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The simultaneous emission of two protons is an exotic and complex three-body process. It is very important
for experimental groups investigating the nuclear stability on the proton drip line to have a simple rule predicting
the two-proton decay widths with a reasonable accuracy for transitions between ground as well as excited states
in terms of relevant physical variables. In spite of its complexity, we show that the two-proton emission process
obeys similar rules as for binary emission processes like proton, α, and heavy cluster decays. It turns out that the
logarithm of the decay width, corrected by the centrifugal barrier, linearly depends upon the Coulomb parameter
within one order of magnitude. On the other hand, the universal linear dependence with a negative slope between
the logarithm of the reduced width and the fragmentation potential, valid for any kind of binary decay process, is
also fulfilled for the two-proton emission with a relative good accuracy. As a consequence of pairing correlations
the two protons are simultaneously emitted from a spin singlet paired state. We evidence that indeed one obtains
a linear dependence between the logarithm of the reduced width and pairing gap within a factor of two, giving a
good predictive power to this law. It turns out that the two-proton and alpha-cluster formation probabilities have
similar patterns versus the pairing gap, while in the one-proton case one has a quasiconstant behavior.
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The proton drip line is mainly investigated by one- and
two-proton emission processes [1–4]. The two-proton emis-
sion is a very exotic mode that is energetically possible in
some nuclei. In the earlier 1960s Goldansky proposed two
extreme mechanisms in which the particles are emitted, ei-
ther simultaneously or sequentially [5]. The first systematic
theoretical analysis of the processes involving the inherent
three-body problem was performed in Ref. [6]. The theoretical
description of two-proton emission was performed by using
few-body formalism in terms of hyperspherical coordinates
[7–9], as well as R-matrix approaches [10,11]. The Fesh-
bach reaction theory and the continuum shell model were
also applied [12,13]. The one-proton decay systematics re-
veals simple two-body features depending on the Coulomb
and centrifugal parameters [14]. The systematic analysis indi-
cates that the two-proton emission has a three-body character,
between the diproton and pure sequential decay [15]. On
the other hand, it is important to point out that the pairing
interaction induces a clustering of the two protons. This is
a fundamental property in α-emission, explaining the clus-
tering of the four nucleons [16]. In the last years several
investigations were performed in order to describe half-lives
of the two-proton emission process by using effective liq-
uid drop model [17], Gamow coupled channel approach
[18], Gamow model with variable energy [19], semiempirical
four-parameter [20] or two-parameter relation [21], and the

Gamow approach with square nuclear plus Coulomb potential
[22].

In this paper we will show that the systematics of the
two-proton emission has a similar universal feature compared
to the usual binary decays, namely that the logarithm of the
reduced width linearly decreases upon the increase of the
fragmentation potential, defined as the difference between
the top of the Coulomb barrier and Q value. On the other
hand, as a consequence of the pairing correlations between
emitted protons, the same quantity is directly proportional to
the pairing gap.

Let us consider the two-proton emission process

P → D + 2p. (1)

Experimental data evidenced the quasisimultaneous detection
of the emitted protons with equal energies. This allowed us to
propose in Ref. [23] a simplified approach, where we have
shown that the distribution of emitted protons is centered
around the configuration with almost equal distances r1 ≈ r2.
This is a consequence of the initial condition given by the
two-proton pairing wave function on the nuclear surface, cen-
tered around r1 = r2. Beyond the nuclear surface the diproton
system becomes unstable. The interproton nuclear plus cen-
trifugal plus Coulomb potential,

v(r) = −v0 exp

(
− r2

b2

)
+ h̄2l (l + 1)

2μpr2
+ e2

r
, (2)
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TABLE I. Parameters of two-proton emission.

Q Vfrag log10 �exp log10 �1 log10 �2

no. ZP NP AP L (MeV) (MeV) χ ρ log10 γ 2
exp (MeV) (MeV) (MeV) Ref.

1 4 2 6 0 1.370 0.316 1.248 1.014 −1.625 −1.041 −0.562 −1.230 [26]
2 6 2 8 0 2.110 1.010 2.133 1.443 −1.500 −0.881 −1.211 −1.322 [27]
3 7 3 10 1 1.300 2.381 3.508 1.239 −2.686 −3.701 −3.254 −3.207 [17]
4 8 4 12 0 1.640 2.577 3.825 1.488 −0.933 −1.241 −2.825 −2.536 [28]
5 12 7 19 0 0.750 5.514 9.769 1.170 −3.749 −10.121 −9.439 −9.137 [29]
6 17 11 28 2 1.970 6.556 9.211 2.128 −3.409 −8.391 −8.395 −7.937 [17]
7 19 13 32 2 2.080 7.262 10.208 2.273 −3.508 −9.091 −9.097 −8.667 [17]
8 26 19 45 0 1.154 10.938 19.533 1.864 −3.942 −18.941 −18.738 −18.755 [30]
9 28 20 48 0 1.350 11.535 19.593 2.053 −4.699 −19.261 −18.338 −18.426 [31]
10 29 23 52 4 0.770 12.337 26.986 1.585 −3.918 −30.701 −30.604 −30.794 [17]
11 30 24 54 0 1.480 11.980 20.201 2.221 −4.125 −18.911 −18.627 −18.732 [32]
12 31 26 57 2 2.050 11.697 17.795 2.654 −4.047 −16.041 −15.864 −15.889 [17]
13 36 31 67 0 1.690 13.763 23.041 2.520 −2.581 −19.641 −21.011 −21.332 [33]

is given in terms of the relative distance r = r1 − r2, angular
momentum l , and reduced proton mass μp = mp/2. A simple
estimate shows that one obtains a resonant state at a very small
energy Eres ≈ 0.1 MeV with a decay width log10 �res ≈ −2
(MeV) for l = 0, v0 ≈ 38 MeV, b ≈ 1.8 fm. Therefore the
diproton “cluster” is weakly bound but its center of mass
(c.m.) radius R = 1

2 (r1 + r2) moves in the Coulomb field of
the daughter nucleus as a real diproton particle. Thus, we
suppose for the decay width a similar to the binary case
expression, proportional to the scattering amplitude squared
N2

L in some channel characterized by the angular momentum
L [24]. It can be rewritten

�L = h̄vN2
L = h̄v

γ 2
L (R)

G2
L(χ, ρ)

≡ γ 2
L (R)PL(χ, ρ), (3)

in terms of the reduced width γ 2
L (R) and Coulomb penetra-

bility PL(χ, ρ). Let us mention that these quantities differ
by a constant factor with respect to the standard definitions
in Ref. [25]. The penetrability is defined by the irregular
Coulomb wave function which has the following semiclassical
representation:

GL(χ, ρ) = G0(χ, ρ)CL(χ, ρ). (4)

Let us mention that the monopole and centrifugal terms are
respectively given as

G0(χ, ρ) = (cot α)1/2 exp [χ (α − sin α cos α)],

CL(χ, ρ) = exp

[
L(L + 1)

χ
tan α

]
, (5)

in terms of the dimensionless parameter

cos2 α ≡ ρ

χ
= Q

VC (R)
= QR

4ZDe2
, (6)

depending upon the Coulomb parameter and reduced radius

χ = 4ZDe2

h̄v
, ρ = κR, (7)

where

v =
√

2Q

μ
, h̄κ = μv. (8)

The reduced width γ 2
L is also called diproton formation prob-

ability. We will estimate it on the nuclear surface at the
“geometrical touching configuration”

R = 1.2
(
A1/3

D + A1/3
2p

)
. (9)

Let us stress that this quantity includes the influence of the
above defined dissociation probability of the diproton system
�res. In order to prove the validity of this “binary representa-
tion” we investigated the available experimental data, given in
Table I.

Here, we give the charge ZP, neutron NP, and mass number
AP of the parent nucleus, angular momentum of the emitted
diproton L, Q value, fragmentation potential

Vfrag = VC (R) − Q, (10)

Coulomb parameter χ , reduced radius ρ = κR Eq. (7), exper-
imental reduced width

γ 2
exp = �0

PL
, (11)

where the monopole width �0 is defined below by Eq. (12),
and the logarithm of the experimental decay width �exp =
h̄ ln 2/Texp. We also included in the last two columns the two
versions for computed decay widths, as described below by
Eq. (18).

The most important ingredient defining the experimental
reduced width (11) is the irregular Coulomb function depend-
ing on Coulomb parameter χ and reduced radius ρ. We have
shown in recent Refs. [34–36] that the two regions of the
one-proton emission systematics, divided by Z = 68, corre-
spond to two different regions in the dependence between ρ

and χ parameters. At the same time, one obtains a similar
conclusion concerning the two regions of the α decay divided
by the doubly magic nucleus 208Pb. In Fig. 1(a) we extend
this analysis by noticing a strong correlation between the two
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FIG. 1. (a) Reduced radius versus Coulomb parameter. (b) Log-
arithm of the monopole decay width versus the Coulomb parameter.
The fit parameters are given in the first line of Table II.

quantities, except the two lower points, corresponding to the
cases 4 and 13 in Table I, which indeed will appear separately
in our systematics.

Then we analyzed to what extent the Geiger-Nuttall law,
expressing the linear relation between the logarithm of the
decay with and Coulomb parameter, is fulfilled. To this pur-
pose we extracted the influence of the centrifugal barrier by
defining the monopole decay width [14]

�0 = �expC
2
L (χ, ρ). (12)

In Fig. 1(b) we notice such a linear dependence

log10 �0 ≈ a0χ + b0, (13)

on a wide interval of almost 30 orders of magnitude.
In the first line of Table II we give the parameters of the fit

line with an overall root mean square (rms) error σ0 = 1.238.
Notice a slightly smaller rms error σ ′

0 = 1.010 by excluding
the two above-mentioned cases 4 and 13.

Let us stress that this is a rather large error, corresponding
to more than one order of magnitude. Therefore this law has
an approximate character and a poor predictive power. This
is due to the variation of the reduced width γ 2

L along the
analyzed emitters.

In order to further analyze this feature let us men-
tion that in all binary emission processes we evidenced
in Refs. [15,34,35] an analytical universal law for reduced

TABLE II. Parameters of the fit lines.

k ak bk σk σ ′
k

0 −1.009 1.272 1.238 1.010
1 −0.183 −1.757 0.742 0.396
2 0.622 −4.876 0.702 0.333

FIG. 2. Logarithm of the experimental reduced width at the
geometrical touching radius R = 1.2(A1/3

D + 21/3) versus the frag-
mentation potential (a) and pairing gap (b). The fit parameters are
given in the second line of Table II. The rms error in parentheses
corresponds to the analysis without considering cases 4 and 13.

widths

log10 γ 2 = −π log10 e

h̄ω1
Vfrag + log10 s, (14)

in terms of the harmonic oscillator frequency of the inter-
nal nuclear interaction approximated by an inverted parabola
h̄ω1 and the spectroscopic factor s. We plot in Fig. 2(a)
the logarithm of the experimental reduced width versus the
fragmentation potential. This dependence can satisfactorily be
fitted by a straight line

log10 γ 2
exp ≈ a1Vfrag + b1 (15)

with a negative slope a1 < 0. The overall rms error in the
second line of Table II corresponds to a factor of 5 and to a
factor of 2.5 if one excludes the cases 4 and 13, corresponding
to the upper two points. The fit parameters lead to the follow-
ing values in Eq. (14) h̄ω1 = 7.456 MeV, s = 0.017. Notice
that we obtained the same order of magnitude, namely h̄ω1 =
11.389 MeV (A < 145), 12.580 MeV (A > 145) in the case
of the Woods-Saxon potential used to describe one-proton
emission and h̄ω1 = 9.080 MeV for double-folding potential
describing α decay [36].

Let us mention here that in Ref. [23] we estimated the
experimental two-proton formation probability on the nuclear
surface within the pairing BCS approach for 45Fe (corre-
sponding to no. 8 in Table I) as being log10 γ 2

BCS ≈ −2. From
Fig. 2(a) we notice that for Vfrag = 10.938 MeV one obtains
log10 γ 2

exp ≈ −4. The missing two orders of magnitude we can
ascribe to the above mentioned penetration of the diproton
system through the interproton potential (2).

In the same reference we evidenced that the two-proton
formation probability quadratically depends upon the pairing
gap

γ 2
BCS ≈ (u v)2 ≈ �2, (16)
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α

FIG. 3. Logarithm of the experimental reduced width versus the
pairing gap for one-proton emission (a) and α decay from even-even
emitters (b).

where u and v denote the standard BCS amplitudes. Anyway,
the systematic analysis of two-proton emitters in Table I evi-
denced that the exponential dependence upon the pairing gap
provides a significantly smaller rms error. Thus, we plotted
in Fig. 2(b) the dependence between the logarithm of the
experimental reduced width and the systematic rule of the
pairing gap � = 12A−1/2,

log10 γexp ≈ a2� + b2. (17)

Notice the linear correlation with a rms error in the third line
of Table II corresponding to a factor of three. One obtains a
better agreement within a factor of two if one excludes the two
mentioned cases 4 (magic in neutrons) and 13.

Let us mention in this context that the situation is quite
different in the case of one-proton emission. In Fig. 3(a) we
plotted the experimental reduced width defined by Eq. (11)
[35] versus the pairing gap. One sees that the upper and lower
regions practically do not depend upon the pairing gap. Notice
that the “vertical” transitional region around � ≈ 1 MeV
corresponds to Tm isotopes [35].

This is due to the fact that the one-proton formation proba-
bility has a one-particle character, being proportional to the
BCS amplitude squared u2

F at the Fermi level. In the case
of the α decay from even-even emitters the behavior is sim-
ilar to the two-proton emission, as seen in panel (b) of the
same figure, where we notice two parallel linear dependencies
divided by the doubly magic nucleus 208Pb. Therefore the
formation probability of the two-proton and alpha cluster has
a common collective pairing nature, in spite of the fact that the
first system is weakly bound, while the second one is strongly
bound.

The influence of the quadrupole deformation can be esti-
mated by using the Fröman method as in Ref. [37]. Thus, the
influence of the non-diagonal matrix elements of the Fröman
matrix is rather small, being about 15% for two-proton emit-
ters at β = 0.3.

FIG. 4. Logarithm of the experimental decay width ver-
sus log10 �1 = log10 PL + a1Vfrag + b1 (a) and log10 �2 = log10 PL +
a2� + b2 (b). The fit parameters are given in the third line of Table II.
The rms error in parentheses corresponds to the analysis without
considering cases 4 and 13.

Finally we analyzed the experimental decay width by plot-
ting in Fig. 4 its logarithm as a function of the theoretical
width for panels (a) and (b), respectively:

log10 �1 = log10 PL + a1Vfrag + b1, (18a)

log10 �2 = log10 PL + a2� + b2, (18b)

The values of the theoretical predictions are given in the last
two columns of Table I and the fit parameters in the last
two lines of Table II. Notice the very good linear correlation
between these quantities along the first bisectrices plotted by
a dashed line.

Concluding, in spite of the fact that the two-proton
emission is a three-body process, we evidenced the binary
character of laws connecting the logarithm of the decay widths
in terms some physical quantities. Thus, we evidenced the
linear correlation between the logarithm of the reduced width
and the fragmentation potential with a negative slope, pre-
dicted as an analytical universal rule for binary emission
processes like one-proton emission, α, and heavy cluster de-
cays. On the other hand, we also evidenced the role played
by the pairing interaction, given by the linear correlation be-
tween the logarithm of the reduced width and pairing gap, as
predicted by microscopic estimates of the two-proton forma-
tion probability. The relative small rms error give a powerful
predictive power to this last rule. The two-proton and α-
cluster formation probabilities have similar patterns versus
the pairing gap, while in the one-proton emission one has a
quasiconstant behavior.
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