.

The data we consider are presented in Fig. 1, where ef-
fective single-particle energies for given jπ orbitals across
the nuclear chart, labeled as Eπ

j and E ν
j for protons and

neutrons, respectively, are plotted against proton or neutron
number Z or N . The data are organized into two categories: (a)
showing the evolution of the effective single-particle energies
for protons (neutrons) where the neutron (proton) number is
changing, reflecting the np interaction, and (b) tracking the
effective single-particle energies for protons (neutrons) where
the proton (neutron) number is changing, yielding insight into
the T = 1 interaction.

The data used in compiling Fig. 1 are from specific papers
and from compilations, such as Ref. [15]. For example, more
detailed work and analyses on transfer reaction data sets on
different chains of isotones and isotopes, that provide the nec-
essary information for determining effective single-particle
energies are in Refs. [10,11,16–20]. Specific details of the
orbitals in Fig. 1 are given in the Supplemental Material
[21]. In total, effective single-particle energies for 33 different
orbitals, in nuclei from A = 16–208 were used, with each
segment containing consecutive even-even nuclei. Most of the
data included in Fig. 1 are for nominally spherical nuclei,
with one exception (labeled ν[521]), where transfer data were
obtained on a given orbit across 13 well-deformed rare-earth
nuclei [24,25].

In total, 33 segments of single-particle energies were used,
a total of about 200 points. In some cases, the energies of
the likely dominant component of a state is known, but the
strength of the nucleon adding or removing reaction is not,
and assumptions were made. In others, there are several mea-
surements that do not quite agree. Most of these differences
are consistent with the uncertainties shown in the estimated
errors in the figures and do not significantly impact the general
features discussed here.
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FIG. 1. Effective energies (Eπ,ν
j ) plotted in terms of absolute

binding energies on the target as a function of the changing number
of protons or neutrons. The points corresponding to one state are
connected by lines. Each segment is labeled as to the configuration of
the state studied. Data from purely hole states are open circles, others
are filled symbols. In (a), the changing nucleons are of the other
kind to the state tracked (np interaction) and in (b), the changing
nucleons are the same kind as in the state studied (the interaction is
T = 1) segments where only the occupancy of the state in question is
changing are shown in green; those where occupancies are changing
in several orbitals for the segment are in red. For the data in panel
(b) an approximate Coulomb correction is applied to the proton
states.

As an example, the first segment on the left of the upper
panel of Fig. 1, the hollow points correspond to the energies
of the 0d3/2 neutron-hole excitations in N = 20 nuclei, in 34Si,
36S, 38Ar, 40Ca, 42Ti, and 44Cr. There are reaction data avail-
able for all but the last two points, where assumptions were
made, and the isobaric analog state has to be considered in
37Ar. Some of such details are discussed in the Supplemental
Material [21].

In the simple cases, where there is a single neutron or
proton (or hole) on a closed shell of the same type of nucleon,
and the other type of nucleon is varied, the nucleon-adding or
removing strength is often concentrated in one state. Where
details of nuclear structure may be more complicated, and
the s.p. degree of freedom is fragmented, the spectroscopic-
factor weighted centroid energies are taken [26]. Hole states
are treated on the same basis as particle states. The energies

are with respect to zero binding of the nucleon or hole, thus
always negative.

These segments in Fig. 1(a) are approximately parallel and
moving downward, becoming more bound, with added nucle-
ons. The horizontal scale is logarithmic. Where measured, the
segments for particle and hole states are almost contiguous.
Some of the minor variations in slope are caused by the
specific j dependence of the tensor force, that was investigated
extensively in connection with changing shell structure [5].

Figure 1(b) shows the data, where the same species of
nucleons are varied as the states tracked; the values for Eπ,ν

j
are derived by combining the energies of particle and hole
excitations, taken as the energy centroids of the nucleon-
adding and -removing strengths as defined by Baranger [27]:
Eπ,ν

j = E+
j G+

j + E−
j G−

j . Here E±
j are the centroid energies

for adding or removing a nucleon, and G± are the summed
strengths, with G+

j + G−
j = 1.0.

The Baranger expression for combining particle and hole
energies is needed when the nucleons varying are of the same
species as that of the state studied, and their occupancy is
changing, but it is trivially correct even for pure particle or
pure hole states. When the occupancy is changing within the
string studied, it may be changing either along with those
for other orbitals, as in the strings of Ni or Sn isotopes for
neutron states when N is changing, or only the occupancy of
that orbital, as for ν0 f7/2 in the Ca isotopes.

The slopes of all these segments in Fig. 1(b) are much less
steep than those in Fig. 1(a), and are shown in different colors,
depending on whether only nucleons in the same orbit as the
state followed are changing, or the occupancies of several are
changing. They are clearly different.

In some cases given in Fig. 1, no transfer reaction data are
available, and so simple approximations are made, such as that
the final state in question is a single-particle state (sometimes
supported by log f t values or systematics in neighboring nu-
clei. Errors bars are modified accordingly (and it is noted in
Ref. [21].)

There are some concerns as to whether the derived en-
ergies are true “observables,” particularly when the strength
is fragmented, and because of the uncertainties in reaction
theory [28,29]. Detailed past works in a few cases [30,31]
suggest that the uncertainties from fragmentation are mostly
smaller than the change between adjacent points in the
segments in Fig. 1. The use of reaction models in deter-
mining centroids of single-particle strength also introduces
some uncertainties, but these are generally small compared
to other contributions to the error bars. We note that for a
segment for a given j, in Fig. 1, the Q-value dependence
of the calculated cross section (typically done in a distorted
wave Born approximation framework) is small, and mostly
the spectroscopic-factor weighted energies (centroids) are the
same within the error bars, as the cross-section-weighted en-
ergies.

The slopes of all these segments in Fig. 1(b) are much
less steep, by about a factor of four, than those in Fig. 1(a).
Here, different colors are used, depending on whether only
nucleons in the same orbit as the state tracked are changing,
as for ν0 f7/2 in the Ca isotopes, or the occupancies of several
orbits are changing as in Ni or Sn isotopes. The slopes for
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TABLE I. The logarithmic derivative of the Eπ,ν
j with respect to

nucleon number.

Slope dEπ,ν
j /d (lnN ) (MeV)

Average (np) −21.3 (3.7)
Average (T = 1), one orbit −4.1 (1.3)
Average (T = 1), several orbits +4.6 (1.5)

these two categories are distinctly different. The mean values
of the slopes and their rms spread are listed in Table I.

Because the segments shown in Fig. 1(b) involve one type
of nucleon, only the T = 1 interaction can play a role in the
data. An approximate correction to remove Coulomb effects
[21] was applied to the cases where Z is changing for proton
states to allow a meaningful comparison between neutron and
proton data, but higher-order Coulomb effects (e.g., changing
radius because of added nucleons) are complex, and no cor-
rections were made.

In one case in Fig. 1(b), the neutron 0d3/2 holes in the Ca
isotopes, the sequence of energies shows a break at N = 20,
where this orbit is filled. The sequence is split at the shell
closure, the data below N = 20 are separated from the data
above. While the 0d3/2 orbit is filling, the slope shows the
characteristic downward trend, as in all the cases where only
the orbit considered is changing its occupancy. Above N =
20, as the 0 f7/2 orbit fills, the slope is upward, as is always
the case when the occupancy of more than the state studied is
changing.

From Fig. 1(a) it is clear that the influence of added neu-
trons on proton states, or of added protons on neutron states
is strongly attractive. This feature has been recognized for a
long time Yukawa [32] and is inherent in the nature of pion
exchange. An “asymmetry term” is part of the semi-empirical
mass formula [33,34]. But our purpose here is not to review
the history of the NN interaction.

It is well known and expected from one-pion exchange,
that the np and T = 0 interactions are much stronger than the
T = 1.1 The mean values of the slopes (logarithmic derivative
with respect to nucleon number) in the various subgroups and
the rms variation among them are shown in Table I. The indi-
vidual values for these are given in the Supplemental Material
[21].

The relative constancy of the slopes in Fig. 1 and Table I
over an almost order of magnitude change in nucleon number,
has not been explicitly noted before, though it may have been
implicitly assumed.

This apparent similarity between the slopes of energies
changing with nucleon number, is a feature of plotting them
on a logarithmic scale in N or Z . The pattern would be quite
different, were the data plotted on a linear scale. The slope
for each segment, d (Eπ,ν

j )/dN or dZ , is plotted in Fig. 2.
The lines correspond to constant change in energy for the

1Another reflection of a larger role for the np interaction is in two-
nucleon knockout (e, e′2N ), where closely correlated np pairs are
found to be at least six times more likely than nn and pp pairs [35].
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FIG. 2. The slope of effective energies vs nucleon number for the
line segments shown in Fig. 1. Blue dots are the slopes for segments
where the nucleons changing are different from the one in the state,
np, those in Fig. 1(a). The red and green points correspond to the
slopes of segments where the nucleons are the same species as in
the state, T = 1, from Fig. 1(b). The lines represent a 1/N or 1/Z
dependence, normalized to the data (the assumption that the slope in
fractional change in the numbers of nucleons is constant). The shaded
areas indicate the approximate range of the data. The inset shows the
monopole of the empirical two-body matrix elements from Ref. [36]
as discussed in the text with the nucleon numbers the average of the
species contributing to that multiplet for that nucleon. The shaded
areas and the lines are the same in the inset as in the main figure.

same f ract ional change in nucleon number, consistent with
the naive picture that each nucleon contributes equally to the
overall binding field.

Indeed, the slopes of the different line segments follow the
lines with some scatter, likely from differences in overlaps
between orbits and the details of the effective interaction, such
as the tensor component. But the scatter is small compared to
the magnitude of the slopes.

The most dramatic difference, evident in Fig. 1 and Table I,
is that where the changing nucleons are the same as the one
tracked (T = 1), the slope is less in absolute magnitude than
for the np case. The magnitude of this difference is approxi-
mately consistent with the empirical “symmetry term” in the
semiempirical mass formula and the Woods Saxon potentials
of the optical model for nucleons which is briefly discussed
further below.
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In a past survey, some of us studied two-nucleon spectra
outside closed shells [36], where complete multiplets for two
nucleons outside doubly-closed-shell nuclei were reviewed.
At doubly closed shells, such as 16O, 40Ca, 90Zr, or 208Pb,
where the difference in binding energies of one particle
outside the core nucleus is compared with that of the two
nucleons, yielding the complete multiplet for the two-body
(NN) interaction in nuclei such as 210Bi, 210Pb, and 208Bi.

The monopole moment M0 of the experimental multiplets
should be closely linked to (effectively the same as) the slopes
derived here. This is shown in the inset of Fig. 2. The energy
in each data point in this inset is the monopole moment of a
multiplet from Ref. [36], with the nucleon number the average
of that for the two-nucleon species contributing. The process
of going from the binding energy of one nucleon to that of two
nucleons outside the core, amounts to a two-point segment,
and provides a slope in the same sense as used for the data in
Fig. 1.

It is remarkable that the M0 values for identical orbits fall
mostly below 0, and the ones for nonidentical ones (red) above
it. Thus the observed patterns in the slopes is confirmed, and
not an artifice arising from the approximations of the Baranger
interpolation [27], for instance. We will return to this briefly
below.

The purpose of this note was primarily to present the
data with as little reference to models as possible. Neverthe-
less, some discussion of the potential for the nucleon-nucleus
interaction seems appropriate. This was approximated in
shell-model studies of nuclear structure by infinite oscillator
potentials for the sake of calculational convenience. More
recently, ab initio calculations have been used to great effect,
where the interaction is finite, derived from the free NN scat-
tering, and there are no constraints on radii.

Nucleon-nucleus scattering was parametrized historically
since the introduction of the empirical optical model [37], to
fit data on the scattering of nucleons on nuclei (for example,
Ref. [38]) and later, these finite potentials, were also used
to describe bound single-particle states adjacent to closed
shells [39]. In Bohr and Mottelson [40] the dependence of
single-particle states is shown as a function of A, calculated
from an empirical Woods-Saxon potential, and the qualitative
agreement with data is mentioned.

As shown in Fig. 3, a pattern qualitatively similar to that
seen in the data requires a cancelation between the effect of
the symmetry term and the changing radius. A symmetry term
with a fixed radius would yield a dependence with slopes that
are roughly equal and opposite, while a changing radius with
no symmetry term would give essentially the same slopes. But
when both are included, the pattern is similar to what is seen in
the data. The functional Woods-Saxon form has a diffuse edge
and finite binding, and is characterized by a radius that varies
as r0A1/3 and a strength that is a constant, V0, plus a symmetry
term proportional to ±Vsym(N − Z )/A. The exact parameters
do not matter for this qualitative behavior, the values used
were r0 = 1.17 fm, V0 = −50 MeV, and Vsym = 30 MeV.

The near cancelation of the effects of an increasing radius
and a decreasing potential strength happens in the potential
for neutrons with changing neutron number. But in the pro-
ton potential the radius still increases, but the sign of the

30 40 50 70 100

-8

-7

-6

-5

-4

-3

-2

-1

0

N

E
n

er
g

y
  
(M

eV
)

Full Calculation

V = V0 + 30*(N-Z)/A

R~A1/3

protons

neutrons

30 40 50 70 100

N

R fixed

R = R112

30 40 50 70 100

N

Vsym fixed

V = V112
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with the same symmetry term and the radius fixed at that for 112Sn.
The right-hand panel is with no (N − Z )/A dependence, the potential
fixed at the value for 112Sn, and the radius again changing as A1/3.

symmetry-term contribution to the potential changes, the two
terms have the same sign, and reinforce the change. That is as
should be expected with an empirical potential.

One should not regard this as an “explanation,” rather that
the empirical parametrization does describe the data, reason-
ably well. The symmetry term implicitly assumes that it is
a perturbation on the main part of the interaction. But in
view of the trend in the data that the interaction of a neutron,
with another neutron is different from that with a proton, it is
tempting to write a mathematically exactly equivalent form in
terms of a first term describing the interaction with the other
type of nucleons Vnp, and the second with the same type, VT =1

instead of V0 and Vsym, as we have done in Eq. S2 in the Sup-
plemental Material [21]. This would yield Vnp

∼= −80 MeV
and VT =1

∼= −20 MeV (and thus, VT =0
∼= −140).

The observation that the T = 0 and “np” interactions are
much stronger than that between identical T = 1 nucleon
pairs is certainly not new. Nor is the fact that, on average,
the nuclear radius changes as A1/3. The interaction between
the increasing radius and the symmetry term, is built into the
empirical parametrization of the Woods-Saxon potential. Con-
sider the string of Sn isotopes with 50 protons. These protons
are the dominant source of the potential that binds the neu-
trons. The closed shell of protons remains essentially the same
throughout the Sn isotopes, except that the nuclei must be
getting larger with added neutrons and the protons spread out
over a larger volume. If these protons all contribute equally
to the overall potential, then their dilution will correspond to
a weaker potential, and this effect must be incorporated in
the symmetry potential. This qualitative argument needs to
be taken with caution, because the measured charge radius is
changing in a somewhat complex way; at a rate slower than
A1/3 when neutrons are added, but the rate is not the same in
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the Sn isotopes as in the Ca isotopes. The use of the symmetry
term in the average potential is a useful empirical tool, but it
is an approximation.

This may perhaps help to suggest an explanation for the
two groups of slopes for the T = 1 segments In Figs. 1 and 2.
The behavior of the corresponding two-body matrix elements
from Ref. [36] are shown in the inset of Fig. 2. As was already
noted the behavior of the two groups of T = 1 slopes is very
similar to the pattern of T = 1 matrix elements in [36] for
the j1 = j2 and the j1 �= j2 matrix elements. In that reference,
the very small (and sometimes repulsive) monopole matrix
elements were approximately reproduced by two interactions,
an attractive Yukawa potential with a range of one-pion ex-
change, and a longer range repulsive term, that tended to
cancel the average attraction; the fit was not sensitive to the
exact range of the repulsive term as long as it was longer
than that of the attractive one. The need and magnitude of
the attraction was determined by the higher multipole content
(downward curvature) of the two-body spectra; in particular
see the behavior of the T = 1 matrix elements in Figs. 2 and
6 of Ref. [36].

In re-examining the details of that cancelation, it seems
that, on the average, the attractive term is slightly larger (by a
few percent) when the two nucleons are in the same orbit, than
when they are in different orbits, as may be expected because
of a more perfect radial overlap. The data requires a near-zero
monopole term. In Ref. [36], oscillator wave functions were
used without allowing for a changing radius between, for in-
stance, 41Ca and 42Ca. Using crude arguments, the magnitude
of this effect of a changing radius is comparable to making the
monopole interaction slightly repulsive.

In retrospect, and in view of the behavior with radius
shown in Fig. 3, one may wonder whether the apparent repul-
sive term may have its origin in the effect of the inevitably

changing radius, that is traditionally ignored. But our pur-
pose here is to point out trends in the data, and leave it to
further work to come up with possible model explanations
for the simple trends that are apparent in the largely model-
independent features.

To summarize, our survey of the data indicates at least four
features, three of which were apparently not fully recognized,
and that may help as a guide to our intuition, beyond what
seems to be generally understood and accepted.

(1) The change in single-particle energies with nu-
cleon number is qualitatively different, depending on
whether the nucleons in the state are the same or dif-
ferent from those changing.

(2) The change per nucleon, is essentially the same as the
experimentally observed monopole term in the effec-
tive NN interaction.

(3) The change with fractional change in nucleon number
is remarkably constant from A ≈ 16 to almost 208.

(4) For identical nucleons, the change is small, but it does
matter whether the nucleons are all in the same orbit
or not. The change in radius between adjacent nuclei
seems to have a significant influence on the effective
interaction, particularly between identical nucleons.

As the field moves toward more and more exotic nuclei,
near the limits of binding, and the quality of data improves,
the question of how the binding energies of individual orbits
change with added nucleons, and exploring and understanding
systematics is likely to help complement the detailed work on
the evolution of shell structure.
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