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6Li(p, γ ) 7Be reaction rate in the light of the new data of the Laboratory
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We present new calculations of the astrophysical S factor and reaction rate for the 6Li(p, γ ) 7Be reaction at
energies of 10 keV to 5 MeV in the framework of a modified potential cluster model with forbidden states,
including low lying resonances. The astrophysical S(E ) factor is compared with the available experimental
data and calculations done within different models. The results for the S factor are in good agreement with the
data set (for E < 0.3 MeV) and calculations (for E < 0.6 MeV) of the LUNA Collaboration [Phys. Rev. C
102, 052802(R) (2020)]. The recommended extrapolated zero value S(0) turned out to be 101 eV b. Using the
theoretical total cross sections, the 6Li(p, γ ) 7Be capture reaction rate is calculated at temperatures ranging from
0.01T9 to 10T9 and compared with NACRE and NACRE II. Analytical expressions for the S factor and reaction
rate are given, and the effect of low-lying resonances on the reaction rate is estimated. We suggest updating the
NACRE and NACRE II databases in light of the new LUNA data and present calculations.
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I. INTRODUCTION

The radiative 6Li(p, γ ) 7Be capture reaction is of great
interest in nuclear astrophysics [1,2]. In particular, the
long-standing cosmological lithium problem stems from the
remarkable discrepancy between astronomical observations
of primordial lithium abundances and theoretical predictions
[3]. The standard model of the Big Bang overpredicts the
measured primordial abundance of the lithium isotope 7Li. To
produce 7Li, 7Be plays a pivotal role in the big-bang nucle-
osynthesis. The reaction 6Li(p, γ ) 7Be plays an important role
in the consumption of 6Li and formation of 7Be. At the end
of big-bang nucleosynthesis 7Be will eventually decay into
7Li [4,5]. Since 1955 the 6Li(p, γ ) 7Be reaction at low ener-
gies has been studied by several experimental groups [6–14].
Measurements of the astrophysical S factor of this reaction
were limited to the energy range of 35 keV to 1.2 MeV. The
astrophysical S factor and reaction rate of the 6Li(p, γ ) 7Be
process were studied in the framework of different theoret-
ical approaches and methods [4,14–20]. A detailed review
of the theoretical and experimental current status is given in
Ref. [12].

In 2020, new experimental data were obtained in the Labo-
ratory for Underground Nuclear Astrophysics (LUNA) [12],
and they excluded the possibility of resonance mentioned
in [11]. It seems challenging to consider this reaction in
the astrophysical energy range, for which experimental data
are available. In particular, our interest is the reexamination
of S factor and has two foci: (i) to consider 6Li(p, γ ) 7Be
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within the framework of the modified potential cluster model
(MPCM) with the classification of bound and scattering states
according to Young’s orbital diagrams [21]; (ii) to describe
the S factor using all available experimental data and to obtain
the reaction rate. While assessing the reliability of MPCM, it
is reasonable to extend the energy interval up to 5 MeV to
estimate the role of resonances in this energy range.

In this paper, we investigate the energy dependence of the
astrophysical S factor of the 6Li(p, γ ) 7Be reaction at energies
of 10 keV to 5 MeV. By considering several resonances,
including a wide resonance at Ex = 9.9 MeV, the reaction rate
in the temperature range of 0.01T9 to 10T9 is calculated. We
demonstrate that it is possible to correctly convey the available
experimental data based on potentials that are consistent with
the energies of bound states and their asymptotic constants.
For the scattering potentials, we use parameters consistent
with the resonance spectrum of the final nucleus.

The results obtained for the reaction rate are approximated
by curves of a particular type to simplify their use in applied
research. These results apply to problems in nuclear astro-
physics related to light atomic nuclei and ultralow energies.
The result obtained for the reaction rate is approximated by
an analytical expression that can be applied to the problems
in nuclear astrophysics related to light atomic nuclei and ul-
tralow energies; for example, in evaluations and calculations
of macroscopic characteristics of astrophysics processes like
evolution of elements abundances.

This paper is organized as follows. Section II presents
the theoretical framework of the MPCM: the classification of
cluster states, constructing principles of discrete and contin-
uous states potentials, wave function asymptotics, and cross
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section for the radiative capture processes. Classification of
cluster states’ and bound states’ potentials and the description
of the p 6Li channel in the continuous spectrum are given
in Secs. III and IV, respectively. Section V is devoted to
the astrophysical S factor and the 6Li(p, γ ) 7Be reaction rate.
Appendices A and B include the description of the finite-
difference method that we are using in the present calculations
and a table of numerical values of the p 6Li reaction rate in the
temperature range of 0.001T9 to 10T9, respectively. We outline
conclusions in Sec. VI.

II. THEORETICAL FRAMEWORK

Charged-particle-induced reactions represent one of the
main inputs in stellar evolution. There are several theoretical
models used for description of nuclear reactions at stellar
energies that are based on fundamental principles of quantum
mechanics. These models and approaches can be generalized
as [22] (i) microscopic models where a three- and four-body
problem is solved using the exact solution of a few-body
system with nucleon-nucleon interactions and the many-body
problem is solved by the treatment of all nucleons with
exact antisymmetrization of the wave functions and using
nucleon-nucleon interactions; (ii) potential models where the
nucleon-nucleon interaction is replaced by a nucleus-nucleus
force and the unified nucleus is described as a two clusters;
(iii) indirect methods when the induced desired reaction is
extracted from another reaction; (iv) the R-matrix method. A
detailed review of the above mentioned approaches is out of
the scope of the present paper. One can find the latest excellent
overview in [22] and in references therein.

Since its first application in 1963 [23], the potential model
approach has a special place among models for description
of low energy reactions. However, over the course of over a
half century, this model has been significantly modified and
improved. Below we present the fundamentals of the modified
potential cluster model, where Young diagrams are used for
the classification of orbital states and construction of poten-
tials ([21] and references therein).

The basic framework of the MPCM approach is as fol-
lows:

(1) The MPCM is a two-particle model that accounts
for the internal characteristics of clusters: their sizes,
charges, masses, and quadrupole and magnetic mo-
menta, which are used to calculate the reaction total
cross sections or other characteristics of the final
nucleus.

(2) The classification of cluster states is performed ac-
cording to Young’s orbital diagrams, leading to the
concept of forbidden states in some partial waves [21].
The Pauli principle is implemented via exclusion of
the forbidden states (FSs), manifesting in proper node
behavior of the radial wave function (WF). Forbid-
den states that lead to low-lying bound states are not
physically realized due to the orthogonality of corre-
sponding functions and allowed state functions.

(3) Gaussian type intercluster interaction potentials are
constructed, taking into account these forbidden states

in certain partial waves. For each partial wave with
specified quantum numbers, the potential is con-
structed with two parameters, assuming it depends
explicitly on Young’s orbital diagrams.

(4) Potentials of the bound states (BSs) are constructed
based on asymptotic constants (ACs) and binding
energies. Potentials of the scattering processes are con-
structed based on the spectra of the final nucleus or
the scattering phase shifts of the particles of the input
channel. Parameters of the potentials are fixed or vari-
able within the AC error intervals and vary within the
energy or width errors of resonant or excited states.

(5) The radial WFs of the allowed states of the continuous
and discrete spectra are tailored appropriately using
correct asymptotics.

In light of the new experimental LUNA data [12], we
reexamine the 6Li(p, γ ) 7Be reaction S factor and reaction rate
within the framework of the MPCM.

A. Classification of cluster states

The total wave functions (WFs) have the form of an
antisymmetrized product of completely antisymmetric inter-
nal wave functions of clusters �(1, . . . , A1) = �(R1) and
�(A1 + 1, . . . , A) = �(R2), multiplied by the corresponding
wave function �(r) of relative motion [24–26]:

� = Â{�(R1)�(R2)�(r)}. (1)

In Eq. (1) Â is the antisymmetrization operator that permutes
nucleons from the clusters A1 and A2, R1 and R2 are the
center-of-mass radius vectors of the clusters, and r = R1−R2

is the relative motion coordinate.
The wave functions (1) are characterized by specific quan-

tum numbers, including JLST —total angular momentum,
orbital quantum momentum, spin, and isospin, respectively—
and Young’s diagrams { f }, which determine the orbital part
of WF permutation symmetry of the relative motion of the
clusters.

In the general case, the possible Young’s orbital dia-
gram { f }L of some nucleus A({ f }), consisting of two parts
A1({ f1}) + A2({ f2}), is the direct outer product of Young’s
orbital diagrams { f }L = { f1}L × { f2}L and is determined by
Littlewood’s theorem. See examples of the application of this
theorem in [25,26]. According to Elliott’s theorem [27], each
Young’s diagram is associated with a certain orbital angular
momentum or their combination.

Spin-isospin diagrams are the direct inner product of the
spin and isospin Young diagrams of a nucleus consisting of
A nucleons, { f }ST = { f }S ⊗ { f }T . For a system with no more
than eight particles such diagrams are provided in Table C of
Ref. [28]. A detailed procedure for defining the corresponding
momenta can be found in the classical monograph [29]. Let
us note that in Ref. [29] the definition for inner and outer
products is reversed.

The total Young’s diagram of the nucleus is defined as the
direct inner product of the orbital and spin-isospin diagram
{ f } = { f }L ⊗ { f }ST . The total wave function of the system
under antisymmetrization does not vanish identically only if
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it contains an antisymmetric component {1N }, where N is
the number of nucleons. In this case the conjugates { f }L and
{ f }ST are multiplied. Therefore, the diagrams { f }L conjugated
to { f }ST are allowed in this channel. All other orbital symme-
tries are forbidden since they lead to zero total wave function
of the particle system after antisymmetrization.

B. The potentials construction within the MPCM

Let us describe in more detail the procedure for construct-
ing the intercluster partial potentials. Below we define the
criteria and outline the sequence for finding parameters for the
potentials and indicating their errors as well as ambiguities.

We use a Gaussian potential that depends on the momenta
of the system and Young’s diagrams:

V (r, JLST, { fL}) = −V0(JLST, { fL}) exp(−αJLST,{ fL}r2).
(2)

In Eq. (2) there are two variable parameters: V0 is the potential
depth and α is related to the potential width. The choice of
parameters for the bound and scattering states in the p 6Li
channel is discussed in detail in Sec. IV.

1. Discrete states

For the bound states of two clusters, the interaction po-
tentials within the framework of the MPCM are constructed
based on the requirement imposed to describe the main ob-
servable characteristics of such a nucleus. In this case, the
potential parameters are fixed. It should be noted that this
requirement is an idealized scenario that exists in the nucleus
since it assumes that the ground state (GS) is a two-body
single channel with probability close to unity. First, we find
the parameters of the bound state potentials. For a GS with a
given number of bound allowed and forbidden states in the
partial wave, these parameters are fixed unambiguously in
terms of the binding energy and the AC. When constructing
the partial interaction potentials in the MPCM, it is assumed
that interactions depend not only on the orbital angular mo-
mentum L but also on the total spin S and the total angular
momentum J of the system, and also depend on Young’s
orbital diagrams. As in earlier work [21], we use Gaussian
interaction potentials, which depend on the quantum numbers
JLST , and Young’s diagrams { f }L. Therefore, for different
JLST , we have different values of the parameters of the partial
potentials.

The accuracy of determining the parameters of the BS po-
tential is connected directly with the accuracy of the AC. The
potential does not contain any other ambiguities, since accord-
ing to Young’s diagrams the classification of states makes it
possible to unambiguously fix the number of bound forbidden
and allowed states in a given partial wave. The number of
bound states ultimately determines the depth of the potential,
while the width depends entirely on the value of the AC. If
one fixes two parameters of the potential using two particular
quantities—the binding energy and the AC—the error of the
binding energy is seen to be much less than that of the AC.

It should be noted that any calculations of the charge radius
reflect the errors of the underlying model. In any model, the
magnitude of such a radius depends on the integral of the

model wave functions, thereby compounding sources of error.
At the same time, the values of ACs are determined from
the asymptotic behavior of the model WFs at one point and
contain significantly less error. The potentials of the BSs are
constructed to obtain the best agreement with the values of the
ACs extracted independently from the experimental data. For
more details on the general methods of the implementing the
asymptotic normalization coefficient (ANC) formalism and its
applications; see Ref. [30].

2. Continuum states

For the potentials of the continuous spectrum, the inter-
cluster potential of the nonresonant scattering process for a
given number of allowed and forbidden BSs in the considered
partial wave is also constructed based on the scattering phase
shifts. The accuracy of the potential parameters is associated
with the precision of the extracted scattering phase shifts from
experimental data. The errors of the extracted phase shifts
may be sometimes as high as 20–30%. For the 6Li(p, γ ) 7Be
reaction, the potential is unambiguous since the classification,
according to Young’s diagrams, makes it possible to fix the
number of bound states. This completely determines the po-
tential depth, and its width is determined by the shape of the
scattering phase shifts.

When constructing the nonresonant scattering potential
based on the data for the nuclear spectra, it is difficult to esti-
mate the accuracy of the parameters even for a given number
of BSs. However, one can expect that it will not exceed the
error discussed above. This potential should lead to a scatter-
ing phase shift close to zero or rise to a smoothly decreasing
phase shift at low energies, since there are no resonance levels
in the spectra of the nucleus.

In resonance scattering, when a relatively narrow reso-
nance is present in the partial wave at low energies for a
given number of BSs, the potential is constructed completely
unambiguously. The accuracy of determining the parameters
of the interaction potentials is determined by the following
factors. The depth of the potential depends on the resonance
energy Ex and the number of BSs. The width is determined by
the accuracy of the experimental values of the level width �.

The error of the parameters, approximately 5–10%, usually
does not exceed the error of the energy level width. This also
applies to the construction of the partial potential from the
resonant scattering phase shifts and the determination of its
parameters from the spectral resonance of the nucleus [21,31].

C. Wave functions asymptotics

To find radial wave functions of a two-cluster system we
solve the radial Schrödinger equation for the central potential:

d2χJLST

dr2
+

[
k2 − Vnucl(r) − VCoul(r) − L(L + 1)

r2

]
χJLST = 0,

(3)
where k = √

2μE/h̄ is the wave number in the center of mass,
r is the scalar relative distance between particles in fm, the
Coulomb potential VCoul(r) = 2μE/h̄2 has dimension fm−2,
μ = m1m2/(m1 + m2) is the reduced mass, mi is the masses
of each particle, and Vnucl(r) = 2μV (r, JLST )/h̄2.
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The case k2 > 0 refers to the continuum. The case k2 < 0
refers to the discrete spectrum and is related to the correspond-
ing channel binding energy Eb, so that k0 = √

2μEb/h̄. See
the detailed numerical procedure in Appendix A. To support
our framework items 4 and 5 we introduce now the explicit
expressions for the corresponding asymptotics of the relative
motion wave functions.

The pointlike Coulomb potential is of the form
VCoul(MeV) = 1.439 975 Z1Z2/r, where r is the relative
distance between the particles of the channel in fm, and Z1

and Z2 are the charges in units of the elementary charge. The
Coulomb parameter η = μZ1Z2e2/kh̄2 is represented in the
form η = 3.44476 × 10−2 Z1Z2μ/k.

The discrete solutions of Eq. (3) should fit the proper
asymptotics corresponding to the Whittaker equation [32]. In
our calculations, the numerical solutions relates to the Whit-
taker function W−ηL+1/2 via the dimensionless AC denoted as
Cw [33]

χL(r) −−→
r→R

√
2k0 Cw W−ηL+1/2(2k0r). (4)

There is another representation for the asymptotics of the
bound states wave functions via the dimensional constant C:

χL(r) −−→
r→R

CW−ηL+1/2(2k0r). (5)

A dimensional asymptotic constant C is related to the asymp-
totic normalization coefficient (ANC) ANC by the expression
[30]

ANC = √
SFC, (6)

where SF is the spectroscopic factor. Further we exploited the
constant Cw related to ANC as follows:

Cw = ANC/
√

2k0SF . (7)

In Eqs. (4) and (5) R is the large distance at which the
nuclear potential vanishes and χL(r) is the wave function
of the bound state obtained from the solution of the radial
Schrödinger equation and normalized to unity.

For a continuous spectrum, the function χi found numeri-
cally is matched to asymptotics uL(R) of the form

NLuL(r) −−→
r→R

FL(kr) + tan
(
δJ

S,L

)
GL(kr). (8)

Here FL and GL are Coulomb regular and irregular functions
[32]. They are the solutions of the Schrödinger equation with
the Coulomb potential. δJ

S,L are the scattering phase shifts
depending on the JLS momenta of the system and NL is the
normalizing constant of the numerical radial function uL(R)
for the continuum.

D. Radiative capture total cross section

To calculate the total cross sections of radiative capture
processes, we use the well-known formula for the transitions

of NJ multipolarity [21,31],

σ (NJ, Jf ) = 8πKe2

h̄2 k3

μ

(2S1 + 1)(2S2 + 1)

J + 1

J[(2J + 1)!!]2

× A2
J (NJ, K )

∑
Li,Ji

P2
J (NJ, Jf , Ji )I

2
J (k, Jf , Ji )

(9)

where the matrix elements of orbital EJ (L) transitions have
the form (S = Si = S f )

P2
J (EJ, Jf , Ji ) = δSiS f [(2J + 1)(2Li + 1)(2Ji + 1)(2Jf + 1)]

× (Li0J0|L f 0)2

{
Li S Ji

Jf J L f

}
, (10)

AJ (EJ, K ) = KJμJ

(
Z1

mJ
1

+ (−1)J Z2

mJ
2

)
,

IJ (k, Jf , Ji ) = 〈χ f |rJ |χi〉, (11)

and the matrix elements of the magnetic M1(S) transition are
written as (S = Si = S f , L = Li = L f )

P2
1 (M1, Jf , Ji ) = δSiS f δLiL f [S(S + 1)(2S + 1)(2Ji + 1)

×(2Jf + 1)]

{
S L Ji

Jf 1 S

}
, (12)

A1(M1, K ) = h̄K

m0c

√
3
(
μ1

m2

m1 + m2
− μ2

m1

m1 + m2

)
,

IJ (k, Jf , Ji ) = 〈χ f |rJ−1|χi〉, J = 1. (13)

In Eqs. (9)–(13) K = Eγ /h̄c is the wave number of the emitted
photon with energy Eγ , and m1, m2 and μ1, μ2 are the masses
and magnetic momenta of the clusters, respectively.

In the present calculations for the reaction 6Li(p, γ ) 7Be,
m1 ≡ mp = 1.007 276 466 77 amu, m2 ≡ m6Li = 6.015 123 2
amu [34,35]; and μ1 ≡ μp = 2.792 847μ0, μ2 ≡ μ6Li =
0.822μ0 [34,36], where μ0 is the nuclear magneton, h̄2/m0 =
41.4686 MeV fm2, where m0 = 931.494 MeV is the atomic
mass unit (amu).

III. CLUSTER STATES CLASSIFICATION AND THE BS
POTENTIALS IN the p 6Li CHANNEL

Now we apply the basic framework of MPCM presented
above to the study of the 6Li(p, γ ) 7Be reaction. Consider
the classification of the BSs of the p 6Li system according to
Young’s diagrams. We assume the only one Young’s orbital
diagram {42} for the 6Li nucleus. One can consider also the
{411} diagram; however, its contribution is minor [25]. It is
believed that the system’s potentials are dependent on the
diagrams or combinations of these diagrams in various states.
Thus, if the orbital diagram {42} allowed in the 2H 4He-cluster
channel is accepted for the 6Li nucleus, then the p 6Li system
with spin S = 1/2 contains a forbidden level with diagram
{52} and orbital momenta of L = 0, 2, and the allowed states
with configurations {43} for L = 1, 3 and {421} for L = 1, 2.
Hence, the p 6Li potentials must have a forbidden state related
to {52} in the S wave. The allowed bound state corresponds
to the P wave with the two Young’s diagrams {43} and {421}.
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TABLE I. The classification of the orbital states of the p 6Li system [16,31]. The following notations are used: S and L are spin and orbital
angular momentum of the system, respectively, { f }S , { f }T , and { f }ST for isospin T = 1/2, and { f }L , are spin, isospin, and spin-isospin, and
possible orbital Young’s diagrams, and { f }AS, { f }FS are Young’s diagrams of allowed and forbidden orbital states.

S { f }S { f }T { f }ST { f }L L { f }AS { f }FS

1/2 {43} {43} {7}+{61}+{52}+{511}+{43} {52} 0, 2 {52}
+{421}+{331}+{4111} {43} 1, 3 {43}
+{322}+{3211}+{2221} {421} 1, 2 {421}

3/2 {52} {43} {61}+{52}+{511} {52} 0, 2 {52}
+{43}+2{431}+{331} {43} 1, 3 {43}

+{322}+{3211} {421} 1, 2 {421}

In the quartet spin channel S = 3/2 of the system, only one
diagram, {421}, is allowed for L = 1, 2 [21]. Since there are
two allowed diagrams {43} and {421} in the doublet spin state
of the p 6Li system, the scattering states turn out to be mixed
in orbital symmetries. At the same time, only one allowed
diagram {43} usually corresponds to the doublet ground state
of the 7Be nucleus in the p 6Li channel with Jπ = 3/2− and
L = 1.

Here, the p 6Li system is completely analogous to the p 2H
channel in the 3He nucleus. In the latter case the doublet state
is also mixed according to Young’s diagrams {3} and {21}
[26]. Therefore, the potentials constructed based on the elastic
scattering phase shifts of the p 6Li system or the level spectra
of the 7Be nucleus cannot be used to describe the GS of the
7Be nucleus in the p 6Li channel. Pure in orbital symmetry
with Young’s diagram {43}, the 2P3/2 potential of the ground
state of 7Be reproduces the binding energy of the GS of the
nucleus consistent with the p 6Li system and its asymptotic
constant.

The scattering potentials are constructed based on the
spectra of the 7Be nucleus from Ref. [35]; it has no major
difference from the newer compilation [37].

The orbital state’s classification of the p 6Li system is
shown in Table I. Let us discuss the construction of the Gaus-
sian potential given by Eq. (2). The choice of parameters
V0 and α for the bound ground and first excited state (FES)
in the p 6Li channel of 7Be is based on the present classifi-
cation of the orbital states, data on the binding energy, and

asymptotic normalizing constants. The variation procedure of
the potential depth and width continues up to reproducing
of the binding energy Eb with the given accuracy (10−5 MeV,
see Table III). As there are few sets of V0 and α leading to the
same values of Eb, we involve one more criterion to minimize
this variety: the asymptotic normalizing coefficient. It should
be stressed that Cw is neither the varying parameter nor the
matching one.

A compilation of the AC data for the ground and first ex-
cited states in the p 6Li channel of 7Be is presented in Table II,
with C2

w = A2
NC/2k0SF . Here

√
2k0 = 0.983 fm−1/2 for the GS

and
√

2k0 = 0.963 fm−1/2 for the FES.
Summarizing the data in Table II, we conclude that all

cited data on the AC are overlapped. While constructing the
corresponding GS and FES potentials, we used the average
values indicated in bold in Table II. Recently, a publication by
Kiss et al. [14] appeared, and it happened that these latest ex-
perimental results turned out to be within the defined intervals
for ANC given above.

We use GS and FES in the form of only doublet 2P3/2

and 2P1/2 states, but we take the experimental data on ANC
from [40] since it is assumed that these states result in the
observed ANC values. We do not consider these states as a
mix of doublet and quartet states; for instance, 2+4P3/2, is a
prime example, as the quartet channel is not allowed for the
orbital Young’s diagram {43} in Table I.

All AC values are used here as a framework to obtain
the parameters of the p 6Li interaction BSs’ potentials. These

TABLE II. AC data for the ground and the first excited states in the p 6Li channel of 7Be.

BS Reference ANC (fm−1/2) SF Cw

GS Nollett and Wiringa [38], 2011 2.85(3) 1 2.90(3)
Huang et al. [4], 2010 2.01 0.66–1 2.28(24)
Timofeyuk [39], 2013 1.80 0.46–0.87 2.32(37)
Burtebayev et al. [40], 2013 1.77(8) 0.55–0.81 2.23(31)
Gnech and Marcucci [20], 2019 2.654 1.003 2.65

Kiss et al. [14], 2021 2.19(9) 0.98(30) 2.35(43)
FES Huang et al. [4], 2010 1.91 0.66–1.02 2.20(24)

Timofeyuk [39], 2013 1.91 0.62–1.21 2.17(36)
Burtebayev et al. [40], 2013 1.95(9) 0.85–1.03 2.10(20)
Gnech and Marcucci [20], 2019 2.528 1.131 2.53
Kiss et al. [14], 2021 2.18(6) 1.08(32) 2.26(39)
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TABLE III. Parameters of p 6Li system bound state potentials and bound states’ characteristics. Ex , Eb, and V0 are provided in MeV. The
Rch and Rm are given in fm.

No. BS Ex Jπ Eb
2S+1LJ V0 α (fm−2) Cw Rch Rm

1 GS 0 3/2− −5.60580 2P3/2 100.750920 0.25 1.75(1) 2.49 2.51
2 GS 0 3/2− −5.60580 2P3/2 74.504070 0.17 2.26(1) 2.58 2.58
3 GS 0 3/2− −5.60580 2P3/2 60.998575 0.13 2.74(1) 2.64 2.61
4 FES 0.4291 1/2− −5.17670 2P1/2 99.473500 0.25 1.68(1) 2.52 2.54
5 FES 0.4291 1/2− −5.17670 2P1/2 73.333835 0.17 2.16(1) 2.59 2.59
6 FES 0.4291 1/2− −5.17670 2P1/2 59.898120 0.13 2.61(1) 2.65 2.62

potentials correspond to the lower, upper, and average values
of AC and accurately reproduce the binding energies [35] of
the bound states. The parameters of the potentials are pre-
sented in Table III.

IV. p 6Li CHANNEL IN THE CONTINUOUS SPECTRUM

The resonance behavior of the scattering wave reveals
an energy dependence of the corresponding phase shift, i.e.,
δ(Eres) = 90◦ or 270◦. Based on the generalized Levinson
theorem [41], which accounts for forbidden states, δ(0) −
δ(∞) = π (NAS + NFS ), where NAS and NFS are the numbers
of allowed and forbidden states in definite wave. The natural
condition holds. Note that the FSs in continuum exist as bound
ones only; therefore, the potential should be deep enough
to comprise them. That is the case of S and D potentials in
the p + 6Li scattering channel. In the presence of one bound
forbidden state, the S phase shift starts at 180, as shown in
Fig. 1. The 2F5/2, 2F7/2, and 2P3/2 phase shifts are shown in
Fig. 2. If there are no FSs and resonance behavior, then phase
shift is close to zero and the potential depth may be chosen as
V0 = 0.

FIG. 1. Doublet and quartet S phase shifts of elastic p 6Li scat-
tering at low energies. The 2S and 4S phase shifts are taken from
Ref. [42] and shown by and , respectively. Results from [16,17]
obtained according to [42] are shown by the dashed-dotted curves.
Results of the present work are shown by the solid curve.

The parameters of potentials for all scattering processes
for transitions to GS and FES are given in Tables IV and V,
respectively. In addition, we consider the resonance at an ex-
citation energy of 9.9 MeV [35] according to Fig. 3 (4.3 MeV
above the threshold) in a 2P3/2 scattering state of width 1.8
MeV in the center of mass. Such an M1 transition to the 2P3/2

ground state or an M1 transition from the 2P1/2 scattering state
to the 2P1/2 FES is possible due to the presence of different
Young’s diagrams in the bound and scattering states. Recall
that the BSs have the diagram {43}, and the scattering states
are mixed according to the two diagrams {43} + {421} [17].

Table IV shows possible transitions to the 7Be nucleus GS
from various p 6Li scattering states with 2S+1LJ . The possible
transitions to the FES from different scattering states with
2S+1LJ are shown in Table V. The resonance energies and
widths are obtained with the corresponding parameters of the
scattering potentials. For the P1/2 scattering wave, zero-depth
potentials are used since the scattering P waves do not contain
forbidden BSs. For the 2D wave potentials, 2S wave parame-
ters are used for L = 2.

Resonant phase shifts of elastic scattering p + 6Li are
shown in Fig. 2. The above-threshold resonance at 6.73 MeV
with a width of 1.2 MeV indicated in Fig. 3 refers to the
4He 3He channel [35] and was not considered in our previ-
ous works [16,17]. Note again that, in the MPCM we used,

FIG. 2. P and F phase shifts of elastic p + 6Li scattering ob-
tained for scattering potentials with the parameters from Tables IV
and V.
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TABLE IV. The spectrum of 7Be levels [35] and scattering states in the p 6Li channel for the capture to the 2P3/2 GS at a binding energy of
5.6058 MeV, along with P2

J from expressions (10) and (12). Ex , Eres, �c.m. and V0 are provided in MeV.

Ex , Eres, �c.m., GS transition: α, Eres �c.m.

No. expt. Jπ expt. expt. [2S+1LJ ]i → [2S+1LJ ] f P2
J V0 (fm−2) theory theory

1 No res. 5/2+ E1 : 2D5/2 → 2P3/2 36/5 58.0 0.4
2 No res. 3/2+ E1 : 2D3/2 → 2P3/2 4/5 58.0 0.4
3 No res. 1/2+ E1 : 2D5/2 → 2P3/2 4 58.0 0.4
4 No res. 1/2− M1 : 2P1/2 → 2P3/2 4/3 0.0 1.0

5 7.2(1) 5/2− 1.59(10) 0.40(5) E2 : 2F5/2 → 2P3/2 12/7 111.60 0.1 1.60(1) 0.62(1)
6 9.29(31) 7/2− 3.68(31) 1.93(96) E2 : 2F7/2 → 2P3/2 72/7 44.34 0.05 3.68(1) 1.50(1)
7 9.9 3/2− 4.3 1.8 M1 : 2P3/2 → 2P3/2 5/3 432.0 1.5 4.30(1) 1.80(2)

Young’s orbital diagram {43} is forbidden in the quartet state,
as shown in Table I, and this particular diagram corresponds
to the GS of the 7Li nucleus. Therefore, in the GS there is
only a doublet 2P3/2 state (without impurity of 4P3/2), which
is allowed for the diagram {43}. Thus, our model [16,17] pre-
dicted the absence of resonance at 6.73 MeV with Jπ = 5/2
in the nucleon channel, or, in other words, the impossibility of
the M1 transition from this resonance to the GS. This has been
confirmed by the new LUNA results [12] and, indirectly, by
the data of [35]. The width of the resonance peak at 9.29 MeV
is taken from Table 7.10 of [35], although another state, 2P1/2,
is indicated therein. At 9.27 MeV, the given moment is 7/2,
as per Table 7.7 in Ref. [35], so we infer the presence of an F
state. However, this resonance leads to a minimal increase in
cross sections at the E2 transition. It is negligible against the
background of the E1 resonance at 4.3 MeV with a transition
from the 2P3/2 scattering state for the potential parameters No.
7 (Table IV) or No. 5 (Table V), respectively.

In Fig. 1 are shown the doublet and quartet S phase shifts of
elastic p 6Li scattering at low energies. The 2S potential from
Table IV with a depth of 58 MeV has one FS, and allows one
to describe the phase shifts of [16] up to 1 MeV, shown in
Fig. 1 by solid circles. Moreover, it gives phase shifts below

FIG. 3. Schematics of the energy spectrum of 7Be. The energies
are given in MeV and the figure is not drawn to scale [35]. Label
“ a ” means the above-threshold resonance at 6.73 MeV with a width
of 1.2 MeV refers to the 4He 3He channel that is not considered in
the present work.

2 MeV that coincide with the phase shifts obtained with the
potential from Ref. [16], with a depth of 126 MeV and a width
of 0.15 fm−2. This early potential has two FSs and does not
agree with our new classification from Table I. To compare
the results, we construct a new potential (depth 58 MeV) that
gives the most overlap in phase shifts from prior work [16].
The phase shift of the new potential is given in Fig. 1 by a solid
curve, while dash-dotted curves refer to results from Ref. [16].

V. ASTROPHYSICAL S FACTOR AND REACTION RATE

A special feature of cross sections of nuclear reactions with
charged particles at low and ultralow energies is an extreme
reduction by several orders of cross section magnitude due to
the decrease in transmission probability through the Coulomb
barrier. For practical purposes, the astrophysical S factor is
introduced as

S(E ) = σ (E )

P(E )
E , P(E ) = e−2πη, (14)

where the factor P(E ) reflects the permeability of the
Coulomb barrier.

Following the excellent book by Iliadis [43], we would
like to provide a brief discussion of the use of the S factor
in conventional calculation schemes in order to clarify the
current approach. The definition of the S factor (14) allows
one to write the following expression for the reaction rate:

NA〈σν〉 =
(

8

πμ

)1/2

NA(κT9)−3/2
∫ ∞

0
e−2πηS(E )e−E/κT9 dE .

(15)
In Eq. (15) κ is the Boltzmann constant and NA is Avogadro’s
number. A notable effort has been expended to bring the
integral in (15) to analytical form. This is possible only if the
expansion of the S(E ) factor in the E series, given by

S(E ) ≈ S(0) + S′(0)E + S′′E2, (16)

is valid at low energies (cf. Ref. [43], Section 3.2). Expression
(16) explains the active interest to determine the value S(0) as
a key one for the calculation of the reaction rate in the form of
(15) with its further analytical parametrizations.

Usually we need to know the S factor at zero energy,
which requires extrapolation of calculations or measurements
to S(0). However, calculation procedures become unstable at
low and ultralow energy. Our calculation procedure allows
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TABLE V. The spectrum of 7Be energy levels [35] and scattering states in the p 6Li channel for the proton capture to the 2P1/2 FES at a
binding energy of 5.1767 MeV, along with P2

J from expressions (10) and (12). Ex, Eres, �c.m. and V0 are provided in MeV.

Ex, Eres, �c.m., FES transition: α, Eres �c.m.

No. expt. Jπ expt. expt. [2S+1LJ ]i → [2S+1LJ ] f P2
J V0 (fm−2) theory theory

1 No res. 3/2+ E1 : 2D3/2 → 2P1/2 4 58.0 0.4
2 No res. 1/2+ E1 : 2S1/2 → 2P1/2 2 58.0 0.4
3 No res. 1/2− M1 : 2P1/2 → 2P1/2 1/6 0.0 1.0

4 7.2(1) 5/2− 1.59(10) 0.40(5) E2 : 2F5/2 → 2P1/2 6 111.6 0.1 1.60(1) 0.62(1)
5 9.9 3/2− 4.3 1.8 M1 : 2P3/2 → 2P1/2 4/3 432.0 1.5 4.30(1) 1.80(2)

us obtain a stable solution up to 10 keV that provides more
accurate extrapolation. Thus, below we present results for the
S factor and reaction rate in the energy range of 10 keV to
5 MeV.

Table VI presents the available experimental data of the
astrophysical S factor for the 6Li(p, γ ) 7Be reaction, as well
as the extrapolated S(0) values. Results of previous theoretical
calculations of the astrophysical S factor of 6Li(p, γ ) 7Be
in the framework of different methods [4,14–20,44] and the
present work are presented in Table VII. Our calculations are
analyzed and interpreted based on the experimental data [12]
being among the newest and most accurate.

We studied 6Li(p, γ ) 7Be reaction in [16,17], but limited
ourselves to an energy range up to 1 MeV and did not take into
account resonances, nor did we consider the reaction rate. In
the present work we are including resonances and extending
the energy interval for the cross sections and corresponding S
factors up to 5 MeV. Moreover, here we present the reaction
rate. It is also worth mentioning that in Ref. [20], the authors
used the calculation scheme based on [17]. The value S(0) =
95.0 eV b, is obtained, which is consistent with the LUNA
experimental data [12]. However, the astrophysical reaction
rate is missing in Ref. [20].

The results of the present calculations of S factors along
with available experimental data are shown in Figs. 4–6. Fig-
ure 4 shows the astrophysical S(E ) factor of 6Li(p, γ0) 7Be
capture to the GS of the 7Be nucleus in an energy range up to
5 MeV. The solid red curve 2 and the two dashed curves, blue
1 and green 3, show the calculation for all transitions to the GS
given in Table IV. Parameters V0 (only integer values) and α

of the corresponding potentials as well as Cw from Table III
are indicated in the figures, and the parameters of the GS
potentials are taken from Table IV. The solid red curve 2 is

the result for the potential with the set of parameters No. 2
from Table III, leading to the average value of AC.

In Fig. 5, similar curves show the results for transitions and
potentials from Table V to FES. FES potentials have three sets
of parameters from Table III. The solid red curve 2 shows the
results for capture with set No. 5 from Table III, allowing us
to determine the average value of AC. This result is in good
agreement with the experimental data [9] presented in Fig. 5.
The two dashed curves 1 and 3 almost completely cover the
interval or band of cross-section errors of the capture to the
FES.

In Fig. 6, similar curves show the astrophysical S factor for
the total cross sections corresponding to the transition to GS
and FES. The two dashed curves 1 and 3 show the range of S
factor values due to ambiguities in the AC of the GS and FES.
For the scattering potentials, the parameters from Tables IV
and V are used.

The best agreement of the S factor with experimental data
is achieved for the values of Cw = 2.74 for the GS and Cw =
1.68 for the FES. We recommend these values as the most
reliable benchmarks for future experimental studies.

Figure 6 shows that almost all experimental data lie be-
tween the solid red curve 2 and the green dashed curve 3. If we
use the GS and FES potentials’ sets of parameters No. 3 and
No. 4 from Table III, the result is shown in Fig. 6 by the black
curve 4. In this case the experimental data [12] are reproduced
entirely, and the S factor at 10 keV is found to be 101 eV b.
For the scattering potentials, the data from Tables IV and V
are used.

Due to the uncertainty of the S factor that arises from the
uncertainty of the AC, it is desirable to select other options
for the potentials of the GS and FES to correctly describe the
LUNA data [12]. This can be the subject of future work if

TABLE VI. Experimental data on the astrophysical S factor of 6Li(p, γ ) 7Be. S(E ) and S(0) are given in eV b and S(0)
are extrapolated values.

E (keV) S(E ) S(0) Reference Method/project

135 51(15) Switkowski et al. [7], 1979 γ -ray Ge(Li) spectrometers for proton bombarding energies 200–1200 keV
340 43(3) Ostojić et al. [8], 1983 Direct radiative capture
40 65 65 Cecil et al. [45], 1992 Thick-target γ -ray-to-charged-particle branching ratio measurements
35 40(14) Bruss [9], 1993

79(18) Prior et al. [13], 2004 Polarized proton beams, TUNL
250 95(10) He et al. [11], 2013 320 keV platform with highly charged ions
60 92(6) 95(9) Piatti et al. [12], 2020 LUNA Collaboration
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TABLE VII. Theoretical calculations of the astrophysical S factor of 6Li(p, γ ) 7Be.

S(0) (eV b) Reference Model

106 Barker [44], 1980 Direct-capture potential model
105 Arai et al. [15], 2002 Four-cluster microscopic model
95,5 Huang et al. [4], 2010 Single-particle model
114 Dubovichenko et al. [16,17], 2010, 2011 Modified potential cluster model
73+56

−11 Xu et al. [18], 2013 Direct-capture potential model
88,34 Dong et al. [19], 2017 Gamow shell model
103,9 Gnech and Marcucci [20], 2019 Potential cluster model
96, 5 ± 5, 7 Kiss et al. [14], 2021 Modified two-body potential method
92 ± 12 Kiss et al. [14], 2021 Modified two-body potential method
98,3 Present work Modified potential cluster model

more accurate data are compiled for the AC of the ground and
first excited states of the 7Be nucleus.

The approximation of the S factor shown by the black curve
4 in Fig. 6 in the energy range of 30 to 150 keV has an
analytical form

S(E ) = S0 + S1E + S2E2 (17)

with parameters S0 = 98.31 eV b, S1 = −187.18
MeV−1eV b, and S2 = 442.51 MeV−2eV b. This
approximation leads to χ2 = 2.4 × 10−4. Here and below for
the calculation of χ2, the error for the theoretical data is set
to be equal to 5%. This shows that S(0) = 98.3 eV b and
S(30) = 93.1 eV b.

New experimental data from LUNA [12] can be approxi-
mated to the first order,

S(E ) = S0 + S1E , (18)

with parameters S0 = 91.952 eV b and S1 = −75.471 MeV−1

eV b, leading to χ2 = 0.6 and S(0) = 92 eV b.

FIG. 4. Astrophysical S factor of the 6Li(p, γ0)7Be capture to
GS. Experimental data are taken from [7], [11], [12], [10],
� [46], � [6], � [8]. Parameters of the continuum potential are given
in Table IV. A band shows the sensitivity to changes in Cw.

To compare the calculated S factor at zero energy (10 keV),
we present the known results for the total S(0): 79(18) eV b
[13], 105 eV b (at 10 keV) [15], and 106 eV b [44]. In [45],
the S factor for transitions to the ground state is 39 eV b, for
the transition to the first excited state the S factor value is
equal to 26 eV b, and the total S factor is 65 eV b. In our
previous works [16,17], a value of 114 eV b was obtained.
The summary for S factor experimental and theoretical values
is presented in Tables VI and VII.

To sum up, our astrophysical S factor is given in Fig. 7 with
a solid red curve, together with experimental data and theo-
retical calculations. The R matrix fit of the data from LUNA
Collaboration [12] and Switkowski et al. [7] is represented
with the solid blue curve. A solid green curve was obtained by
Kiss et al. [14] using the weighted means of the ANCs from
the analysis of the 6Li(3He, d ) 7Be transfer reaction within the
modified two-body potential method (MTBPM). In addition,
[14] contains the results for the S factor of the 6Li(p, γ ) 7Be
reaction calculated within the MTBPM, using the values
of ANCs obtained from the analysis of the experimental

FIG. 5. Astrophysical S factor of the 6Li(p, γ1)7Be capture to
FES. Experimental data ◦ are taken from [9]. Parameters of the con-
tinuum potential are given in Table V. A band shows the sensitivity
to changes in Cw.
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FIG. 6. Astrophysical S factor of the 6Li(p, γ0+1) 7Be capture to
GS and FES. Experimental data for capture are from [7], • [11],
[12], [10], � [6], � [8], � [46], [9]. The parameters of GS and
FES potentials are listed in the figure. A band shows the sensitivity
to changes in Cw.

astrophysical S factors of the 6Li(p, γ ) 7Be reaction [12].
These results are given in Fig. 7 with the solid black curve.

To calculate the 6Li(p, γ ) 7Be capture reaction rate in units
of cm3mol−1s−1, we used an expression [47] analogous to
Eq. (15), but substituting the corresponding constant values:

NA〈σν〉 = 3.7313 × 104 μ−1/2T −3/2
9

∫ ∞

0
σ (E )E

× exp(−11.605E/T9)dE . (19a)

FIG. 7. Comparison of 6Li(p, γ ) 7Be reaction astrophysical S
factors. Experimental data for capture to GS and FES are from [7],
• [11], [12], [10], � [6], � [8], � [46]. Results of calculations: red
curve: present work; blue curve: Ref. [12]; black and green curves:
Ref. [14].

FIG. 8. Total 6Li(p, γ ) 7Be capture reaction rate. Curves indicate
the different sums of the capture rates to the GS and FES. Curves are
designated as in Fig. 6. The yellow band is taken from Ref. [18].

In Eq. (19) E is given in MeV, the total cross-section σ (E ) is
taken in μb, μ is the reduced mass in amu, and T9 = 109 K
[47]. Using real integration limits Emin and Emax, Eq. (19)
becomes

NA〈σν〉 = 3.7313 × 104 μ−1/2T −3/2
9

∫ Emax

Emin

σ (E )E

× exp(−11.605E/T9)dE . (19b)

It is important to stress this fact as the choice of Emax in
Eq. (19b) may have a significant impact on the final result for
the reaction rate. The reaction rate (19b) is calculated based
on cross-sections, displayed in the form of S factors (14) in
Figs. 4–6 within the energy range Emin = 1 keV to Emax = 5
MeV. The results of these calculations are plotted in Fig. 8.

As noted above, curve 4 in Fig. 6 is in best agreement
with all experimental data of the S factor. Therefore, the
corresponding reaction rate, also marked as curve 4 in Fig. 7 is
the most recommended description of the reaction rate. Curve
4 can be approximated by a function of the form [48]

NA〈σν〉 = a1/T 1/3
9 exp

(−a2/T 2/3
9

)(
1 + a3T 1/3

9 + a4T 2/3
9

+ a5T9 + a6T 4/3
9 + a7T 5/3

9

)
+ a8T 2/3

9 exp
(−a9/T 1/3

9

)
. (20)

The parameters of approximation (20) with an average value
of χ2 = 0.014 and the error of 5% are given in Table VIII.

Comparing our results with the reaction rates presented in
NACRE [47] and NACRE II [18] compilations, we follow
the format of Fig. 4 from [12]. We added our results for the
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TABLE VIII. The reaction rate approximation parameters.

i ai

1 0.00319
2 4.16292
3 3721.884
4 −544516.9
5 16401.8
6 −8044.932
7 85197.34
8 924167.3
9 8.36494

reaction rate, normalized to the reaction rate from NACRE
[47]. The comparison is shown in Figs. 9 and 10.

As stated in Ref. [12], the LUNA “thermonuclear reaction
rate is 9% lower than NACRE [47] and 33% higher than
reported in NACRE II [18] at 2 MK, and the reaction rate
uncertainty has been significantly reduced.” Figure 9 shows
that the deviation between the adopted reaction rate obtained
in [12] and the present calculations in the range of 0.01T9 to
1T9 does not exceed 5%. Therefore, the present calculations
confirm the above conclusion by Piatti et al. [12].

Figure 10 shows two of our results: the blue curve 1 is
the reaction rate calculated on the basis of the total cross
sections in the energy range from 1 keV to 5 MeV, and the
green one 2 shows the rate at the upper range of the integration
limit Emax = 0.6 MeV, and this value corresponded to the
upper limit of energy in work [12]. The difference between
these curves illustrates the importance of the resonance region
contribution for the cross sections in the range of 0.6 to 5 MeV
at temperatures above 1T9.

FIG. 9. Comparison of the astrophysical reaction rates in the
range 0.001T9 to 1T9 from [12,18,47] to present work, normalized
to the NACRE rate [47]. Dotted curves represent the uncertainty of
the NACRE [47] rate, while shaded areas represent the uncertainties
from LUNA [12] (pale red) and NACRE II [18] (yellow).

FIG. 10. Comparison of the astrophysical reaction rates in the
range 0.001T9 to 10T9 from [12,18,47] to present work, normalized
to the NACRE rate [47]. Dotted curves represent the uncertainty of
the NACRE [47] rate, while shaded areas represent the uncertainties
from LUNA [12] (pale red) and NACRE II [18] (yellow).

VI. CONCLUSION

We present the results of calculations and analyses of the
S factor and astrophysical reaction rate for the 6Li(p, γ ) 7Be
reaction in the framework of MPCM. It is demonstrated that
the MPCM approach has only one ambiguity arising from
the accuracy of the experimentally determined asymptotic
constants. This effect manifests as bands in Figs. 4–6 for
the astrophysical S factor. Precise LUNA experimental data
played a role of the criterion, in reducing the ANC ambiguity
with theoretical simulations.

Compared to the R-matrix method, which is constrained
by the parametrization of the experimental cross-section data,
MPCM enables one to implement calculations in wider energy
ranges. We extended the energy interval for the total cross
sections and S factors up to 5 MeV, including resonances in
the continuum. The numerical signature of this extension is
seen in Fig. 10 for the reaction rate.

It was also shown in the present work that MPCM pre-
dicted the absence of resonance at 6.73 MeV in the nucleon
channel [16,17], which was confirmed by the LUNA results
[12], as well as, indirectly, by the data from [35].

We suggest that the NACRE [47] and NACRE II [18]
databases should be updated in light of LUNA data [12] and
present calculations.

Finally it worthwhile to mention that our theoretical ap-
proach for the 6Li(p, γ ) 7Be reaction investigation can be
reformulated for the isobar-analog process 6Li(n, γ ) 7Li. The
comparative study of these processes within the same the-
oretical approach can illuminate the lithium cosmological
problem. Moreover, our approach allows the investigation of
other isobar-analog reactions on nuclei with A = 5, 6, and
7 induced by a nucleon capture that lead to the 6Li and 7Li
isotopes.
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APPENDIX A

A solution of a two-body problem for a discrete energy
spectrum with a given potential requires finding the binding
energy of the system and the wave function of the state. This
problem can be solved using the variational method and the
finite difference method (FDM) [49]. If both methods are used
for the same system of particles, it is possible to control the
correctness of the search for the binding energy and WF of the
state. We already have used such an approach for p2H and p3H
systems in [21,50] and demonstrated that the FDM provides
a more precise description of the systems. Below we present
the FDM approach.

The calculation of the binding energy of a two-cluster
system by the FDM relies on the representation of the
Schrödinger equation in finite differences [51]. The radial
equation for the central potential [49]

u′′
L(r) + [k2 − V (r)]uL(r) = 0 (A1)

with some boundary condition for k2 < 0 takes the form of a
Sturm-Liouville type boundary value problem. Recasting the
second derivative in finite difference form, we obtain

u′′ = [un+1 − 2un + un−1]/h2, un = u(rn) (A2)

and (A1) becomes a closed system of linear algebraic equa-
tions. Thus, for a certain k0, DN (k) = 0:

DN (k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

θ1 1 0 · · · 0
α2 θ2 1 0 · · 0
0 α3 θ3 1 0 · 0
· · · · · · ·
· · · · · · ·
0 · 0 0 αN−1 θN−1 1
0 · 0 0 0 αN θN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= 0.

(A3)
Equation (A3) allows one to determine the binding energy Eb

of a system of two particles. The elements of the tridiagonal
determinant (A3) are defined as follows:

αn = 1, θn = k2h2 − 2 − Vnh2, n = 1, 2, . . . , N − 1,

αN = 2, θN = k2h2 − 2 − VN h2 + 2h f (η, L, ZN ),

Zn = 2krn, f (k, η, L, Zn) = −k − 2kη

Zn
− 2k(L − η)

Z2
n

.

(A4)
Here η is the Coulomb parameter, k = |

√
k2| is the wave

number expressed in fm−1 and determined by the energy
of interacting particles in the input channel, and Vn = V (rn)

is the interaction potential of clusters at the point rn = nh
from the interval of zero to R. The number of equations N
or the dimension of the determinant usually turns out to be
in the range 100 000–1 000 000 [49], h = �r/N is the step of
the finite difference grid, and �r is the solution interval of the
system (usually from zero to rN = R).

By writing f (k, η, L, Zn) in the form given in Eq. (A4) it
is possible to take the Coulomb interaction into account [32].
The form of the logarithmic derivative of the WF in the exter-
nal region can be obtained from the integral representation of
the Whittaker function [32]

f (k, η, L, Z ) = −k − 2kη

Z
− 2k(L − η)

Z2
S(η, L, Z ), (A5)

where

S(η, L, Z ) =
∫ ∞

0 tL+η+1(1 + t/Z )L−η−1e−t dt∫ ∞
0 tL+η(1 + t/Z )L−ηe−t dt

. (A6)

Calculations show that the value S(η, L, Z ) does not exceed
1.05, and its effect on the binding energy of a two-particle sys-
tem is negligible [49]. When f (k, 0, 0, Z ) = −k in Eq. (A5),
the binding energy search process is noticeably accelerated.

The calculation of the band determinant DN (k) for a given
k is carried out using recurrent formulas of the form [51]

D−1 = 0, Dn = θnDn−1 − αnDn−2,

D0 = 1, n = 1, . . . , N.
(A7)

Any energy E or wave number k that leads to zero
determinant

DN (k0) = 0 (A8)

is an eigenenergy of the system Eb or k0, and the wave function
at this energy, determined by recurrent process below, is an
eigenfunction of the problem.

Methods for determining the zero of some functional of
one variable k are well known [52]. The number ND of deter-
minant values is determined automatically from the accuracy
condition of the binding energy value. The latter one is usually
set to the level ε ≈ 10−5–10−9MeV, and rN = R is fixed on the
range 20–30 fm [49].

After determining the eigenenergy Eb, the WF of this state
is sought. To find the shape of the eigenfunctions of bound
states, the recurrent procedure

u0 = 0, un = θn−1un−1 + un−2,

u1 = const, n = 2, . . . , N.
(A9)

is carried out, where u1 is an arbitrary number, usually fixed
on the range 0.01–0.1 [52].

For bound states, the determined WF is normalized to
unity. Comparing it to Whittaker asymptotics, one can find
an asymptotic constant denoted by Cw (see Sec. II D).

The WF search area R is usually of 20 to 30 fm, and the
number of steps NW F for the desired WF is fixed between
10 000 and 50 000. Only in the case of a very low binding
energy (0.1–0.2 MeV) is the WF search area increased to
100–200 fm or more.

The recurrence relation (A9) is also used to search for
WFs in the case of a continuous spectrum of eigenvalues at
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predetermined positive energy (k2 > 0) of interacting par-
ticles [49]. However, the WF must now be matched with
asymptotics of the form

NLuL(r) −−→
r→R

FL(kr) + tan
(
δJ

S,L

)
GL(kr). (A10)

Matching the numerical solution uL(R) of Eq. (A1) for two
points at large distances (R on the order of 10–20 fm) with
asymptotics (A10), it is possible to calculate the scattering
phase shifts for each value of the momenta JLS for a given
energy of interacting particles, as well as the normalization
of the WF for scattering processes [49]. To calculate the WF,
one can also use the Numerov method [53]. When the number
of steps exceeds 10 000, both methods yield the same results
within the typical required accuracy. Such results can be com-
pared by calculating the values of AC or charge radii for the
BS or the matrix elements for the scattering processes [49].

APPENDIX B

Table IX shows numerical values of the p 6Li reaction
rate.

TABLE IX. The astrophysical 6Li(p, γ ) 7Be reaction rate in the
range of 0.001T9 to 10T9.

Temperature (units of T9) Reaction rate (cm3mol−1s−1)

0.001 3.20 × 10−29

0.002 7.07 × 10−22

0.003 2.53 × 10−18

0.004 4.35 × 10−16

0.005 1.68 × 10−14

0.006 2.71 × 10−13

0.007 2.49 × 10−12

0.008 1.54 × 10−11

0.009 7.20 × 10−11

0.010 2.70 × 10−10

0.011 8.58 × 10−10

0.012 2.38 × 10−9

0.013 5.92 × 10−9

0.014 1.35 × 10−8

0.015 2.83 × 10−8

0.016 5.60 × 10−8

0.017 1.05 × 10−7

0.018 1.86 × 10−7

0.019 3.18 × 10−7

0.020 5.23 × 10−7

0.030 1.98 × 10−5

0.040 1.92 × 10−4

0.050 9.60 × 10−4

0.060 3.25 × 10−3

0.070 8.55 × 10−3

0.080 1.89 × 10−2

TABLE IX. (Continued.)

Temperature (units of T9) Reaction rate (cm3mol−1s−1)

0.090 3.69 × 10−2

0.10 6.55 × 10−2

0.11 1.08 × 10−1

0.12 1.67 × 10−1

0.13 2.48 × 10−1

0.14 3.52 × 10−1

0.15 4.84 × 10−1

0.16 6.48 × 10−1

0.17 8.45 × 10−1

0.18 1.08 × 100

0.19 1.35 × 100

0.20 1.67 × 100

0.25 3.98 × 100

0.30 7.64 × 100

0.35 1.28 × 101

0.40 1.94 × 101

0.45 2.75 × 101

0.50 3.71 × 101

0.55 4.81 × 101

0.60 6.03 × 101

0.65 7.37 × 101

0.70 8.83 × 101

0.75 1.04 × 102

0.80 1.20 × 102

0.85 1.38 × 102

0.90 1.56 × 102

0.95 1.74 × 102

1.00 1.94 × 102

1.25 2.99 × 102

1.50 4.13 × 102

1.75 5.32 × 102

2.00 6.55 × 102

2.25 7.80 × 102

2.50 9.07 × 102

2.75 1.03 × 103

3.00 1.16 × 103

3.25 1.29 × 103

3.50 1.42 × 103

3.75 1.56 × 103

4.0 1.69 × 103

4.5 1.95 × 103

5.0 2.22 × 103

5.5 2.50 × 103

6.0 2.77 × 103

6.5 3.05 × 103

7.0 3.32 × 103

7.5 3.59 × 103

8.0 3.86 × 103

8.5 4.13 × 103

9.0 4.38 × 103

9.5 4.63 × 103

10 4.88 × 103
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