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Nuclear charge radii of Na isotopes: Interplay of atomic and nuclear theory
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The accuracy of atomic theory calculations limits the extraction of nuclear charge radii from isotope shift
measurements of odd-proton nuclei. For Na isotopes, though precise spectroscopic measurements have existed
for more than half a century, calculations by different methods offer a wide range of values. Here, we present
accurate atomic calculations to reliably extract the Na charge radii. By combining experimental matter radii
with nuclear coupled-cluster calculations based on nucleon-nucleon and three-nucleon forces, we constrain the
parameters obtained from the atomic calculations. Therefore, this study guides atomic theory and highlights the
importance of using accurate atomic and nuclear computations in our understanding of the size of light nuclei.
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I. INTRODUCTION

Understanding the size evolution of a nucleus with ex-
treme numbers of protons and neutrons is a challenge for
microscopic nuclear theory [1–7]. In recent years, simulta-
neous developments in experimental techniques, as well as
atomic and nuclear theory, have provided great advances in
our understanding of the nuclear size away from stability
[8–11]. Accurate nuclear charge radii calculations with quan-
tifiable uncertainties are now becoming available for light
and medium mass nuclei, enabling detailed comparisons with
experimental data [2,3,6,11,12]. Light nuclear systems with
mass number A < 40, whose properties can now be assessed
by different ab initio many-body methods [2,3,5,6,13,14], are
a testing ground for nuclear theory. However, nuclear charge
radii measurements of these systems are scarce, with most of
the available data obtained from spectroscopic measurements
of atomic isotope shifts (ISs) [11,12,15], whose uncertainties
are dominated by calculated atomic parameters. The reason
for this is that in light elements, spectroscopic changes from
the nuclear size (field shifts, FSs) are much smaller than those
related to the change in the nuclear mass (mass shifts, MSs),
which are strongly affected by electron correlations [12].
Hence, the accuracy of atomic theory is one of the current
main limitations for extending our knowledge of the nuclear
size in this frontier region of the nuclear chart.

IS measurements cannot be compared directly with atomic
calculations. Where at least three stable isotopes exist, inde-
pendent charge radius measurements determined by muonic
x-ray transition energies or elastic electron scattering [16] can
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be used in combination with IS measurements to benchmark
atomic calculations. However, this procedure cannot be ap-
plied to most odd-proton elements as they have only one stable
isotope. The isotopes of Na (Z = 11) provide a distinct ex-
ample of how joint developments in both atomic and nuclear
theory are critical to guide our understanding of the evolution
of the nuclear size. The IS measurements for these isotopes
have existed since more than four decades [17]. However,
it has been a major challenge to perform accurate atomic
calculations required to extract the nuclear charge radii values
from the experimental data. For this reason, Na isotopes are
some of the rare cases where matter radii are known with
higher precision than charge radii [18,19].

In this letter, we report on new accurate relativistic atomic
calculations, with quantifiable uncertainties, that enable the
extraction of charge radii for the Na isotopic chain. The avail-
able experimental data on matter radii combined with neutron
skins calculated by ab initio nuclear theory are used to estab-
lish constraints on atomic parameters, providing guidance to
the developments of atomic many-body theory.

II. ISOTOPE SHIFTS

Changes in the root-mean-squared nuclear charge radii,
δr2

c , can be inferred from measurements of ISs, δν, using the
linear expression [20]

δνA′,A = K (1/MA′ − 1/MA) + F
(
δr2

c

)A′,A
, (1)

where K and F are the transition-dependent MS and FS
constants, respectively, which are to a good approximation
isotope-independent, and MA is the nuclear mass for atomic
number A. Corrections related to higher radial moments in the
nuclear charge distribution are smaller than 0.5% [21], mak-
ing them negligible as related to this work. The MS constant
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is usually separated into K = KNMS + KSMS, with KNMS and
KSMS the normal mass shift (NMS) and the specific mass shift
(SMS) constants, respectively. For transitions in light systems,
KNMS can be estimated with a few per-mil precision by scaling
the experimental excitation energy (E ex) as KNMS = E exme,
where me is the electron mass [22–28]. However, accurate cal-
culations of KSMS are extremely challenging for systems with
more than six electrons [14,29–34]. When given, the reported
KSMS uncertainties in many-electron systems are typically
larger than 10% [11,12,35–39], thus limiting the accuracy of
the extracted charge radii.

III. ATOMIC THEORY

We employ the relativistic coupled-cluster (RCC) theory,
which is well suited for the accurate evaluation of correla-
tions in many-electron atomic systems [40]. Traditionally, two
procedures have been used to carry out these calculations:
finite-field (FF) [23,41–43] and expectation-value-evaluation
(EVE) [44,45]. These proved to have several limitations
as detailed in Refs. [46,47]. The analytic response-based
RCC (AR-RCC) theory was developed to circumvent these
problems.

Recently, we have used the AR-RCC theory with sin-
gles and doubles approximation (AR-RCCSD) to estimate
the IS constants for transitions in the indium atom [39,46],
but calculations for Na and Mg+ require further develop-
ment by including higher-order electron correlations. Thus,
we extend our AR-RCC theory to account for full triples
excitations (AR-RCCSDT method). This method was recently
benchmarked by performing extensive calculations on Li-like
systems, for which more accurate methods are available. It
was found to be more reliable than the FF and EVE ap-
proaches [47]. To validate the method for many-electron
systems, we compare the calculated and measured values in
Mg+, which has a similar electronic structure to Na. For Na,
we develop a hybrid benchmarking method. It is based on
comparing the neutron skin extracted in two ways. The first
is from a combination of matter and charge radii, with the
latter extracted using different values of KSMS. The second is
to calculate the skin directly using coupled-cluster (CC) many
body nuclear theory as described next.

IV. NUCLEAR THEORY

Accurate ab initio calculations of charge radii are particu-
larly challenging for open-shell nuclei. Shell-model calcula-
tions based on nonperturbative effective interactions derived
from methods like valence-space in-medium similarity renor-
malization group [49–51] and shell-model based coupled-
cluster [52], are complicated for nuclei where valence spaces
consist of more than one major shell. Alternatively, methods
based on single reference states that explicitly break symme-
tries may provide a conceptually simpler approach [5–7]. For
charge radii, unprojected coupled-cluster theory carries small
uncertainties from the lack of symmetry restoration [53], and
in this work we follow Ref. [6] and employ single-reference
CC theory. For alternative symmetry-projection techniques
we refer the reader to Refs. [54–56].

For the CC calculations we employ the recently devel-
oped �NNLOGO interaction [57] with a momentum cutoff
of 450 MeV. These calculations are performed in the sin-
gles and doubles (CCSD) approximation [58–60] starting
from an axially symmetric Hartree-Fock (HF) reference state.
Parity, particle number, and the projection of total angular
momentum onto the symmetry axis are conserved quantities.
The HF calculations are performed in a harmonic-oscillator
basis consisting of 15 major oscillator shells (Nmax = 14),
with a spacing of h̄ω = 16 MeV. The three-body interaction
has an additional energy cut given by E3max = 16, which
is sufficiently large for the nuclei we compute. Once the
HF solution is converged, a more accurate density matrix is
computed using second-order many-body perturbation the-
ory [61]. Diagonalization of this density matrix then yields
the natural orbital basis [6,61,62]. Following Refs. [62,63],
the normal-ordered Hamiltonian in the two-body approxi-
mation [64,65] is then truncated to a smaller model space
(Nnat

max = 12) according to the occupation numbers of the nat-
ural orbits. The proton and neutron radii are calculated as
ground-state expectation values. Charge radii include correc-
tions from the Darwin-Foldy term and spin-orbit contributions
as detailed in Refs. [66–69]. So far, we can only estimate
the effects of symmetry restoration from projected HF calcu-
lations. The uncertainties of nuclear radii from model-space
truncation, cluster truncations, and two different cutoffs for
the �NNLOGO interaction are estimated to be 2−3% follow-
ing Refs. [6,11]. A full-fledged uncertainty analysis that also
explores truncation effects from the chiral expansion and a
variation of low-energy constants is beyond the scope of this
work.

Odd-mass nuclei, such as the Na isotopes considered in
this work, are more complicated than even-even nuclei be-
cause of the unpaired last nucleon. We performed quadrupole
constrained HF calculations for a range of oblate and prolate
deformations and found that in all cases (except for 25Na) the
prolate HF minimum provides the optimal reference state for
the CC calculations. For 25Na, starting from an oblate refer-
ence state yields the largest binding energy. The computation
of odd-odd sodium isotopes are not performed in this work
as accurate nuclear structure computations are challenged by
two unpaired nucleons.

V. RESULTS AND DISCUSSION

In Table I we give the results for the ground-state properties
of Na isotopes calculated by �NNLOGO(450). Our uncer-
tainty estimation is based on similar calculations in Ne, Mg,
K, and Ca for the neutron skin [69] and radii [6,11]. The
resulting calculated rnp are plotted in Fig. 1, and show a close
to linear behavior within the uncertainty bounds.

Table II shows our results for the excitation energies (EEs)
and IS constants of the 3S-3P1/2 (D1) and 3S-3P3/2 (D2)
transitions in Na and Mg+ at different levels of approximation
in the atomic many-body method. The calculated energies are
compared with the experimental values from Refs. [25,26]
in the Supplemental Material [70]. Our final results for the
EEs from the AR-RCCSDT method are in excellent agree-
ment with the experimental values [25,26]. We find that by
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TABLE I. Ground-state properties of the Na isotopic chain.
Columns 2–5 give the charge, proton, neutron radii, and skin in fm,
respectively, as calculated via �NNLO(450). Columns 6 and 7 give
the experimental charge radii differences in fm2, and absolute values
in fm, respectively. Uncertainties (one standard deviation) from the
IS measurements and nuclear calculation are given in parenthesis.
Correlated uncertainties from the IS parameter calculation are in
square brackets. Their behavior is portrayed in Fig. 3.

A rTh
c rTh

p rTh
n rTh

np (δr2
c )23,A rexp

c

19 2.99(3) 2.87(3) 2.58(3) −0.29(3)
20 −0.60(9)[52] 2.89(2)[9]
21 3.03(3) 2.92(3) 2.82(3) −0.09(3) −0.13(5)[33] 2.97(1)[6]
22 −0.16(2)[16] 2.967(3)[27]
23 3.01(3) 2.90(3) 2.92(3) 0.02(3) 2.9935(38)
24 −0.02(4)[15] 2.990(7)[25]
25 2.97(3) 2.87(3) 2.98(3) 0.11(3) 0.12(5)[28] 3.013(8)[47]
26 0.34(2)[41] 3.049(4)[68]
27 3.01(3) 2.92(3) 3.11(3) 0.19(3) 0.60(5)[52] 3.091(8)[86]
28 0.89(7)[63] 3.14(1)[10]
29 3.03(3) 2.94(3) 3.25(3) 0.31(3) 1.4(1)[7] 3.22(1)[11]
30 1.7(2)[8] 3.26(2)[13]
31 3.06(3) 2.96(3) 3.33(3) 0.37(3) 2.2(1)[9] 3.34(1)[14]
33 3.13(3) 3.04(3) 3.49(3) 0.45(3)

including triples excitations, the energy calculation accuracy
is improved by an order of magnitude. The SMS constants
are determined by considering relativistic form of the SMS
operator as defined by [71]

OSMS = 1

2

∑
i �= j

[
�pi · �p j − αZ

ri
�αD

i · �p j

− αZ

ri

(
�αD

i · �C1
i

)(
�p j · �C1

j

)]
, (2)

FIG. 1. Semiempirical estimation of KSMS. We compare the cal-
culated rTh

np from Table I (filled band), with the semiempirical
rnp(KSMS) described in the main text.

TABLE II. Excitation energies (EE) (cm−1) and IS constants F in
(MHz/fm2), and KSMS in (GHz u), for the D1 and D2 lines in Na and
Mg+. Our calculations are given using the DHF and AR-RCCSD/T
methods. Corrections from the Breit, QED and nuclear recoil effects
are quoted as �Breit, �QED and �Recoil, respectively. The exper-
imental F in Mg+ is taken from a King Plot [15]. The experimental
KSMS in Mg+ is derived from the results of Ref. [48] by subtracting
the NMS and FS contributions.

3S-3P1/2 (D1) 3S-3P3/2 (D2)

EE Na Mg+ Na Mg+

DHF 15921 34530 15937 34621
AR-RCCSD 16892 35634 16910 35732
AR-RCCSDT 16951(10) 35667(20) 16971(10) 35766(20)
�Breit −0.44 0.55 −1.54 −4.85
�QED −3.77 −8.91 −3.68 −8.65
�Recoil −0.56 −1.40 −0.56 −1.40
Exp. [25,26] 16956.17 35669.31 16973.37 35760.88

F Na Mg+ Na Mg+

DHF −29.7 −104.5 −29.7 −104.6
AR-RCCSD −38.9 −126.2 −38.9 −126.2
AR-RCCSDT −39.3(3) −126.4(7) −39.2(3) −126.4(7)
�Breit 0.0 0.1 0.0 0.1
Ref. [23] −36.45 −123.2
Ref. [41] −39 −39 −127
Ref. [42] −33 −127 −33 −127
Ref. [44] −38.42 −125.81 −38.43 −125.82
Ref. [45] −38.76 −126.22 −38.80 −126.32
Exp. [15] −127(12)

KSMS Na Mg+ Na Mg+

DHF −106 37 −106 35
AR-RCCSD 131 403 131 403
AR-RCCSDT 109(3) 374(7) 109(3) 373(7)
�Breit 0.1 0.6 0.2 1.0
Semiemp. 105.3(1.3)
Ref. [23] 98.5 406.1
Ref. [41] 109(24) 379(12) 108(24) 373(6)
Ref. [42] 116 378 116 378
Ref. [43] 365 366
Ref. [44] 97 362 97 361
Ref. [45] 114.4 398.8 112.3 389.9
Exp. [48] 369.3(3) 367.7(3)

where α is the fine-structure constant, Z is the atomic number,
and αD is the Dirac operator. The differences between the
AR-RCCSD and AR-RCCSDT values for F in all the states
are found to be negligible. This finding is in line with our cal-
culations for Li-like systems [47], where it was also found that
both the EVE and AR methods produce reliable results for F ,
with only the FF method showing some spurious deviations.
These two facts explain the agreement between our calcula-
tion and the previously reported FF [41,43] and EVE [44,45]
results from the literature. The FF results of Refs. [23,42]
show a more significant deviation. Our uncertainty for F is
given by estimating the magnitude of neglected QED effects
as detailed in Ref. [47], as well as neglecting higher order
charge moments in the nuclear distribution.
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In contrast to the results for calculations of F , we find
triples excitations to be significant for the KSMS constants
in both systems, with their magnitude much larger than in
Li-like systems [47]. This is indicated by the large change in
KSMS for both systems between the mean-field Dirac-Hartree-
Fock (DHF) and the AR-RCCSD/T methods. This highlights
the critical role of electron correlations in the determina-
tion of the above constant. On the other hand, higher-order
relativistic effects, calculated using the Breit Hamiltonian,
are found to be smaller than 0.3%, thus strengthening our
assumption that KNMS may be taken from the scaling-law
with sufficient accuracy. The limited reliability of the FF
and EVE approaches for estimating KSMS [47,72], combined
with the major role of triples excitations, account for the
major spread in the previously calculated values. Only the
values of Ref. [41], who utilized the FF approach in a
nonrelativistic calculation, agrees with our calculations for
both systems. However, their values for the individual levels
differ considerably, as shown in the Supplemental Material
[70].

Even though higher-order electron correlation effects,
which can be captured by calculating quadruple excitations,
do not contribute directly in the AR-RCC theory owing to the
one-body and two-body forms of the FS and SMS operators,
their inclusion can change the amplitudes of the unperturbed
wave operators, causing an indirect modification to our re-
sults. An uncertainty of 2–3% was estimated by analyzing
such contributions in a perturbative approach. For Na, this un-
certainty is an order of magnitude smaller than that reported in
the literature [41]. To validate the reliability of our calculated
mass shifts, and their uncertainty, we carry out two benchmark
tests: one from the atomic physics side and the other from the
side of nuclear physics.

VI. BENCHMARK WITH Mg+

We take advantage of the precise IS measurements in
Mg+ [48], and the reliability of our field shift calcula-
tion, to benchmark our method of obtaining the mass shift.
First, the absolute radii (rc)24 = 3.0556(25), and (rc)26 =
3.0297(21) fm, are extracted from the Barrett-equivalent radii
(Rα

k )24 = 3.9291(30), and (Rα
k )26 = 3.8992(27) fm measured

with muonic x-rays [21], as well as the proportional-
ity factors (Rα

k )24/(rc)24 = 1.2859(3) and (Rα
k )26/(rc)26 =

1.2870(2) which we extract from model-independent analysis
of electron scattering experiments [73–75]. Accounting for
correlations, we arrive at (δr2

c )24,26 = −0.158(9) fm, yield-
ing an FS of 20.0(1.1) MHz. Employing Eq. (1) with this
FS and with the NMS taken from the scaling law re-
sults in KSMS = 369.3(3) GHz u and KSMS = 367.7(3) GHz u
for the D1 and D2 transitions, respectively. These values
agree within one standard deviation with our calculated
value of KSMS = 374(7) GHz u for both transitions. This
test confirms the applicability of the scaling-law for ns-np
transitions in light systems. In Na, relativistic effects are
smaller than in Mg+ while electron correlations are larger,
so that the scaling-law is expected to be at least as
applicable.

FIG. 2. Comparison of KSMS in the 2S-2p1/2 line of Na as calcu-
lated by (a) Ref. [45], (b) Ref. [44], (c) Ref. [42], (d) Ref. [41], (e)
Ref. [23], and this work. The filled area is from the semiempirical
estimation illustrated in Fig. 1.

VII. BENCHMARK WITH MATTER RADII
AND NEUTRON SKIN

The neutron skin, defined as the difference between its
proton and neutron radii, rnp = rn − rp, can be used to es-
tablish limits for the atomic parameters. This method has the
benefit of incorporating information from measured matter
radii rm, thus limiting the role nuclear theory plays in this
calculation. To do this we extract the experimental rc(KSMS)
from the IS measurements as function of KSMS, whilst keep-
ing KNMS and F constant as their uncertainty is negligible
compared with that of KSMS. Next, we calculate the point
proton radius rp(KSMS) from rc(KSMS) by correcting it for
nucleon RMS radii, the Darwin-Foldy term, and calculated
spin orbit corrections [66–69]. The neutron radius rn(KSMS),
from which rnp(KSMS) is deduced, is then calculated from
measured matter radii rm [18,19] and rp(KSMS) through r2

m =
r2

pZ/A + r2
nN/A [66].

Figure 1 shows our semiempirical rnp estimation described
above along with the directly calculated one from Table I.
Scanning the value of KSMS to fit the semiempirical skin
and the theoretical one returns KSMS = 105.3(1.3) GHz u,
which agrees with the direct calculation using AR-CCSDT of
KSMS = 109(3) GHz u within their combined uncertainty. A
comparison of the semiempirical KSMS with ours and previous
calculations is given in Fig. 2.

These two benchmarks validate the reliability of the central
values and uncertainties calculated by the atomic theory, and
serve as a striking test of the AR-CCSDT method and its
applicability in light many-electron systems.

VIII. EXTRACTED CHARGE RADII

With the Na atomic constants calculated in this work
(Table II), and the measured IS by Refs. [17,77–79], we
deduce (δr2

c )23,A directly from Eq. (1). The absolute radii
are calculated using (rc)23 = 2.9935(38) fm. We deduce it
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FIG. 3. Absolute charge radii of Ne, Na, and Mg. Experimental ISs are taken from Refs. [15,17,76–79]. The data-points give the central
values with error bars from statistical uncertainty including that of the reference isotope. The full and broken lines give the spread resulting
from the atomic parameters calculated in this work and in Ref. [80]. The filled bands represent the spread of values calculated by the nuclear
theory. For Na, another band gives the values returned from the semiempirical neutron-skin fit of Fig. 1.

from the Barrett-equivalent radius (Rα
k )23 = 3.8492(31) fm

[21], combined with a proportionality factor (Rα
k )23/(rc)23 =

1.286(1) estimated from electron scattering measurements on
neighboring elements. Its uncertainty is given by the interpo-
lation error. Our results are given in Table I, and shown in
Fig. 3 along with predictions from nuclear theory. For com-
pleteness, we also include the charge radii of Ne [76,80] and
Mg, with the latter extracted from IS measurements [15], and
using our calculated F . Overall, nuclear theory predictions
for rc agree very well with experiment for both Ne and Mg,
from N = 10 up to N = 18. This agreement suggests that the
KSMS value expected for Na isotopes sits at the lower edge
of the confidence interval given by our atomic calculations.
This conclusion is very much in line with the semiempirical
prediction from the matter radii (neutron skins), as well as the
difference between experimental and calculated KSMS in Mg+.
Further developments in atomic theory are needed to increase
the precision in the calculated atomic parameters, e.g., by
including a relativistic calculation of KNMS, accounting for
QED effects, and including quadruple excitations.

IX. SUMMARY AND OUTLOOK

Our ability to extract charge radii differences from spectro-
scopic measurements is limited by the difficulty in calculating
many-body electron correlations. The resulting parameters
often vary considerably between calculation methods and
are missing a reliable uncertainty estimate. In this work,
we developed the AR-RCC theory to include full triple

electron excitations and estimated quadrupole excitations per-
turbatively. This enabled us to extract for the first time
model-independent charge radii for the Na isotopic chain,
along with a realistic uncertainty estimate. To benchmark
our calculation, we extended our work to Mg+, and found
agreement with experimental values within our confidence
intervals. This calculation also results in improved radii for
the Mg isotopic chain. A further independent semiempirical
benchmark is performed utilizing measured matter radii of
Na combined with neutron skins calculated by state-of-the-
art ab initio nuclear calculation. This work opens the gate
to improved radii determinations for mono-isotopic elements
across the nuclear table. A development timely with the
progress of new radioactive beam facilities, such as FRIB,
where exotic light nuclear systems will be produced up to the
proton and neutron drip lines.
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