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Formulation of the generator coordinate method with arbitrary bases
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The existing formalism used to compute the operator overlaps necessary to carry out generator coordinate
method calculations using a set of Hartree-Fock-Bogoliubov wave functions is generalized to the case where
each of the HFB states are expanded in different arbitrary bases spanning different subspaces of the Hilbert
space.
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The calculation of operator overlaps between general
Hartree-Fock (HF or Slater) or Hartree-Fock-Bogoliubov
(HFB) mean-field wave functions is a common task in many
areas of physics like nuclear physics [1], condensed matter
physics [1], or quantum chemistry [2]. It is required in the
restoration of spontaneously broken (by the mean field) sym-
metries or in the consideration of fluctuations beyond the
mean field in the context of the configuration interaction or
the generator coordinate method [1,3–5]. In both cases, linear
combinations of mean-field wave functions of the HF or HFB
type are used to build a variational space. The set of HFB
wave functions is usually chosen to explore the corner of the
Hilbert space relevant to the physics to be described or it is
dictated by the symmetry to be restored. The evaluation of the
overlaps is greatly simplified by using the generalized Wick
theorem (GWT) for general HFB states [6,7] or its equiva-
lent for Slater determinants [8]. Generalizations to consider
different peculiarities in the calculations of the overlaps have
been developed over the years both at zero [9–13] or finite
temperature [14–16]. The GWT implicitly assumes that all
the quasiparticle operators of the Bogoliubov transformation
are expanded in a common basis that is often taken as fi-
nite dimensional due to computational complexity reasons.
However, in many practical applications the parameters of the
basis (for instance, oscillator lengths in the harmonic oscil-
lator basis case) to be used for each of the HFB states have
different values or, in the context of symmetry restoration,
the basis is not closed under the symmetry operation (for
instance, an arbitrary translation of the HO basis). The most
straightforward solution to this problem is to use a common
basis (with the same oscillator lengths) for all the states of the
HFB set or, in the case of symmetry restoration, a basis which
is closed under the symmetry operation (HO basis with the
same oscillator lengths along the three spatial directions in the
case of rotations, a plane wave basis in the case of translations,
etc.). However, if the use of a localized basis is required along
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with spatial translations, the only easy strategy is to use a
very big basis and to carefully check the convergence of the
results with basis size [17,18]. These simple strategies come
at a cost; namely, they increase the basis size and, therefore,
the computational complexity. The situation is specially del-
icate, for instance, in fission studies where the very broad
range of nuclear shapes to be considered in the fission pro-
cess makes it impractical to use a basis with equal oscillator
lengths (in fact, all practitioners of fission using either one-
center or two-center HO bases often use different, optimized
basis parameters for each quadrupole moment defining the
fission process) [19,20]. At this point the reader might wonder
why not to do the calculation in the mesh. This solution
is, however, impractical in general and it is only useful for
zero-range interactions with trivial local exchange terms. In
addition, one has to carefully consider [21] the assumptions
and approximations required to implement the generators of
the symmetry in the mesh. Therefore, the only viable solution
to all the problems with noncomplete bases relies on the
formal extension of the original basis to make it complete with
the added states having zero occupancy. This approach has
been pursued in Refs. [22,23] for unitary transformations and
in Ref. [9] for general canonical transformations. However,
in those references it is not clear whether one can compute
the overlaps in terms of quantities defined in the starting,
finite size, bases. The purpose of this paper is to extend the
formalism of Ref. [9] to prove that the overlaps can always
be obtained in terms of what I call intrinsic quantities (i.e.,
quantities that are defined solely in the given finite bases),
and therefore, there is no need to refer to the complementary
(often infinite-dimensional) subspace required to make the
bases complete. In addition, by using the lower-upper (LU)
decomposition of the overlap matrix between the elements
of the bases, it will be possible to express all the different
quantities in a more familiar form, facilitating the application
of the obtained formulas. The application of the formalism to
the use of harmonic oscillator wave functions with different
oscillator lengths or the more general case involving rotated
and translated basis is deferred to future publications.
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The goal of this paper is to evaluate the overlap of general
multibody operators between arbitrary HFB wave functions,

〈φ0|Ô|φ1〉
〈φ0|φ1〉 , (1)

where each of the HFB states are expanded in different
bases not connected by unitary transformations (i.e., not ex-
panding the same subspace of the whole Hilbert space). I
denote the corresponding bases and associated creation op-
erators as B0 = {c†

0,k, k = 1, . . . , N0} in the case of |φ0〉 and

B1 = {c†
1,k, k = 1, . . . , N1} in the case of |φ1〉. It is implicitly

assumed that fermion canonical anticommutation relations
(CARs) are preserved among each basis set, i.e., {ci,k, ci,k′ } =
δkk′ , but there is an overlap matrix connecting both sets,
{c†

0,k, c1,l} =0 〈k|l〉1 = Rkl . For simplicity, I consider in the
following N0 = N1 = N , but note that the most general case
can be easily accommodated in the formalism. I also intro-
duce the complement of the two bases B̄0 = {c†

0,k, k = N +
1, . . . ,∞} and B̄1 = {c†

1,k, k = N + 1, . . . ,∞} such that B0 ∪
B̄0 = {c†

0,k}∞ and B1 ∪ B̄1 = {c†
1,k}∞ expand the whole sepa-

rable Hilbert space and, therefore, represent bases connected
by a unitary transformation matrix R (not to be confused
with R). I am assuming separable Hilbert spaces for which
countable orthonormal bases exist, and therefore, the intro-
duction of a (infinite dimensional) matrix R makes sense. Let
us also introduce the quasiparticle annihilation operators αiμ

(i = 0, 1), which annihilate |φi〉 and are written in terms of the
complete bases {c†

i,k}∞ through the standard definition

αiμ =
∑

k

(U ∗
i )kμci,k + (V ∗

i )kμc†
i,k .

By using the following block structure for the Bogoliubov
amplitudes Ui and Vi,

Vi =
(

V̄i 0
0 0

)
, Ui =

(
Ūi 0
0 di

)
, (2)

where V̄i and Ūi are N × N matrices, one can accommodate
into the formalism the set of N quasiparticle operators αiμ,
with μ = 1, . . . , N , corresponding to the quasiparticle opera-
tors expanded in the truncated bases Bi. The di are arbitrary
unitary matrices that should not appear explicitly in the final
expressions. It is also convenient to express the unitary matrix
R connecting B0 ∪ B̄0 and B1 ∪ B̄1 as a block matrix,

R =
(
R S
T U

)
.

The matrix R is just the representation of the unitary operator
T̂01 connecting the two complete bases:

T̂01c†
0,k T̂

†
01 = c†

1,k .

The T̂01 operator can be a symmetry operator like a spatial
translation, a rotation, or the dilatation operator when dealing
with HO bases differing in their oscillator lengths. In all
the cases (and this is an implicit requirement of the present
development) the operator is the exponential of a one-body
operator. Finally, let us introduce the HFB state |φ̃1〉 and the

associated annihilation operators α̃1,μ defined by the relations

T̂01|φ̃1〉 = |φ1〉
and

T̂01α̃1,μT̂ †
01 = α1,μ.

The annihilation operators α̃1,μ share the Bogoliubov ampli-
tudes with α1,μ but are expressed in the basis B0 instead:

α̃1μ =
N∑

k=1

(Ū ∗
1 )kμc0,k + (V̄ ∗

1 )kμc†
0,k .

Let us also introduce the T̂B operator of the Bogoliubov trans-
formation from α0,μ to α̃1,μ:

T̂Bα0,μT̂ +
B = α̃1,μ

and

T̂B|φ0〉 = |φ̃1〉.
To compute the overlap of Eq. (1) it will prove convenient to
write the operator Ô in terms of both bases {c†

0,k}∞ and {c†
1,k}∞

in a convenient way. For instance, for a two-body operator one
uses

υ̂ = 1

4

∑
k1k2l1l2

υ̃01
k1k2l1l2 c†

0k1
c†

0,k2
c1,l2 c1,l1 , (3)

where the antisymmetrized two-body matrix element is given
by υ̃01

k1k2l1l2
= υ01

k1k2l1l2
− υ01

k1k2l2l1
, with

υ01
k1k2l2l1 =0 〈k1k2|υ̂|l1l2〉1 (4)

being the interaction’s overlap matrix elements. The sums in
Eq. (3) extend over the complete bases {c†

0,k}∞ and {c†
1,k}∞ to

faithfully represent the operators. The advantage of Eq. (3) is
that the annihilation operators acting on |φ1〉 lead to a linear
combination of multi-quasiparticle excitations in which are
all of them expressed in terms of basis B1 alone, whereas
the creation operators’ action to the left on |φ0〉 will do the
same but in terms of B0. This is the key point to obtain
expression for the overlaps depending solely in the bases used
(and not their complements). The overlaps are computed by
transforming to the quasiparticle representation and applying
GWT. With the previous considerations one has to evaluate

〈φ0|α0,μ1 . . . α0,μM α+
1,νM

. . . α+
1,ν1

|φ1〉
〈φ0|φ1〉

= 〈φ0|α0,μ1 . . . α0,μM T̂ α+
0,νM

. . . α+
0,ν1

|φ0〉
〈φ0|T̂ |φ0〉

, (5)

with T̂ = T̂01T̂B being the product of the exponential of one-
body operators that can also be written as the exponential of
a one-body operator [7]. To evaluate these overlaps I make
heavy use of the results of Ref. [9] (denoted I hereafter). The
main difference between the present results and those in I
is that there I considered 〈φ0|ÂT̂ |φ0〉/〈φ0|T̂ |φ0〉, instead of
having T̂ “in the middle” of Â as is the case in the present
formulation. Fortunately, one can use the decomposition given
in Eq. (I.39) T̂ = T̂1T̂2T̂3(det R)1/2 (see also Ref. [7]), where
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each of the T̂i can be decomposed in turn as the prod-

uct of three elementary transformations T̂i = T̂i
20T̂i

11T̂i
02T 0

i ,
where T nm

i represents the exponential of a one-body operator
expressed as linear combinations of the product of n quasi-
particle creation (α+

0,μ) and m annihilation operators (α0,μ)
and T 0

i represents a constant factor. According to Eqs. (I.42)–

(I.54) in I one has T̂1
02 = T̂3

20 = I and T 0
1 = T 0

3 = 1, which
allows one to define the operators

T̂L = T̂1
20T̂1

11T̂2
20T̂2

11
(6)

and

T̂R = T̂2
02T̂3

11T̂3
02

, (7)

such that T̂ = T̂LT̂R (up to an irrelevant T 0
2 factor) and with

the properties 〈φ0|T̂L = 〈φ0| and T̂R|φ0〉 = |φ0〉. One can use
now the operators T̂L and T̂R to define the quasiparticle op-
erators (satisfying CARs) d0, d̄0, b0, and b̄0 by means of the
following relations:(

d0

d̄0

)
= T̂ −1

L

(
α0

α+
0

)
T̂L, (8)

(
b0

b̄0

)
= T̂R

(
α0

α+
0

)
T̂ −1

R , (9)

and one can finally express the matrix element of Eq. (5) as
the mean value

〈φ0|d0,μ1 . . . d0,μM b̄0,νM . . . b̄0,ν1 |φ0〉, (10)

where d0 and b0 are quasiparticle operators’ linear combi-
nations of α0 and α+

0 . Therefore, one can use the standard
Wick’s theorem to evaluate Eq. (10) in terms of the contrac-
tions 〈φ0|d0,μb̄0,ν |φ0〉, 〈φ0|d0,μd0,ν |φ0〉, and 〈φ0|b̄0,μb̄0,ν |φ0〉.
In order to obtain the expressions of the contractions one
needs the explicit form of the d0 and b̄0 operators in terms
of α0 and α+

0 . Using Eqs. (I.32), (I.A5), and (I.A6), one gets
(using the notation of I)(

d0

d̄0

)
=

(
D11 D12

0 D22

)(
α0

α+
0

)
,

with (
D11 D12

0 D22

)
=

(
T (1)

11 T (1)
12

0 T (1)
22

)(
I K (1)

0 I

)

×
(

eL(2)
0

0 e−(L(2) )T

)
.

In the same way and using Eqs. (I.35), (I.A7), and (I.51)–
(I.54), one obtains(

b0

b̄0

)
=

(
B11 0
B21 B22

)(
α0

α+
0

)
,

with (
B11 0
B21 B22

)
=

(
I 0

−M (3) I

)(
e−L(3)

0

0
(
eL(3))T

)

×
(

I 0
−M (2) I

)
.

The relevant contractions are easily obtained:

〈φ0|d0,μb̄0,ν |φ0〉 ≡ Cμν = (
D11BT

22

)
μν

, (11)

〈φ0|d0,μd0,ν |φ0〉 ≡ Dμν = (
D11DT

12

)
μν

, (12)

〈φ0|b̄0,μb̄0,ν |φ0〉 ≡ Eμν = (
B21BT

22

)
μν

. (13)

Using the explicit form of the matrices T (1)
i j , M (2), M (3), L(2),

and L(3) given in I and their block decomposition in terms of
the original basis and its complement, one obtains the desired
expressions for the contractions. Using Eqs. (I.32a), (I.47),
and (I.52), one arrives at

〈φ0|α0,μα+
1,ν |φ1〉

〈φ0|φ1〉 = 〈φ0|d0,μb̄0,ν |φ0〉 =
(

(AT )−1 •
• •

)
μν

.

Using Eqs. (I.32a), (I.46), and (I.32b), one obtains

〈φ0|α0,μα0,ν |φ1〉
〈φ0|φ1〉 〈φ0|d0,μd0,ν |φ0〉 =

(−BA−1 •
• •

)
μν

.

Finally, using Eqs. (I.48), (I.52), and (I.53), one gets

〈φ0|α+
1,μα+

1,ν |φ1〉
〈φ0|φ1〉 = 〈φ0|b̄0,μb̄0,ν |φ0〉 =

(−A−1B̄ •
• •

)
μν

,

where the indices of the matrices A, B, and B̄ (to be defined be-
low) run over the original space spanned by the original bases
and the symbol “•” represents irrelevant matrices defined in
the complementary subspaces. The matrices A, B, and B̄ are
defined through the relation(

Ā B
B̄ A

)
=

(
Ū †

0 V̄ †
0

V̄ T
0 Ū T

0

)(R 0
0 (RT )−1

)(
Ū1 V̄ ∗

1
V̄1 Ū ∗

1

)
. (14)

With the above results it is evident that the evaluation of the
overlap 〈φ0|c†

0k1
c†

0,k2
c1,l2 c1,l1 |φ1〉/〈φ0|φ1〉 can be carried out

according to the rules of the GWT in terms of the contractions

ρ01
lk = 〈φ0|c†

0,kc1,l |φ1〉
〈φ0|φ1〉 = (

V ∗
1 CT V T

0

)
lk

=
(

V̄ ∗
1 (A)−1V̄ T

0 0
0 0

)
(15)

κ̄01
k1k2

= 〈φ0|c†
0,k1

c†
0,k2

|φ1〉
〈φ0|φ1〉 = (

V0U
+
0 + V0DV T

0

)
k1k2

=
(

V̄0Ū
+
0 − V̄0BA−1V̄ T

0 0
0 0

)
(16)

κ10
l1l2 = 〈φ0|c1,l1 c1,l2 |φ1〉

〈φ0|φ1〉 = (U1V
+

1 + V ∗
1 EV +

1 )l1l2

=
(

Ū1V̄
+

1 − V̄ ∗
1 A−1B̄V̄ +

1 0
0 0

)
. (17)

The result shows that the contractions are different from 0
only when the single-particle indexes l and k belong to the
subspace spanned by bases B0 and B1, and therefore, the com-
plementary subspace (of infinite dimension) is not required.
Finally, taking into account the unitarity [3] of the matrices

W̄i =
(

Ūi V̄ ∗
i

V̄i Ū ∗
i

)
,
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it is possible to derive from Eq. (14) a set of identities like
V̄0B + Ū ∗

0 A = (RT
1 )−1Ū ∗

1 that are essential to arrive at the
final result for the contractions

ρ01
lk = [

V̄ ∗
1 A−1V̄ T

0

]
lk, (18)

κ̄01
k1k2

= −[(
RT

)−1
Ū ∗

1 A−1V̄ T
0

]
k1k2

, (19)

κ10
l1l2 = [

V̄ ∗
1 A−1Ū T

0 (RT )−1
]

l1l2
, (20)

if the indexes belong to the subspace spanned by bases B0 and
B1 and 0 otherwise. The matrix A, playing a central role in
the above expressions, can be obtained from Eq. (14) and is
given by

A = Ū T
0 (RT )−1Ū ∗

1 + V̄ T
0 RV̄ ∗

1 . (21)

For instance, the overlap of a one-body operator Ô =∑
i j O01

kl c†
0,kc1,l , with O01

kl = 0〈k|Ô|l〉1, is given by Tr(O01ρ01)
in agreement with Eq. (I.82). Please note that with the present
formalism the formal developments of Sec V of I leading from
Eq. (I.75) to Eq. (I.82) are not required. The new formulation
presented in this paper does not affect the expression for the
overlap that is still given by Eq. (I.58):

〈φ0|φ1〉 =
√

det A det R. (22)

This expression suffers from the sign indetermination of the
square root already present in the formula of Onishi and
Yoshida [6]. This indetermination can be resolved by using
the Pfaffian formula for the overlap derived in Ref. [10]. The
formula obtained there was further generalized in Ref. [11]
to deal with the situation discussed here [see Eqs. (59)– (61)
of that reference]. Later on, another, less general, Pfaffian
formula for the overlap was given in Ref. [24].

In the present derivation, I have assumed that both bases
B0 and B1 have the same dimensionality and the overlap
matrix R is a square, invertible one. If this is not the case
and, for instance, base B0 has a dimension N0 smaller than
N1 (the dimension of B1), one can complete B0 with N1 − N0

orthogonal vectors and assign occupancy 0 to them in the
spirit of Eq. (2) in order to get a square overlap matrix.

The formulas can be further simplified by introducing the
LU decomposition of the overlap matrix R,

R = L∗
0LT

1 ,

where L0 and L1 are lower triangular matrices. It intro-
duces a biorthogonal basis |k)1 = ∑

(LT
1 )−1

jk | j〉1 and 0(l| =∑
0〈i|(L∗

0 )−1
li such that 0(l|k)1 = δlk . The LU decomposition

of the overlap matrix suggests the following definitions,

Ũ0 = (L∗
0 )−1Ū0L+

0 , Ṽ0 = L+
0 V̄0L+

0 , (23)

Ũ1 = (L∗
1 )−1Ū1L+

1 , Ṽ1 = L+
1 V̄1L+

1 , (24)

which allow one to obtain quantities not depending explicitly
on R like

Ã = Ũ T
0 Ũ ∗

1 + Ṽ T
0 Ṽ ∗

1 = L∗
0ALT

1 . (25)

The overlap is now written as

〈φ0|φ1〉 =
√

det Ã. (26)

It is also convenient to introduce the contractions

ρ̃01
lk = [

Ṽ ∗
1 Ã−1Ṽ T

0

]
lk = LT

1 ρ01L∗
0, (27)

˜̄κ01
k1k2

= −[
Ũ ∗

1 Ã−1Ṽ T
0

]
k1k2

= L+
0 κ̄01L∗

0, (28)

κ̃10
l1l2 = [

Ṽ ∗
1 Ã−1Ũ T

0

]
l1l2

= LT
1 κ01L1. (29)

Using them and the matrix elements Õ = (L∗
0 )−1O01(LT

1 )−1,1

one gets Tr(Õρ̃01) for the overlap of a one-body opera-
tor. Similar considerations apply to the overlap of two-body
operators. Introducing the two-body matrix element in the
biorthogonal basis υB

i jkl = 0(i j|υ̂|kl )1 and related to υ01
i jkl by

υB = (L∗
0 )−1(L∗

0 )−1
υ01

(
LT

1

)−1(
LT

1

)−1
,

one can define the HF potential 	̃01
ik = 1

2

∑
υ̃B

i jkl ρ̃
01
l j and the

pairing field 
̃01
i j = 1

2

∑
υ̃B

i jkl κ̃
01
kl to write

〈φ0|υ̂|φ1〉
〈φ0|φ1〉 = 1

2
Tr

[
	̃01ρ̃01] − 1

2
Tr

[

̃01 ˜̄κ01], (30)

which is again the standard expression but defined in terms
of Eqs. (27), (28), and (29) and the definitions above. The
advantage of the definitions in Eqs. (25), (27), (28), and (29)
is that they have exactly the same expression as the formulas
available in the literature for complete basis but expressed
in terms of the “tilde” U and V matrices of Eqs. (23) and
(24). There is an additional advantage in the fact that Ã is
a “more balanced” matrix, being less affected by the near
singular character of the overlap matrix R. Let us finish by
writing down the expression of the density in coordinate space
representation,

ρ01(
r) = 〈φ0|ρ̂|φ1〉
〈φ0|φ1〉 =

∑
i j

ϕ∗
0i(
r)ϕ1 j (
r)ρ01

ji ,

often used along with zero-range interactions.
Before finishing the presentation there are a few comments

worth mentioning.

(i) The simple form of the contractions of Eqs. (18), (19),
and (20) and the fact that they are only different from
0 when the indexes belong to the subspace spanned by
bases B0 and B1 is a direct consequence of the defini-
tions of Eqs. (15), (16), and (17) mixing single-particle
operators of both bases. Those definitions are useful
because the operators are expressed in the mixed form
of Eq. (3).

(ii) The use of operators mixing creation and annihilation
operators of both bases as in Eq. (3) and the expres-
sions of Eqs. (15), (16), and (17) were already given
in Ref. [22] without proof and without a justification

1The matrix elements Ōlk are the ones of the operator Ô
in the biorthogonal bases 0(l| and |k)1, i.e., Õlk =0 (l|Ô|k)1 =∑

(L∗
0 )−1

li 0〈i|Ô| j〉1(LT
1 )−1

jk .
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of their interpretation as the contractions appearing in
the GWT.

In this paper I have presented a modified version of the
developments of Ref. [9] that simplifies the application of the
generalized Wick’s theorem for the calculation of operator
overlaps in the case of using two different nonequivalent bases
for the two HFB states entering the overlap. Applications

of this formalism to the case of harmonic oscillator bases
with different oscillator lengths will be discussed in a future
publication.
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[20] P. Marević and N. Schunck, Phys. Rev. Lett. 125, 102504

(2020).
[21] D. Baye and P.-H. Heenen, Phys. Rev. C 29, 1056 (1984).
[22] P. Bonche, J. Dobaczewski, H. Flocard, P.-H. Heenen, and J.

Meyer, Nucl. Phys. A 510, 466 (1990).
[23] A. Valor, P.-H. Heenen, and P. Bonche, Nucl. Phys. A 671, 145

(2000).
[24] B. Avez and M. Bender, Phys. Rev. C 85, 034325 (2012).

L021307-5

https://doi.org/10.1088/1361-6471/ac288a
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1088/1361-6471/aadebd
https://doi.org/10.1016/0029-5582(66)90096-4
https://doi.org/10.1007/BF02710281
https://doi.org/10.1103/PhysRev.97.1490
https://doi.org/10.1103/PhysRevC.50.2874
https://doi.org/10.1103/PhysRevC.79.021302
https://doi.org/10.1103/PhysRevC.84.014307
https://doi.org/10.1103/PhysRevLett.108.042505
https://doi.org/10.1103/PhysRevA.101.012105
https://doi.org/10.1016/0029-5582(60)90285-6
https://doi.org/10.1103/PhysRevC.76.064314
https://doi.org/10.1006/aphy.1994.1101
https://doi.org/10.1007/s100500170036
https://doi.org/10.1140/epja/i2003-10108-1
https://doi.org/10.1088/0034-4885/79/11/116301
https://doi.org/10.1103/PhysRevLett.125.102504
https://doi.org/10.1103/PhysRevC.29.1056
https://doi.org/10.1016/0375-9474(90)90062-Q
https://doi.org/10.1016/S0375-9474(99)00830-1
https://doi.org/10.1103/PhysRevC.85.034325

