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Nuclear energy density functionals from machine learning
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Machine learning is employed to build an energy density functional for self-bound nuclear systems for the
first time. By learning the kinetic energy as a functional of the nucleon density alone, a robust and accurate
orbital-free density functional for nuclei is established. Self-consistent calculations that bypass the Kohn-Sham
equations provide the ground-state densities, total energies, and root-mean-square radii with a high accuracy in
comparison with the Kohn-Sham solutions. No existing orbital-free density functional theory comes close to this
performance for nuclei. Therefore, it provides a new promising way for future developments of nuclear energy
density functionals for the whole nuclear chart.
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Research on quantum mechanical many-body problems is
essential in a wide variety of scientific fields. By reducing
the many-body problem formulated in terms of N-body wave
functions to the one-body level with the density distributions,
the density functional theory (DFT) has been enormously
popular. However, the quality of the DFT results crucially
depends on the accuracy of the energy density functional,
whose existence was proved by the Hohenberg-Kohn theorem
[1], but the actual form is unknown and has to be determined
with approximations.

Kohn and Sham first made DFT into a practical tool by
computing the exact kinetic energy of an interacting many-
body system with a noninteracting single determinantal wave
function that gives rise to the same density [2]. Since the
kinetic energy is a major unknown part of the energy den-
sity functionals, the Kohn-Sham DFT is remarkably accurate
[3]. Nevertheless, this approach involves not only the density
but also the auxiliary one-body orbitals which need to be
obtained by solving the so-called Kohn-Sham equation self-
consistently. This leads to enormous amount of work, in
particular for systems with a large number of particles.

On the other hand, one of the aims of DFT is to express the
energy solely as a functional of the density, i.e., orbital-free
DFT. It is directly based on the Hohenberg-Kohn theorem
[1], and is much more efficient than Kohn-Sham DFT due to
the avoidance of the auxiliary one-body orbitals. However, it
brings an inevitable tradeoff between efficiency and accuracy.
Instead of using orbitals to compute the kinetic energy, orbital-
free DFT uses approximate kinetic energy density functionals,
e.g., the well-known Thomas-Fermi functionals [4], which
renders it less accurate than Kohn-Sham DFT in most cases.
Therefore, an accurate and computationally efficient orbital-
free DFT is highly desired.

Of course, the stumbling block is that, as yet, no suffi-
ciently accurate descriptions of kinetic energy with the density
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alone has been found. Despite more than seventy years of
research and some tremendous progress, it is still a bottle-
neck of the DFT computations in various scientific fields.
For nuclear physics, it is even more elusive because of the
complicated short-range two nucleon interactions. In fact, for
a local Skyrme energy density functional, the Thomas-Fermi
solution of the ground-state density gives no spatial depen-
dence whatsoever [5]. The description could be improved
with higher-order corrections in the h̄ expansion of the ki-
netic energy. However, there are still obvious deviations from
the Kohn-Sham energy for the Thomas-Fermi approximation
even corrected up to the h̄4 order due to the absence of suf-
ficient quantum effects [6,7]. As a result, most modern DFT
calculations in nuclear physics are based on the Kohn-Sham
approach [8–11].

The recent rise in the popularity of machine learning (ML)
has engendered many advances in various fields [12,13].
Machine learning is a powerful tool for finding patterns in
high-dimensional data, so it holds the promise of learning
the energy density functional from sufficient “energy density
data” via induction. While applications of ML approaches to
DFTs in condensed-matter physics and quantum chemistry
have been proliferating in the past few years, the adoption
in realistic computations is still in its infancy [14–20]. For
nuclear physics, ML applications can be traced back to early
1990s [21,22], and recently it has been more broadly adopted
to nuclear masses [23–28], charge radii [29–31], excited states
[32,33], nuclear response functions [34], fission yields [35],
variational calculations [36,37], extrapolations for many-body
physics [38–40], etc. However, the application of ML to de-
velop density functionals for nuclear systems is still a blank
area.

In contrast to the many-electron systems trapped in an
external field in condensed-matter physics and quantum
chemistry, nuclei are self-bound via strong and short-range
nucleon-nucleon interactions. Thus, the nuclear DFTs are for-
mulated in terms of the so-called intrinsic one-body density
[11,41] (e.g., the density relative to the center of mass). While
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ML is a balanced interpolation on known data and should be
unreliable for densities far from the training set, fortunately,
due to the saturation of nuclear forces, the shapes of the
intrinsic nucleon density distributions for nuclei with different
numbers of nucleons are roughly similar. In particular for
heavy nuclei, the densities are roughly around the saturation
density in the interior region, and decay exponentially in the
surface region. This property is useful to simplify the ML
model and/or reduce the demands of a huge training data set.

In this Letter, for the first time, ML is used to build an
energy density functional for nuclei. The employed ML model
is kernel ridge regression (KRR) [42,43], which is trained to
describe the kinetic energy with the nucleon density alone. An
orbital-free density functional for nuclei is thus established
after including the interaction energy. As the first attempt,
self-consistent calculations that bypass the Kohn-Sham equa-
tion are carried out for three nuclei, 4He, 16O, and 40Ca, and
they illustrate the key issues for applying ML to nuclear DFT
problems.

The interaction energy Eint here is taken from the Skyrme
functional SkP [44]. In contrast to the Kohn-Sham approach,
the kinetic energy Ekin here is expressed solely as a functional
of the density with the KRR approach [42,43],

EML
kin [ρ(r)] =

m∑

i=1

ωiK (ρi, ρ). (1)

Here, ωi are weights to be determined, ρi(r) are training
densities, and K is the kernel function, which measures the
similarity between densities,

K (ρ, ρ ′) = exp[−||ρ(r) − ρ ′(r)||2/(2AA′σ 2)]. (2)

Here, σ is a hyperparameter defining the length scale on the
distance that the kernel affects, and the distance between two
densities ||ρ(r) − ρ ′(r)|| can be calculated by vectorizing the
densities on a series of discrete grids. The factors A and A′ are
the nucleon numbers of the densities ρ and ρ ′, respectively.
They are introduced to scale the density distance, so that the
kernel function K can be directly applied to densities with
different nucleon numbers. This is important for applying the
present ML approach to the whole chart of nuclei in the future.

The weights wi are determined by minimizing the loss
function

L(ω) =
m∑

i=1

(
EML

kin [ρi] − Ekin[ρi]
)2 + λ||ω||2, (3)

where ω = (w1, . . . ,wm). The second term with the hyper-
parameter λ is a regularizer that penalizes large weights to
reduce the risk of overfitting. Minimizing the loss function
yields

ω = (K + λI)−1Ekin, (4)

where K is the kernel matrix with elements K i j = K (ρi, ρ j ),
I is the identity matrix, and Ekin are the exact kinetic energies
to be learned, i.e., (Ekin[ρ1], . . . , Ekin[ρm]).

The nuclear ground state is obtained by a variation of the
energy density functional with respect to the density. The
variation of the interaction energy can be readily obtained; for

the kinetic energy, it reads

δEML
kin [ρ]

δρ
=

m∑

i=1

wi

AAiσ 2
(ρi − ρ)K (ρi, ρ). (5)

It causes huge errors because Eq. (5) does not contain in-
formation on how the energies change along all directions,
but only directions in which it has training data. There have
been various ways to overcome this problem in the litera-
ture; see, e.g., Refs. [15,45]. Here, we employ a prime local
principal component analysis [45,46], and, together with the
newly proposed adaptive functional derivative and density
renormalization recipes, the accuracy is found to be rather
good for nuclei. Once the functional derivative is obtained,
the self-consistent ground-state density can be calculated with
the gradient descent method starting from a trial density. More
details can be seen in the Supplemental Material [47].

In this work, we only consider spherical nuclei with the
same proton and neutron numbers. The densities to be learned
by the KRR network can be reduced to the one-dimensional
radial densities with the metric ρ̃(r) = 4πr2ρ(r), and they
are expressed in 501 discretized spatial mesh points from
0 to 20 fm.

The training data of kinetic energies and densities are pre-
pared by solving the Schrödinger equation [48] with a mean
potential for noninteracting systems. A combined Gaussian
potential (CGP) is proposed to simulate the mean potential
for nuclei, which is similar to the well-known Woods-Saxon
potential for medium and heavy nuclei, but is more flexible
and proper for light ones. In the present work, a series of
CGPs are generated to build the training, validation, and test
sets of kinetic energies and densities with some physical con-
straints on the potential depth and the root-mean-square (rms)
radius. The details can be seen in the Supplemental Material
[47]. It should be noted that the training data of both kinetic
energy and density can be calculated simply by solving single-
particle Schrödinger equations with given mean potentials.
This process is much easier than the Kohn-Sham calculation,
where a self-consistent solution of the Kohn-Sham potential
must be achieved.

In Fig. 1, 30 000 samples of the training density distribu-
tions and the corresponding kinetic energies for nuclei with
the total nucleon numbers A = 4, 16, and 40 (10 000 for each
nucleus) are depicted. The lines give the density distributions
and the colors represent the kinetic energies. While the train-
ing kinetic energies range from several tens MeV to more
than one thousand MeV for different systems, the kinetic
energies per nucleon are roughly several tens MeV, which
is quite reasonable for most nuclei. The density distributions
are closely related to the magnitudes of the kinetic energies
according to the uncertainty principle, i.e., the tighter the
density distribution, the higher the kinetic energy.

These 30,000 training energy-density data are used to
train the KRR network (1), and the solution can be obtained
via Eq. (4). Here, the hyperparameters λ and σ are deter-
mined by optimizing the ML performance on the validation
set containing 3000 samples of data (1000 for each nu-
cleus). The resultant hyperparameters are λ = 1.8×10−12 and
σ = 0.58 fm−1. Finally, a test set containing 3000 samples
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FIG. 1. Training density distributions and the corresponding ki-
netic energies (color map) for nuclei with the total nucleon numbers
A = 4 (top), 16 (middle), and 40 (bottom).

of data is used to provide an unbiased evaluation of the KRR
training.

In Fig. 2, the performance of the KRR functional is illus-
trated with the statistical histogram of the deviations �Ekin

FIG. 2. Statistical histogram of the deviations �Ekin between the
KRR predicted kinetic energies and the exact ones in the validation
and test sets.

FIG. 3. The trial (dotted lines) and self-consistent densities (solid
lines) from the machine learning approach in comparison with
the self-consistent densities obtained with the Kohn-Sham method
(dashed lines) for 4He, 16O, and 40Ca. The shaded region shows the
extent of variation of the training densities. The inset zooms in on the
densities for 4He with two additional trial densities (see text).

between the KRR predicted kinetic energies and the exact
ones in the validation and test sets. It is seen that the KRR
predictions nicely reproduce the kinetic energies in both val-
idation and test sets and, in most cases, the deviations are
below 1 keV, which is a very high accuracy for nuclear
physics. More importantly, the count distributions of the de-
viations �Ekin are very similar for the validation and test
sets. This means that the performances of the present high-
accuracy KRR functional are equally well for the two datasets
and, thus, the functional is very good in its generalization
ability.

While the ML functional predicts the energy in a very
high accuracy, for orbital-free DFT one has to finally test the
self-consistent procedures to find the density that minimizes
the total energy. The iteration starts from a trial density which
is intuitively taken as the empirical nuclear density in a har-
monic oscillator (HO) potential with h̄ω = 41A−1/3 MeV [5].

Moreover, for self-bound nuclear systems, one has to con-
sider the center of mass (c.m.) correction energy due to the
translational symmetry breaking. There have been several
ways to do this in the literature [49,50], though one should
in principle calculate the c.m. corrections in the same way
that was employed in the fitting of the adopted density func-
tional. For the SkP functional [44] here, the c.m. correction
energy is calculated with the diagonal terms of the micro-
scopic corrections Emic

c.m. = − 1
2mA 〈P̂2

c.m.〉 before variation, i.e.,
Edic

c.m. = − 1
A Ekin [49]. Note that a full consideration of Emic

c.m. is
also possible by building a ML density functional for the c.m.
correction energy via a similar training process for the kinetic
functional.

In Fig. 3, the trial densities and the obtained self-consistent
ones are depicted in comparison with the Kohn-Sham ground-
state densities for 4He, 16O, and 40Ca. One can see that for
all three nuclei the ground-state densities obtained with the
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TABLE I. Total energies Etot (MeV), kinetic energies Ekin (MeV),
and root-mean-square radii 〈r2〉 (fm) for 4He, 16O, and 40Ca obtained
by the self-consistent Kohn-Sham and machine-learning approaches,
in comparison with the data available [51].

Kohn-Sham Machine learning Experiment

Etot −26.3700 −26.3931 (0.0012) −28.2957
4He Ekin 35.2138 35.2044 (0.0056)

〈r2〉 2.1626 2.1628 (0.0002) 1.6755

Etot −127.3781 −127.1622 (0.1584) −127.6193
16O Ekin 219.2875 218.3458 (0.6882)

〈r2〉 2.8077 2.8113 (0.0047) 2.6991

Etot −342.0645 −341.8027 (0.5724) −342.0521
40Ca Ekin 643.1100 642.9145 (1.6875)

〈r2〉 3.4677 3.4652 (0.0055) 3.4776

present ML approach are in a very nice agreement with the
Kohn-Sham ones. The differences are less than 0.1 fm−1 for
40Ca, 0.04 fm−1 for 16O, and 0.01 fm−1 for 4He. This clearly
demonstrates the success of the present ML density functional
for nuclei. One may doubt that the trial densities here are coin-
cidentally too close to the self-consistent ones. As seen in the
inset of Fig. 3, for 4He, the trial density can actually be widely
changed by tuning the HO strengths h̄ω from 20A−1/3 MeV to
150A−1/3 MeV. It is surprisingly found that, even if the trial
density is out of the training data region, the convergence is
still stable and accurate. The same conclusion holds true for
16O and 40Ca as well. Therefore, one can conclude that the
performance of the present ML density functional in finding
self-consistent densities is quite robust.

To qualitatively evaluate the influence of the trial density
on the self-consistent results, we generate 100 trial densi-
ties by randomly sampling the HO strengths h̄ω between
20A−1/3 MeV and 150A−1/3 MeV for nuclei 4He, 16O, and
40Ca, respectively. Starting from these trial densities, the self-
consistent iteration produces a range of similar ground-state
densities and energies. Thus, the mean and standard deviation
are taken as the final result and the corresponding uncertainty,
respectively. The obtained self-consistent kinetic energies,
total energies, and the rms radii are compared with the Kohn-
Sham results and the available data in Table I. To compare
with the data, the Coulomb energies are included with the
Slater approximation [52,53].

One can see that the central values of the present ML
results agree nicely with the Kohn-Sham ones within a rather
small deviation below 0.5% for all nuclei. No existing orbital-
free DFT comes close to this performance for nuclei. The
uncertainties for the total energies are smaller than those for
the kinetic energies. This is due to the fact that nuclei are
self-bound systems with short-range repulsive and long-range
attractive nucleon-nucleon interactions. As a result, the kinetic
and the interaction energies are elegantly balanced with the
variation of the density around the equilibrium.

The present study is the headmost work to build nuclear
energy density functional from ML, and it aims for a proof
of principle that ML approach can be successfully employed
to build nuclear orbital-free DFTs with high precisions. For

this purpose, only three nuclei are considered. However, it
has been checked that the prediction ability of the present ML
density functional to systems with other mass numbers is quite
good. A detailed discussion can be found in the Supplemental
Material [47]. Note that the computational complexity of the
present KRR approach grows fast with the increase of the
training set. Alternative ML approaches like neural network
may be employed in the future, and some learning techniques
(e.g., minibatch learning) can help to optimize the learning
procedure.

In summary, for the first time, machine learning has been
used to build an energy density functional for self-bound
nuclear systems. The kernel ridge regression is employed to
learn the kinetic energy as a functional of the nucleon density
alone, and, together with the interaction energy, it provides a
robust and accurate orbital-free density functional for nuclei.
Self-consistent calculations have been carried out for 4He,
16O, and 40Ca without solving the Kohn-Sham equations, and
the obtained ground-state properties have been compared with
the Kohn-Sham results. It is found that the obtained self-
consistent densities, energies, and radii for the ground states
agree quite well with the Kohn-Sham ones. The relative devi-
ations are below 0.5% for all nuclei. No existing orbital-free
DFT comes close to this performance for nuclei. Therefore,
it provides a new promising way for future developments of
nuclear energy density functionals.

The pairing correlations could also be included in the
present ML approach straightforwardly by treating the kinetic
energy as a functional of normal and pairing densities. This
would massively reduce the complexity of three-dimensional
(3D) large-scale DFT calculations for nuclei by bypassing
the 3D Hartree-Fock-Bogoliubov (HFB) equation which is
extremely expensive in computation for heavy nuclei. For
example, as mentioned in Ref. [54], even the most ad-
vanced HFB solver in 3D lattice space requires around
9300 charged core hours at the Titan supercomputers in
Oak Ridge National Laboratory. For the most commonly
used traditional HFB solver by the diagonalization proce-
dure, the computational cost would be around 46000 CPU
hours. By bypassing the Kohn-Sham equations, the present
ML orbital-free DFT could be much more efficient than the
conventional Kohn-Sham approach, since its computational
cost scales as O(N ) with the size of the system N , while
for Kohn-Sham DFT it scales as O(N3). This advantage
holds for both static and time-dependent DFT calculations. In
fact, the time-dependent orbital-free DFT has been developed
and applied to quantum many-body problems in many other
fields; see, e.g., Refs. [55–57]. It has shown a quite higher
efficiency compared with the conventional time-dependent
Kohn-Sham DFT calculations, which are rather time con-
suming for nuclear many-body problems [58]. Therefore,
the present machine-learning approach provides a promis-
ing way to develop time-dependent orbital-free DFTs for
nuclear systems, which will be beneficial for solving the com-
plex nuclear dynamical problems, such as fission and fusion
problems.
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