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The Boltzmann equation is the traditional framework in which one extends the time-dependent mean field
classical description of a many-body system to include the effect of particle-particle collisions in an approximate
manner. A semiclassical extension of this approach to quantum many-body systems was suggested by Uehling
and Uhlenbeck in 1933 for both Fermi and Bose statistics, and many further developments of this approach are
known as the Boltzmann-Uehling-Uhlenbeck (BUU) equations. Here I introduce a pure quantum version of the
BUU type of equations, which is mathematically equivalent to a generalized time-dependent density functional
theory extended to superfluid systems. As expected, during nonequilibrium processes the quantum Boltzmann
one-body entropy increases during evolution.
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The dynamics of a classical N-particle system can
be described fully using the Liouville equation for
the time-dependent probability distribution function
fN (q1, . . . , qN , p1, . . . , pN , t ), where qk, pk are the canonical
coordinates and momenta of the particles and k = 1, . . . , N .
Integrating over N − s coordinates and momenta one
can introduce the s-particle time-dependent probability
distributions fs(q1, . . . , qs, p1, . . . , ps, t ) and derive the
Bogoliubov-Born-Green-Kirkood-Yvon (BBGKY) hierarchy
of equations [1]. The lowest order approximation to the exact
BBGKY hierarchy is the Vlasov equation for the one-particle
time-dependent probability distribution function f (q, p, t ),

∂ f

∂t
+ p

m
· ∂ f

∂q
+ F · ∂ f

∂ p
= 0, (1)

where m is the particle mass (assuming that all particles have
the same mass) and F is the average force experienced by a
particle from all the other particles,

F(qk ) = −
N∑

l �=k

∫
dql d pl f (ql , pl , t )

V (|qk − ql |)
∂qk

, (2)

assuming only two-particle interactions. One can show that in
the semiclassical approximation the time-dependent Hartree-
Fock equations reduce to the Vlasov equation, Eq. (1).
Boltzmann had the key insight to add an additional collision
integral to this equation, assuming “molecular chaos” prior
to the two-particle collision, and thus arriving at a kinetic
equation. Nordheim [2] and Uehling and Uhlenbeck [3] gen-
eralized the Boltzmann equation by modifying the collision
integral to take into account the quantum statistics, known
as the Boltzmann-Uehling-Uhlenbeck (BUU) equation (and
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see also Bertsch and Das Gupta [4] for applications to nuclear
physics):

∂ f

∂t
+ p

m
· ∂ f

∂q
+ F · ∂ f

∂ p
= Icoll(p, t ), (3)

Icoll(r, p, t ) = − 1

(2π h̄)3

∫
d�

∫
d p2

∫
d p4 v

dσ (q,�)

d�

× { f (r, p, t ) f (r, p2, t )[1 + θ f (r, p3, t )]

× [1 + θ f (r, p4, t )]

− f (r, p3, t ) f (r, p4, t )[1 + θ f (r, p, t )]

× [1 + θ f (r, p2, t )]}
× δ(p + p2 − p3 − p4), (4)

mv = q = |p − p2|. (5)

Here θ = ±1 for bosons and fermions, respectively, and θ ≡
0 in the original Boltzmann equation. dσ (q,�)

d�
is the differential

cross section of particles with initial or final p, p2 and final or
initial momenta p3,4 into a solid angle d�. The integrals of
the first and the second terms in the curly brackets in Eq. (4)
are often referred as the loss and gain terms in this kinetic
equation.

The numerical solution of the BUU equation is sig-
nificantly simpler than the solution of the time-dependent
Hartree-Fock (TDHF) equations. For example, for a nu-
clear system in a simulation box L3 = 503 fm3 and
with a momentum cutoff of pcut = 600 MeV/c there
are 4L3(2pcut )3/(2π h̄)3 ≈ 4.56 × 105 quantum phase-space
cells, while for a TDHF solution a system of N = 500
nucleons in the same volume 503 fm3 and with a spatial
lattice constant of l = 1 fm, which corresponds to the same
momentum cutoff pcut = π h̄/l ≈ 600 MeV/c, has a total
of 2NL3(2pcut )3/(2π h̄)3 ≈ 1.1 × 108 quantum phase-space
cells. However, since collisions are absent in the TDHF
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framework, the role of equilibration processes is severely un-
derestimated, even though TDHF describes more accurately
the single-particle quantum dynamics and operates in a bigger
space.

Similarly to the original Boltzmann equation, the BUU
equation is valid only for a quantum dilute weakly interact-
ing system in the semiclassical approximation. Therefore, the
particle-particle interaction has to be weak and short ranged,
and the average interparticle separation should be smaller
than the interaction range. However, most of the quantum
many-body systems of interest are dense, as the interaction
range is of the order of the average interparticle separation
or even larger, and the interaction strength is typically strong
and in such situations the evaluation of the collision integral
relies on various approximations and assumptions, and their
accuracy and/or validity is almost impossible to evaluate. In
a dense system the use of the free space cross section dσ (q,�)

dω

is highly questionable, n-body collisions with n > 2 should
be taken into account, and the assumption that a collision
occurs at a well-defined point in space r and the absence of
memory effects are inconsistent with the quantum uncertainty
principle.

There were many attempts over the years to develop time-
dependent descriptions of many-nucleon systems beyond the
mean field in order to describe missing two-body correlations,
and in particular to allow for the equilibration of the single-
particle degrees of freedom, while at the same time aiming
towards a correct description of the quantum single-particle
dynamics. The earliest attempts can be traced back to the
generator coordinate method (GCM) and its time-dependent
extension suggested by Wheeler and collaborators [5,6] (see
a recent review [7]). One can try to introduce explicitly the
two-body densities as well (see the recent review [8]). Other
authors have suggested adding stochastic terms to the TDHF
equations and I refer the interested reader to Ref. [9], where
a number of such approaches are discussed. It suffices to say
that these attempts have limited success in practice for many-
fermion systems, apart from applications to rather idealized
and simple cases.

I present arguments that a generalization of the extension of
the time-dependent density functional theory (TDDFT) to su-
perfluid systems is a generalized mean field framework, which
can accommodate two-body collisions. I use the acronym gT-
DDFT for this further generalization, which will be still local,
in the spirit of the Kohn-Sham approach [10] to the density
functional theory (DFT), often referred to in literature as the
local density approximation (LDA) or its further extensions
[11]. The DFT is in principle mathematically equivalent with
the many-body Schrödinger equation at the level of one-body
density [10–14]. The difficulties with both these quantum
many-body approaches are well known. The Schrödinger
equation requires the nucleon-nucleon interactions, which are
not known exactly, and for systems of many nucleons the
numerical solution of this equation is practically impossible,
unless various approximations are introduced. Within DFT
one needs to know the energy density functional (EDF),
which cannot be independently measured; its relation with the
nucleon-nucleon interaction cannot be accurately established,
and for time-dependent phenomena memory effects maybe

important [13,14]. The current difficulties of ab initio calcu-
lations and their relation with DFT approaches were recently
discussed by Salvioni et al. [15].

The generalized TDDFT (gTDDFT), which is a further ex-
tension of the TDDFT to superfluid systems [16–20], which,
apart from allowing to describe static and time-dependent su-
perfluid systems, has the side effect of describing a particular
class of two-body collisions. We often refer to the TDDFT
extended to superfluid systems in the spirit of Kohn-Sham
local density approximation DFT [10] as the time-dependent
superfluid local density approximation (TDSLDA), which
will become thus gTDSLDA accordingly. As Bertsch et al.
initially suggested [21–24], while a nucleus adiabatically
elongates during fission the single-particle energy levels dis-
play typically avoided crossings. The naive picture is that
at such an avoided level crossing a Landau-Zener transition
may occur. If a nucleon does not undergo a transition it
will stay on the up-sloping level and a vacancy below the
highest occupied level (the Fermi level) will be created by
the down-sloping level. That means the nucleus will acquire
an intrinsic excitation energy with a volume character, since
the local Fermi surface will cease to be spherically sym-
metric. The dynamics of nuclei at relatively low energies is
that of an incompressible quantum fluid, and its evolution
is dominated by the surface tension and the shape of the
electric charge distribution mostly [25,26], with significant
corrections due to shell effects [27,28]. After many such
avoided level crossings the nucleus will acquire a volume
excitation energy in the case of Landau-Zener transitions,
an evolution unexpected for an incompressible fluid. That is
the main reason why within a TDHF description of fission
nuclei fail to reach scission [29–32] and the presence of
the pairing correlations in TDSLDA proved to be the cru-
cial lubricant [33–35], as expected for a long time [21–24].
Pairing correlations provide the mechanism for the nucleus
to follow the dynamics of an incompressible fluid, where the
volume energy component does not dramatically change. The
single-particle levels are typically characterized by Kramers
degeneracies and when a nucleus approaches a level crossing
two nucleons jump together as a “Cooper pair” and the nu-
cleus remains “cold.” Such a transition is also Bose enhanced
in the presence of a pairing condensate [33–35]. Because
of the presence of pairing correlations in both neutron and
proton systems within TDSLDA, nuclei can easily undergo
fission, unlike in a TDHF framework, when the initial con-
figuration is close to the outer fission barrier. The evolution
mechanism championed by Bertsch [21], however, implies the
presence of neutron and proton pairing condensates. On the
other hand, the overwhelming experimental evidence is that
the fission dynamics is not an adiabatic process, which is at
odds with the prevailing microscopic approaches, based on
the assumption of adiabaticity of the large amplitude collec-
tive motion [7,36–38]. The fission fragments emerge with a
significant total excitation energy, which is up to 20% of the
total Q = Minic2 − MHc2 − MLc2 of the reaction, where Mini,
MH, and ML are the masses of the initial fissioning nucleus
in the case of spontaneous fission and of the ground states
of the prompt fission fragments, and c is the speed of light.
If on the way from saddle to scission the emerging fission
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fragments become hot, the presence of neutron and/or proton
pairing condensates becomes highly questionable along with
the mechanism suggested in Ref. [21].

The TDSLDA is formulated in terms of Bogoliubov quasi-
particle wave functions (QPWFs). The evolution of nucleon
QPWFs is governed by the equations

ih̄
∂

∂t

⎛
⎜⎝

uk↑
uk↓
vk↑
vk↓

⎞
⎟⎠ =

⎛
⎜⎜⎝

h↑↑ h↑↓ 0 	

h↓↑ h↓↓ −	 0
0 −	∗ −h∗

↑↑ −h∗
↑↓

	∗ 0 −h∗
↓↑ −h∗

↓↓

⎞
⎟⎟⎠

⎛
⎜⎝

uk↑
uk↓
vk↑
vk↓

⎞
⎟⎠,

(6)

where I have suppressed the spatial r and time coordi-
nate t , and k labels the QPWFs (including the isospin)
[ukσ (r, t ), vkσ (r, t )], with σ = ↑,↓ the z projection of the
nucleon spin. The single-particle (SP) Hamiltonian hσσ ′ (r, t )
and the pairing field 	(r, t ) are functionals of various neutron
and proton densities, which are computed from the QPWFs
[39,42].

Typical evolution of the nucleon occupation probabilities
in a TDSLDA are shown in Fig. 1, which is absent in any
TDHF, where ṅk (t ) ≡ 0. In the case of fission the emerging
fission fragments have an excitation energy of ≈20 MeV
each. In the case of collision 238U + 238U the final frag-
ments have excitation energies of about 400 and 600 MeV,
respectively, and the distance of closest approach is reached
at ≈250 fm/c, leading to a heavy fragment with Z ≈ 123
and N ≈ 198. At these excitation energies the neutron and
proton pairing “gaps” have also significant spatial variations,
the long-range order [43] is absent, and the pairing “gaps”
have also significantly decreased in magnitude and the “true”
pairing condensates are therefore absent. However, the effect
of these pairing gaps on the nucleon wave functions vk↑vl↓ ↔
um↑un↓ is basically the quantum equivalent of the action of the
collision term in Eq. (4), f1 f2 ↔ (1 − f3)(1 − f4). It is no-
table that the rate of the single-particle occupation probability
redistribution shown in Fig. 1,

∑
k

|ṅk (t )| ≈ const for t > t0, (7)

is fairly constant after some initial time, t0 ≈ 350 fm/c in
the case of fission and t0 ≈ 200 fm/c in the case of heavy-
ion collisions, even after the reaction fragments are spatially
separated. This is expected, as the thermal equilibration is a
slower process. While

∑
k ṅk (t ) ≡ 0 is always satisfied, in the

absence of pairing correlations an even stronger constraint is
in effect, ṅk (t ) ≡ 0 for all k’s. During these initial transitory
times t < t0, nuclei start with well-defined nn and pp pairing
condensates, when the rates of pair transitions are higher due
to the Bose enhancement mechanism. Since in the case of
heavy-ion collisions the excitation energies are higher, the
magnitudes of the remnant pairing fields are smaller than
in the case of fission. In the case of 236U fission one can
demonstrate that the quantum Boltzmann one-body entropy,

S(t ) = −
∑

k

[ñk (t ) ln ñk (t ) + (1−ñk (t )) ln(1−ñk (t ))], (8)
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FIG. 1. Typical time evolutions of the nucleon occupation prob-
abilities in a TDSLDA simulation of induced fission of 236U started
near the top of the outer fission barrier until complete fission frag-
ment separation and for XY collision (see Ref. [40] for convention)
at zero impact parameter of 238U + 238U with 1500 MeV initial
center-of-mass frame energy. The simulations were performed with
the nuclear EDF SeaLL1 [41] with the LISE code [42]. Scission
occurs at t ≈ 2300 fm/c. In collision the two final fragments are
fully separated at t > 1000 fm/c. The upper panel displays the short-
time evolution of the cumulative nucleon occupation probability∑

k |nk (t + 	t ) − nk (t )| with 	t ≈ 30 fm/c for fission and 	t ≈ 64
fm/c for collisions. In the inset the canonical neutron occupation
probabilities ñk (t ), ordered by size, are displayed at the start and fin-
ish of the simulation and one can clearly see the formation of the long
momentum tails. The total change in the nucleon occupation proba-
bility

∑
k |nk (t ) − nk (0)| as a function of time is shown in the lower

panel. Note that for any 	t in the absence of pairing
∑

k |nk (t +
	t ) − nk (t )| ≡ 0. Here nk (t ) = ∑

σ=↑,↓
∫

dr|vk (r, τ, σ, t )|2, for
either τ = n, p [see Eq. (9)].

changes from S(tini ) = 12.4 to S(tfin) = 23.0, and thus entropy
increases as expected in a nonequilibrium evolution, where
ñk (t ) are canonical occupation probabilities. Performing neu-
tron and proton particle projection of the fissioning nucleus at
the initial and final times, as described in Ref. [44], leads to
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S(tini ) = 10.1 to S(tfin) = 18.8 for 236U and S(tini ) = 10.2 to
S(tfin) = 19.9 for 238Pu.

A simple qualitative argument, assuming that pairing con-
densates are present, was presented in Refs. [21–24]. During
the fissioning of an axially symmetric fissioning nucleus in a
TDHF framework the projection of the single-particle angular
momentum is conserved. In the initial nucleus the maxi-
mum nucleon orbital angular momentum is lz ≈ kF r0A1/3,
which is noticeably larger than the maximum orbital angu-
lar momentum in a fission fragment, lz ≈ kF r0(A/2)1/3. Here
kF ≈ 1.35 fm−1 is the Fermi wave vector and r0 = 1.2 fm.
Within TDHF the single-particle occupation probabilities are
conserved and in the absence of an effective mechanism for
redistribution of the single-particle occupation probabilities
the waists of the fission fragments are artificially kept large as
in the initial nucleus, instead of shrinking by ≈2−1/3 ≈ 0.79.
In an axially symmetric nucleus two nucleons with conju-
gate momenta can easily jump simultaneously if a transition
(m,−m) → (m′,−m′) is allowed. Such a transition is con-
trolled by a two-body matrix element 〈m,−m|V |m′,−m′〉,
which describes a nn or pp collision with the pair quantum
numbers L = S = 0, Tz = ±1. Therefore, as in the case of the
Boltzmann equation, the pairing correlations allow for nn and
pp collisions, but only with L = S = 0, Tz = ±1. However,
unlike the Boltzmann equation, the TDSLDA also allows for
the Bose enhancement of such transitions.

The absence of np-pair jumps is a major difference with
the role played by the collision integral in the BUU equation.
In heavy nuclei the number of np pairs is larger than the sum
of the numbers of nn and pp pairs and it is hard to accept
that their role could be neglected in fission, for example,
particularly in the absence of genuine nn- and pp-pairing
condensates. I will show here how one can generalize the
TDSLDA to include np collisions with pair quantum numbers
L = 0, S = 0, 1. It is important to appreciate the fact that
even if the long-range order of the pairing field and/or con-
densate is lost, these two-nucleon transitions survive at large
excitation energies of the fissioning nucleus and in the fission
fragments, which emerge with an excitation energy ≈20 MeV,
corresponding to intrinsic temperatures ≈1 MeV or higher, as
illustrated in Fig. 1. At these excitation energies both neutron
and proton “pairing” fields have no phase coherence anymore,
which means that the nucleons in the “Cooper pairs” have
finite center-of-mass momenta, which vary from point to point
inside the nucleus, and the pairing fields have large spatial
variation of their magnitudes [33–35]. In spite of that, the rate
of the redistribution of the nucleon occupation probabilities
does not diminish for t > t0 (see Fig. 1). The addition of np-
pairing short-range correlations is going to play a significant
role in the definition of the mass and charge fission yields,
similarly in heavy-ion collisions. In nuclear and cold-atom
physics, pairing is attributed to an attractive short-range in-
teraction, which as a result leads to very long momentum tails
of the nucleon occupation probabilities n(k) ∝ 1/k4, which
at the same time are always present due to the presence of
short-range correlations [45,46] and have been recently un-
equivocally put in evidence in experiments [47], particularly
in the case of np pairs, which, as I advocate here, are likely
the most important ones in dynamics.

I introduce generalized Bogoliubov quasiparticle u and v
components and corresponding generalized fermionic quasi-
particle creation and annihilation operators,

uk (x) = uk (r, τ, σ, t ), vk (x) = vk (r, τ, σ, t ), (9)

α
†
k =

∑∫
dx[uk (x)ψ†(x) + vk (x)ψ (x)], (10)

αk =
∑∫

dx[v∗
k (x)ψ†(x) + u∗

k (x)ψ (x)], (11)

{α†
k , αl} = δkl , {αk, αl} = 0, (12)

{ψ†(x), ψ (y)} = δ(x − y), {ψ (x), ψ (y)} = 0, (13)

where τ = n, p and σ =↑,↓ and
∑∫

stands for integration
of spatial coordinates and summation over spin and isospin
degrees of freedom. These new quasiparticle operators do not
necessarily have a well-defined isospin quantum number; they
mix the neutrons and protons in the same manner as the spin
degrees of freedom were mixed in previous approaches. With
these definitions of quasiparticle states and with the restriction
that the relevant anomalous densities be local in space one
has to introduce the following four different types in the case
when only L = 0 is allowed:

κτ (r) =
∑

k

v∗
k (r, τ,↓)uk (r, τ,↑), τ = n, p, (14)

κ0(r) =
∑

k

v∗
k (r, n,↓)uk (r, p,↑), (15)

κ1(r) =
∑

k

v∗
k (r, n,↑)uk (r, p,↑), (16)

where αk|�〉 = 0. Here κn,p(r) are the usual neutron and
proton anomalous densities, while κ0(r) describes pn pairs
with Sz = 0 and κ1(r) describes pn pairs with Sz = ±1. κ0(r)
has exactly the same form as the anomalous density for the
unitary Fermi gas, in which case p and n would refer to
atoms in different hyperfine states, which sometimes could be
different atom species. In κ1(r) the roles of spin and isospin
are switched when compared with κτ (r). The normal densities
have a similar spin-isospin structure:

nτ (r) =
∑
k,σ

v∗
k (r, τ, σ )vk (r, τ, σ ), (17)

nnp(r) =
∑
k,σ

v∗
k (r, n, σ )vk (r, p, σ ), (18)

στ (r) =
∑

k,σ,σ ′
v∗

k (r, τ, σ )σσ,σ ′vk (r, τ, σ ′), (19)

σnp(r) =
∑

k,σ,σ ′
v∗

k (r, n, σ )σσ,σ ′vk (r, p, σ ′), (20)

where σ are Pauli matrices. Other types of densities (density
gradients, currents, etc.) are also needed [48,49]. The gTD-
SLDA equations read in this case

ih̄
∂

∂t

(
uk (x, t )
vk (x, t )

)
=

(
H 	

	† −H∗

)(
uk (x, t )
vk (x, t )

)
, (21)

L021601-4



PURE QUANTUM EXTENSION OF THE SEMICLASSICAL … PHYSICAL REVIEW C 105, L021601 (2022)

where uk (x, t ) and vk (x, t ) are four-column vectors (9) and H
and 	 are 4 × 4 matrix operators with the structure

H =

⎛
⎜⎜⎝

hn↑,n↑(r) hn↑,n↓(r) hn↑ p↑(r) hn↑,p↓(r)
hn↓,n↑(r) hn↓,n↓(r) hn↓ p↑(r) hn↓,p↓(r)
hp↑,n↑(r) hp↑,n↓(r) hp↑ p↑(r) hp↑,p↓(r)
hp↓,n↑(r) hp↓,n↓(r) hp↓ p↑(r) hp↓,p↓(r)

⎞
⎟⎟⎠ (22)

and

	 =

⎛
⎜⎝

0 	n(r) 	1(r) 	0(r)
−	n(r) 0 −	0(r) 	1(r)
−	1(r) −	0(r) 0 	p(r)
	0(r) −	1(r) −	p(r) 0

⎞
⎟⎠. (23)

I did not include the chemical potentials in Eq. (21), as their
presence is not necessary in the time-dependent formulation.
Equations (21) are derived via an EDF, which should satisfy
all the usual required symmetries. In particular the number
and anomalous mixed neutron-proton densities can enter in
such an EDF only as combinations |κ0(r)|2, |κ1(r)|2, |nnp(r)|2,
and |σnp(r)|2, in order to satisfy isospin invariance. One can
then show that both average neutron and proton numbers
are conserved separately. Moreover, the average number of
neutrons and protons with either spin-up or spin-down is con-
served as well, unless an external time-dependent time-odd
one-body field is present. If one assumes isospin symme-
try then the three anomalous densities |κn,p(r)|2 and |κ0(r)|2
should appear in the EDF with the same coupling constant.
The absence of a dineutron bound state and existence of a
deuteron suggests, however, that np pairs with S = 1, T = 0
could be controlled by a stronger effective s-wave coupling
constant than the pairing coupling constant for S = 0, T = 1
pairs [50,51]. This np interaction can be derived either by
eliminating the tensor interaction using second order pertur-
bation theory or an approach similar to in medium similarity
renormalization group [52]. A conclusive experimental evi-
dence of the presence of a genuine neutron-proton pairing
condensate in nuclear ground states is absent, with perhaps
the exception of N = Z nuclei, and remains a matter of debate
[49–51,53–55]. The extension of the present analysis to L � 1
pairs is straightforward (see Ref. [49]).

Fission or heavy-ion collisions of superfluid nuclei are
typically started from states with vanishing mixed normal
and anomalous densities, which will remain so during the
entire time-dependent evolution in the absence of np mixing.
The neutron-proton pairing correlations can lead to a signifi-
cant redistribution of single-particle occupation probabilities,
similar to the role played by the collision integral in BUU
simulations (4). As a simple example one can consider the
case of a nucleus where both nn and pp pairing correlations
are absent and include only np-pairing or short-range cor-
relations or collisions using the magic nucleus 100Sn. In the
TDHF+TDBCS approximation the time evolution equations
have a canonical form by design [56]; the occupation proba-
bilities evolve according to

ih̄
dnk

dt
= 	kκ

∗
k − 	∗

kκk, ih̄
dκk

dt
= 	k (1 − 2nk ), (24)

where now one couples a neutron state k with spin-up with a
proton state k with spin-up in the case of S = 1, for example,
thus interchanging the roles of the spin and isospin. These

equations have exactly the same structure as in the case of
either nn or pp pairing correlations, but with a different con-
tent of the pairing field, which now will describe the jumps
of np pairs. Similar to the BUU equation, a condensate is not
needed to facilitate mass and charge transport. If the system
is susceptible to develop wide mass and charge distributions
one can initially simply seed relatively small pairing fields
	0,1(r) as in Ref. [57], and with an initial excitation energy
corresponding to a larger level density. The Boltzmann one-
body entropy will grow with time from S(tini ) = 0, driving
the system towards the most probable outcomes, as expected
in a nonequilibrium process. Another option is to treat the
pairing fields as phenomenological inputs as in nuclear BUU
simulations. Since the occupation redistribution mechanism
described here is similar to that present in the BUU equation,
there is likely no need to generate np components of the mean
field part of Eq. (22), which were never considered in the
BUU equation as far as I know. The “true” mean field hnp

components are never dominant and since they will lead only
to uncorrelated one-particle jumps their role is negligible.

In conclusion, noticing that the TDSLDA describes transi-
tions of nn and pp pairs even in the absence of genuine pairing
condensates I have presented an extension of the TDSLDA
framework, here dubbed gTDSLDA to account for nn, pp, and
np collisions, in a manner similar to the semiclassical BUU
equation. The collision integral in the BUU equation accounts
for the loss and gain processes,

f (x1) f (x2) ↔ [1− f (x3)][1− f (x4)]. (25)

Exactly the same types of transitions are performed by the nn,
pp, and np pseudopairing fields where transitions of the type
[21–24]

vk (r, σ1, τ1)vl (r, σ2, τ2) ↔ um(r, σ3, τ3)un(r, σ4, τ4) (26)

are enabled. In BUU and gTDSLDA frameworks transitions
occur at the same position in space. The nn and pp pair
jumps have been shown to occur consistently in the past TD-
SLDA calculations [33–35,58] and Fig. 1, both in the presence
of genuine pairing condensates as well as in their absence,
and they lead to an increase of the Boltzmann one-body en-
tropy [see Eq. (8)]. gTDDFT and gTDSLDA thus incorporate
naturally both the long-range mean field effects and the short-
range correlations between nucleons.
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