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Learning correlations in nuclear masses using neural networks
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There have been great improvements in the predictions of nuclear masses, yet it is difficult to exactly reproduce
the measured nuclear mass. It has been suggested that the cause of such discrepancies is due to the negligence
of many-body effects in the available theoretical models. The errors in the prediction of the nuclear mass show
residual correlations due to the missing physics in the mass models. In the present Letter we have tried to learn
such correlations by using the neural networks. We have used a neural network architecture which adaptively
learns the linear and nonlinear correlations between the data of different fidelity. We have used the theoretical
predictions of finite range droplet model and Hartree- Fock-Bogoliubov models in the input of the neural
networks. The present approach show significant improvements in the accuracy of the predictions. It has been
clearly presented that the difference between the predictions from the present approach and the experimental
data behave more, such as white noise, showing that using the present approach the residual correlations arising
due to the missing physics from the available mass models can be learned.
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Nuclear masses can be measured experimentally with the
great precision because of the advances made in the field of
nuclear mass spectroscopy. The accurate knowledge of the
nuclear mass is very important in describing many nuclear
processes. The accuracy in the nuclear mass has a direct
impact on our understanding about the nuclear structure [1],
nuclear effective interactions [2], and of nucleosynthesis [3].
Despite the great progress in measuring the nuclear mass
[4,5], the theoretical models have to be used for predict-
ing the nuclear masses in the region far from the stability
[1]. Many theoretical models have been proposed over the
years to predict nuclear masses. The mainly used nuclear
mass models consist of macroscopic models (e.g., Bethe-
Weizsäcker mass formula [6,7]), macroscopic-microscopic
models (e.g., the finite-range droplet model (FRDM) [8]
and the Weizsäcker-Skyrme model [9]) and microscopic
models (e.g., Hartree-Fock-Bogoliubov (HFB) mass models
[10–12]). Although accuracy of these models in known mass
region vary slightly from each other, yet it is difficult, in
general, to predict with accuracy better than ≈500 keV [1].

The deviation of FRDM predictions from measured nu-
clear mass show systematic dependence on the neutron and
proton numbers. In different studies it has been confirmed
that these deviations of model predictions from the measured
data are correlated [13–19], and the strength of correlations
decreases as we go from macroscopic models to macroscopic-
microscopic models and microscopic model predictions [18].
Also the predictions of nuclear masses far from stability may
differ by several MeVs for different mass models. The reason
for such discrepancies and the residual correlations in the
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prediction error of the models have been attributed to the ne-
glected many-body effects in the mass models and the chaotic
motion in nuclei [14,18]. These discrepancies between mass
models and measured mass can be reduced by incorporating
more physical information in to the mass models by taking in
to account the residual interactions or by using local informa-
tion, such as Garvey-Kelson relations [14,18].

In the present Letter we have explored whether such cor-
relations in the mass predictions can be reduced by using
neural networks. Neural networks are a very powerful tool,
and it has seen great advancements in recent years. It has been
successfully used in a variety of applications. There have been
many efforts in the direction to use the neural networks for
nuclear mass predictions [20–24]. It is also observed in recent
studies that by incorporating some physical features, such as
nuclear pairing and shell effects in the input layer can improve
the accuracy significantly [25]. Integrating physics with the
machine learning methods can help in improving their per-
formance and reliability, and recently many efforts have been
put in this direction [26]. One such study uses multifidelity
neural network strategy [27] to leverage on the low-fidelity
(lf) data to produce better estimates for high-fidelity (hf) data.
Although neural networks have emerged as powerful tools,
yet to train it, a large amount of data of good accuracy is
required. But, in practice, high-fidelity data are scarce and
expensive to acquire as compared to the low-fidelity data. In
recent studies the neural networks were trained on the differ-
ence between measured masses and predictions of different
mass models. Then these learned differences were used with
the existing model predictions to produce new estimates. In
this Letter we have followed a different approach, instead
of learning the residual between measured mass and model
predictions, we have used multifidelity strategy as discussed
in Ref. [27] to learn the correlations between the experi-
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FIG. 1. Schematic of the neural network used in this Letter.

mentally measured nuclear masses and the theoretical model
predictions. In this Letter, we have used HFB14 and FRDM95
mass excess predictions from Ref. [28] as the low-fidelity
estimate and used the separate neural networks to learn the
correlations between the model predictions and the experi-
mental masses to produce the multifidelity approximations.
For simplicity we will use only HFB and FRDM in place of
HFB14 and FRDM95, respectively, in the rest of the Letter.
The used neural network architecture adaptively learns the lin-
ear and nonlinear correlations between low- and high-fidelity
data. The deviation of different mass model predictions from
measured masses show residual correlations and the power
spectrum of these fluctuations were found to follow the 1/ f
characteristic [18,29]. We have also calculated the power
spectrum of the deviation of predictions from the present Let-
ter with the experimental mass to check whether the present
approach has reduced the correlations which are present in the
existing model calculations.

In the present Letter, measured nuclear masses are labeled
as high-fidelity data wherease mass predictions of theoreti-
cal models are labeled as low-fidelity data. In multifidelity
modeling, it is of fundamental interest to construct the cross
correlation between high- and low-fidelity data in order to
produce better estimates for the data. Let the relation between
high- and low-fidelity nuclear masses be given as

Mhf = Fl (N, Z, Mlf ) + Fnl(N, Z, Mlf ). (1)

Here Mhf is the high-fidelity measured nuclear mass, N is
the number of neutrons, Z is number of protons, and Mlf

(predictions of theoretical models) is the low-fidelity data. In
Eq. (1), Fl and Fnl represent linear and nonlinear functions,
respectively, which are initially unknown. We have used the
neural network architecture as presented in Fig. 1 to approx-
imate both Fl and Fnl. N , Z , and Mth (i.e., model predictions
for nuclear mass excess) are used in the input layer. In Fig. 1
NNl presents a neural network which is used to approximate
the linear correlation function (Fl ). In NNl no hidden layer
has been used because the linear correlation between high-
and low-fidelity data is assumed easy to learn. In NNl no
activation function has been used, therefore, the output of the
NNl is a linear combination of the inputs. In order to approxi-

mate nonlinear correlation function (Fnl), a feedforward neural
network (NNnl) has been used. The outputs of NNnl and NNl

are combined to give an estimate of Mexp. Since feedforward
neural networks are prone to the overfitting problem, there-
fore, to overcome the problem of overfitting, we have used L2

regularization. It prevents the overfitting by adding a sum of
the square of weights, which is a measure of the complexity
of the model. The weights and biases of NNl and NNnl are
learned by minimizing the following loss function:

Loss = 1

Nh

Nh∑
i=1

(|M∗
exp − Mexp|)2 + λ

∑
k

w2
k , (2)

here Nh is total number of high-fidelity data points used in
the training, M∗

exp is the estimate produced by the model,
Mexp is the target value, λ is the regularization rate and w’s
represent the weights involved in NNnl. The regularization has
been used only for NNnl so that the present neural network
can tend towards the linear correlations between the high-
and low-fidelity nuclear masses. Weights were initialized by
Xavier’s initialization method [30], whereas the biases were
initialized by zero. To minimize the loss, we have used the
Adam optimization algorithm [31], and it has been used ex-
tensively in many fields of application. We have used two
separate neural networks MF1 and MF2 to improve the pre-
dictions of FRDM and HFB model predictions respectively.
NNnl in both MF1 and MF2 consists two hidden layers with
50 neurons each with the hyperbolic tangent (tanh) function
as the activation function. Initial learning rate of the optimizer
was set to 0.001 and regularization rate (λ) was set to 0.0005
during the training of MF1 and MF2. The experimental mass
excess values were taken from Audi et al. [32], although
more than 3000 experimental masses are present in these
compilations but we have used only those with experimental
error less than or equal to 100 keV. Also mass excess values
without any uncertainty estimate were also excluded, and the
remaining 1919 experimental mass values were used in the
training process. Out of these, randomly chosen 1534 nuclear
mass values were used for training the neural network whereas
rest 385 masses were used for testing the performance of the
neural network. Corresponding FRDM and HFB estimates of
mass excess of 1919 nuclei were used from the RIPLE-3 [28]
library and were used as the low-fidelity estimate in the input
of the neural networks.

The neural networks MF1 and MF2 were trained until the
losses on testing and training set converged. The training was
performed by using all the 1534 nuclei in a single batch. The
root-mean-square (rms) deviation of mass excess from FRDM
and HFB calculations with respect to the experimental mass
were initially 573 and 679 keV, respectively, for the 1919
nuclei and after the training were 213 and 348 keV. Significant
reduction in the rms values have been observed. Initial rms de-
viations for 1534 nuclei in the training set of FRDM and HFB
predictions were 578 and 685 keV and for the testing set were
553 and 649 keV, respectively. After the completion of train-
ing the rms deviation corresponding to the training set were
201 and 336 keV for MF1 and MF2 predictions, respectively.
Similarly, losses on the testing set were 259 and 382 keV,
respectively, for MF1 and MF2. A reduction of rms deviation
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FIG. 2. Difference of (a) FRDM predictions with experimental mass excess, (b) MF1 predictions with the experimental mass excess,
(c) FRDM predictions with the predictions of MF1, (d) HFB predictions with experimental mass excess, (e) MF2 predictions with the
experimental mass excess, and (f) HFB predictions with the predictions of MF2.

of 65% and 53% has been observed for the training and
testing sets, respectively in MF1. In MF2, a reduction of rms
deviation of 51% and 41% has been observed for the training
and testing sets, respectively, in MF2. These values indicate
that the neural network has learned the correlations between
model predictions and experimental mass excess with good
generalization.

For more clarity, differences of FRDM and HFB
predictions with experimental mass excess has been presented
in Figs. 2(a) and 2(d), respectively. Regions with large
differences can be observed in these figures, and such
systematic discrepancies can be attributed to the missing
physical information in the FRDM and HFB models. The
motive behind the present Letter is that the neural network
can complement the FRDM and HFB models by learning the
correlations of FRDM and HFB predictions with experimental
mass and by making them accountable for the contributions
of the missing physics in these two models. In Figs. 2(b)
and 2(e) differences of MF1 and MF2 predictions with the
experimental mass excess are presented, respectively. It is
observed from Figs. 2(b) and 2(e) that the regions of large
deviation, such as in Figs. 2(a) and 2(d) are less pronounced. It
is clear that MF1 and MF2 predicts with better accuracy than
FRDM and HFB in known mass region. For completeness of
the data, we have also presented the differences of FRDM with
MF1 predictions, and HFB with MF2 predictions in Figs. 2(c)
and 2(f), respectively. It is observed from these figures that
MF1 and MF2 suggest large corrections to FRDM and HFM
models for the regions far from the valley of stability. We
have also presented the mass differences of experimental
values with MF1, FRDM, MF2 and HFB predictions for

the isotopes of Ba in Fig. 3. Mass excess for isotopes with
neutron numbers 66 to 77 and 84 to 91 were used during the
training process (i.e., were included in the training and testing
set). It is clear from the Fig. 3 that the present approach
is able to give reliable predictions in he neighborhood of
measured mass region of the nuclear chart. In order to study
the statistical characteristic of the deviation of different
predictions from the experimental values, all the nuclei used
in the training process were arranged in a one-dimensional
boustrophedon single list [33]. All nuclei were arranged in

FIG. 3. Comparison of FRDM and MF1, HFB and MF2 predic-
tions for the isotopes of Ba.
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FIG. 4. Mass differences of experimental data with FRDM and
MF1 predictions, MF1 (NNl ) and MF1 (NNnl) outputs with order
number j along the x axis.

increasing mass number order such that odd-A nuclei were
arranged in decreasing N-Z value and even-A nuclei were
arranged in increasing N-Z values. Based on this ordering
scheme each nucleus is assigned a distinct order number ( j).
The deviation of FRDM, HFB, MF1, and MF2 predictions
with experimental values is presented in Figs. 4 and 5. From
Figs. 4 and 5 it is clear that significant correlations are present
in the deviation of FRDM and HFB predictions from the
experimental data, whereas the discrepancies in the MF1 and
MF2 predictions with respect to experimental mass are highly
fluctuating but no significant systematic can be observed. In
Figs. 4 and 5, we have also presented the predictions of MF1
(NNl ), MF1 (NNnl), MF2 (NNl ). and MF2 (NNnl), which
provide further insight in to the linear and nonlinear functions
learned by the present approach. Using the optimized weight
and bias values, the output of NNl for the MF1 and MF2 can
be written as −0.781Z + 0.695N + 0.876MFRDM

th − 0.616,
and −0.772Z + 0.740N + 0.885MHFB

th − 0.568, respectively.
It can be observed that, although MF1 and MF2 use different
mass model predictions in the input layer, yet the outputs of
the NNl and NNnl follow the similar systematic. The average
ratio between the outputs of NNl and NNnl were observed to
be 2.45 and 1.70, respectively. Now since we have arranged
the nuclei in a one-dimensional list, we have calculated the
discrete Fourier transform by using Eq. (3),

Fk = 1√
Nj

∑
j

Mexp
j − M th

j

σrms
exp

(−2π i jk

Nj

)
. (3)

The plot between ln(|Fk|2) and ln(k/Nj ) is presented in
Figs. 6 and 7, here Nj represents the total number of nuclei.
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FIG. 5. Mass differences between experimental data and HFB
and MF2 predictions, MF2 (NNl ) and MF2 (NNnl) outputs with order
number j along the x axis.

Then a linear fit has been performed, where the slope (m)
of such a fit corresponds to the the m value in the power
law of form |Fk|2 ≈ ωm [18]. Systems exhibiting quantum
chaotic motion, show m ≈ −1 behavior which is present in
the FRDM and HFB predictions as shown in Figs. 6 and 7.
The value of slope in Figs. 6 and 7, corresponding to FRDM
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FIG. 6. Plot of the natural logarithm of the square of the ampli-
tude of the Fourier transform of the prediction errors (as presented
in Fig. 4) with the natural logarithm of the frequencies (ω = k/Nj)
along the x axis.
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FIG. 7. Plot of the natural logarithm of the square of the ampli-
tude of the Fourier transform of the prediction errors (as presented
in Fig. 5) with the natural logarithm of the frequencies (ω = k/Nj)
along the x axis.

and HFB predictions were observed to be m = −0.81 ± 0.04
and m = −0.59 ± 0.04, respectively. For the MF1 and MF2

predictions the correlations are negligible as the power
spectrum has m = −0.01 ± 0.03 and m = 0.04 ± 0.03,
respectively. Hence, the fluctuations in MF1 and MF2
predictions show white-noise type of behavior. This indicates
that the proposed neural networks are capable of learning the
residual correlations in the mass model predictions.

It is observed in this Letter that multifidelity framework
learns the cross correlations between FRDM, HFB predictions
and experimental mass excess values. We have also observed
that overall accuracy of the predictions are greatly improved,
rms deviations for FRDM and HFB predictions have been re-
duced from 573 and 678 keV to 213 and 348 keV, respectively.
The slope of the power spectrum of the deviations of the MF1
and MF2 is very small close to the white-noise-like behavior,
which clearly indicates that the present approach is capable of
learning the correlations arising due to the neglected many-
body effects in the available mass models.
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