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Heavy baryons in hot stellar matter with light nuclei and hypernuclei

Tiago Custódio , Helena Pais , and Constança Providência
CFisUC, Department of Physics, University of Coimbra, 3004-516 Coimbra, Portugal

(Received 27 January 2022; revised 21 April 2022; accepted 31 May 2022; published 14 June 2022)

The production of light nuclei and hypernuclei together with heavy baryons, both hyperons and � baryons,
in low-density matter as found in stellar environments such as supernova or binary mergers is studied within
relativistic mean-field models. Five light nuclei were considered together with three light hypernuclei. The
presence of both hyperons and � baryons shift the dissolution of clusters to larger densities and increase the
abundance of clusters. This effect is larger the smaller the charge fraction and the higher the temperature. The
couplings of the � baryons were chosen imposing that the nucleon effective mass remains finite inside neutron
stars.
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I. INTRODUCTION

Neutron stars (NSs) are born in highly energetic events
called core-collapse supernovae (CCS). Right after the core
collapse, the proto-neutron star reaches high temperatures of
the order of tens of MeV. However, in a matter of a few
seconds, neutrinos and photons diffuse out of the star, and
the star cools down to less than 1 MeV, reaching its ground-
state configuration in chemical equilibrium (also known as β

equilibrium) [1]. The star will remain in equilibrium unless
it is perturbed by some external phenomena, such as a colli-
sion with another NS. In these type of events, both CCS and
neutron-star mergers (NSM), β equilibrium is not necessarily
achieved, and temperatures as high as 50 to 100 MeV may
be attained [2]. At such high temperatures, exotic degrees
of freedom such as hyperons and � isobars may appear at
much lower densities as compared with the NS case. In fact,
a finite temperature allows for the presence of excited states
of the nucleons, which can then be converted into heavier
baryons at lower densities. Therefore, to describe such events,
it is necessary to consider a wide range of charge fractions,
temperatures, and densities.

In the NS inner crust, heavy neutron-rich clusters (pasta
phases) [3–5] should form, immersed in a gas of neutrons
and electrons [6,7]. Light clusters, such as 2H, 3H, 3He, 4He,
6He, are also expected to be present for temperatures above 1
MeV [8]. As the density increases even further, these heavy
clusters will eventually melt at densities of ≈0.5n0. This
sets the transition to the core of the star. In this region, the
composition of the star corresponds to uniform nuclear matter
made of neutrons, protons, electrons, and muons [7]. In the
inner core of the star (densities of the order of ≈2n0), exotic
degrees of freedom such as hyperons and delta isobars, or even
deconfined quark matter, may appear [7].

Hyperons, together with the nucleons, form the spin-1/2
baryonic octet. � isobars are spin-3/2 baryons formed by u
and d quarks that usually decay via the strong force into a

nucleon and a pion. These exotic degrees of freedom will
appear at high densities, reducing the pressure of the sys-
tem, when the increasing chemical potentials of the nucleons
approach the effective mass of hyperons and � s, so that
the nucleons start to be converted into these new degrees of
freedom [1,9–11].

Besides reducing the Fermi pressure, the introduction of
hyperons decreases the free energy of matter [12,13]. These
authors also showed that, at low densities, hyperons can com-
pete with light clusters, implying that the minimization of the
free energy should also allow for the appearance of hyperons
at these densities. In Ref. [14], the possible appearance of
hyperons in the density region of the nonhomogeneous matter
that forms the inner crust of a NS was analyzed. Temperatures
below the melting temperature of the heavy clusters that form
this region were considered, i.e., T � 15 MeV. It was found
that only very small amounts of hyperons, like � fractions
below 10−5, were present in the background gas. The low-
density equation of state (EoS) of stellar matter including light
clusters and heavy baryons was also studied in Ref. [15]. In
addition to hyperons, the author also considered � baryons,
pions, and the presence of a representative heavy cluster. It
was shown that, depending on temperature and density, the
composition of matter may shift from a greater abundance of
light clusters to a heavy-baryon predominance.

In a recent work [16], the calculation of the abundance of
purely nucleonic light clusters (2H, 3H, 3He, 4He, and 6He)
and hyperclusters (3

�H, 4
�H, 4

�He) as well as hyperons was
performed in the framework of relativistic mean-field models
for finite temperature and fixed proton fraction. In the present
work, we intend to include � isobars and use two relativistic
mean-field models, FSU2H [17] and DD2 [18]. The introduc-
tion of clusters is going to follow the approach first presented
in Ref. [19], where the effect of the medium on the binding
energy of the clusters is considered through the introduction
of a binding-energy shift, together with a universal coupling
of the scalar σ meson to the different clusters, that was chosen
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so that the equilibrium constants of the NIMROD experiment
[20] were reproduced. In Refs. [21,22], this theoretical ap-
proach [19] was applied to the description of the INDRA
data [23], where an experimental analysis of data was also
done including in-medium effects. It was verified that, due
to the inclusion of the in-medium effect in the experimental
analysis, the equilibrium constants were reproduced with a
larger σ meson coupling. The calibration of the scalar meson
to the clusters coupling was later performed for other models
in Ref. [24].

The structure of this paper is as follows: in the next section,
we briefly describe the formalism used, in Sec. III, the results
are discussed, and, finally, in Sec. IV, some conclusions are
drawn.

II. RELATIVISTIC MEAN-FIELD DESCRIPTION
OF HADRONIC MATTER

We briefly present the formalism used to describe warm
matter which, besides nucleons, also includes light clusters,
light hyperclusters, considered as point-like particles, and
heavy baryons, both hyperons and the � baryons. We there-
fore generalize the study performed in Ref. [16] in order to
include the � baryons.

The description of the hadronic matter will be carried out
within a relativistic mean-field (RMF) approach. The inter-
action is described by the exchange of the following virtual
mesons: the isoscalar-scalar σ meson, isoscalar-vector ωμ,
and isovector-vector �ρμ, together with the isoscalar-vector φμ

meson field with hidden strangeness responsible for an extra
repulsion between hyperons.

We consider the purely nucleonic light nuclei 2H, 3H,
3He, 4He, 6He together with the light hypernuclei nuclei 3

�H
(hypertriton [25]), 4

�H (hyperhydrogen 4 [26]), and 4
�He (hy-

perhelium 4 [27]). The spin and isospin of these clusters have
been summarized in Ref. [16]. Above a given density, which
depends on the interaction and the temperature, clusters melt
and matter is only constituted by nucleons and heavy baryons.
In our approach, the ω meson is the main responsible for this
process, although other descriptions are possible such as the
introduction of an excluded volume [28–32]. We will focus
in temperatures above 15 MeV, and, therefore, only clusters
with a charge Z � 2 are introduced, because heavy clusters
dissolve at lower temperatures, see Ref. [33].

In the present study, we consider a model with density-
dependent couplings (DD2) [18] and a model with nonlinear
meson terms (FSU2H) [17]. Both models satisfy constraints
from observations, in particular, they describe 2M� stars, ex-
perimental data, and theoretical calculations. The Lagrangian
density for this system reads [1,16,18,19]

L =
∑

b=baryonic
octet,�

Lb +
∑

i=light
nuclei,

hypernuclei

Li +
∑

m=σ,ω,φ,ρ

Lm + Lnl . (1)

The sum over b extends over the spin-1/2 baryonic octet and
the spin-3/2 � quadruplet. The second term is the sum over
light nuclei and light hypernuclei, and the last two terms refer

TABLE I. The symmetric nuclear matter properties at saturation
density for DD2 and FSU2H: the nuclear saturation density n0, the
binding energy per particle B/A, the incompressibility K , the symme-
try energy Esym, the slope of the symmetry energy L, and the nucleon
effective mass M∗. All quantities are in MeV, except for n0 that is
given in fm−3, and the effective nucleon mass is normalized to the
nucleon mass.

Model n0 B/A K Esym L M∗/M

FSU2H 0.15 16.28 238 30.5 45 0.59
DD2 0.149 16.02 243 31.7 58 0.56

to the mesonic terms, where Lnl includes all the nonlinear
mesonic terms and is only present in FSU2H.

The baryonic term in Eq. (1) reads

Lb = 	̄b[iγμ∂μ − mb + gσbσ − gωbγμωμ

− gρbγμ �Ib · �ρμ − gφbγμφμ]	b, (2)

where 	b is the baryon field, �Ib is the isospin operator,
and the parameters gmb are the couplings parameters of the
baryons to the mesons. The other parameters of the model are
the nucleonic vacuum mass m = mn = mp = 939 MeV, the
hyperon masses, m� = 1115.683 MeV, m�− = 1197 MeV,
m�0 = 1193 MeV, m�+ = 1189 MeV, m− = 1321 MeV, and
m0 = 1315 MeV, and the � masses are taken to be equal
to 1232 MeV. The lowest N resonance has a mass of 1440
MeV, 200 MeV larger than the � resonance, and therefore it is
disfavored. In particular, it does not set in cold β equilibrium
NS.

In Table I we summarize the symmetric nuclear matter
properties of the two models considered.

For the DD2 model [18] with density-dependent coupling
parameters, the couplings gmN of the nucleons (N = n, p) to
the σ , ω, and ρ mesons are given by

gmN (nB) = gmN (n0)hM (x), x = nB/n0, (3)

with nB being the baryonic density, and n0 being the saturation
density. The isoscalar couplings depend on the function hM

given by [18]

hM (x) = aM
1 + bM (x + dM )2

1 + cM (x + dM )2 , (4)

while for the isovector coupling, hM has the form

hM (x) = exp [−aM (x − 1)], (5)

with the parameters aM , bM , cM , and dM defined in Ref. [18].
Other parameters of the model such as the meson masses are
also given in Ref. [18]. For the other model, FSU2H, the
couplings are defined in Ref. [17].

The mesonic Lagrangian densities are given by

Lm = 1
2

(
∂μσ∂μσ − m2

σ σ 2
)

(6)

− 1
4WμνW μν − 1

4 PμνPμν − 1
4

�Rμν · �Rμν

+ 1
2 m2

ωωμωμ + 1
2 m2

φφμφμ + 1
2 m2

ρ �ρμ · �ρμ, (7)
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TABLE II. Coupling constants of the vector mesons (m =
ω, φ, ρ) to the different hyperons, normalized to the respective me-
son nucleon coupling, i.e., xmb = gmb/gmN , except for the φ meson
where the gωN is used for normalization.

b xωb xφb xρb

� 2/3 −√
2/3 1

� 2/3 −√
2/3 1

 1/3 −2
√

2/3 1

and

Lnl = − κ

3!
g3

σNσ 3 − λ

4!
g4

σNσ 4 + ζ

4!
g4

ωNω4
0

+�ωg2
ρN g2

ωNρ2
03ω

2
0. (8)

The meson masses and couplings κ , λ, ζ , �ω are defined for
each parametrization, see Ref. [18] for DD2 and Ref. [17] for
FSU2H.

A. Couplings of mesons to the heavy baryons

The couplings of the hyperons (�, �−, �0, �+, −, 0) to
the mesons gmb are defined in terms of the nucleon couplings
as gmb = xmbgmN , with m = σ, ω, ρ and gφb = xφbgωN . In
Tables II and III, we give the values considered in the present
work. For the vector mesons, ω and φ, the ratios xmb are
defined according to the SU(6) quark model. For the ρ meson
we take xρb = 1 and consider that the magnitude of the isospin
projection defines the strength of the coupling. The couplings
of the �-hyperon and the -hyperon to the σ -meson are taken
from Refs. [13] and [34], and were calibrated by fitting the ex-
perimental binding energy of hypernuclei. For the � hyperon,
we have considered that the � potential in symmetric nuclear
matter is repulsive and equal to U (N )

� (n0) = 30 MeV, a value
commonly used and within the range of values indicated by
experiments [35].

Similarly to what we have done for the hyperons, we can
write the couplings of the � particles to the mesons, gm�, in
terms of the nucleon couplings as

gm� = xm�gmN , m = σ, ω, ρ, (9)

with xm� being the ratio between the � and nucleon couplings
to the mesons.

Due to limited experimental observations, the couplings
of the � particles to the mesons are still poorly con-
strained. Some phenomenological analyzes from pion-nucleus
scattering [36], electron scattering on nuclei [37], and

TABLE III. Coupling constants of the σ meson to the different
hyperons, normalized to the σ meson nucleon coupling, i.e., xσb =
gσb/gσN , for the DD2 and FSU2H models.

xσb DD2 FSU2H

xσ� 0.621 0.620
xσ� 0.474 0.452
xσ 0.320 0.310

electromagnetic excitation of the � particles [38] have set the
following constraints on the values of the coupling constants,
as summarized in Ref. [11]: (i) the � potential in nuclear mat-
ter could be slightly more attractive than the nucleon potential
implying that the ratio xσ� should be above 1; (ii) xσ� is larger
than xω�:

0 � xσ� − xω� � 0.2; (10)

(iii) there are no experimental constraints on xρ�. We will take
into account the uncertainties associated with these couplings,
allowing the couplings to vary within a large interval of val-
ues, as done by other authors [9–11,39]. In the present work,
we will adopt the following intervals:

0.9 � xσ� � 1.2, (11)

0.9 � xω� � 1.2. (12)

The lower limit is set to 0.9 because the nucleon effective mass
goes to zero at quite low densities for smaller values. Stronger
constraints will be defined by imposing that the effective mass
cannot go to zero at densities below the central density of the
maximum mass star. For the coupling to the ρ meson we will
consider xρ� = 0.8, 1, and 2.

B. Chemical equilibrium

To impose chemical equilibrium, the chemical potentials of
baryons and light clusters and hyperclusters are needed. The
chemical potential of baryon b is given by

μb = gωbω0 + gρbI3bρ03 + gφbφ0 + �R
0 +

√
k2

Fb + m∗2
b ,

(13)
where kFb is the Fermi momentum of baryon b, and �R

0 is the
rearrangement term, only present in the DD2 model, defined
as

�R
0 =

∑
c

(
∂gωc

∂nB
ω0nc + I3c

∂gρc

∂nB
ρ03nc + ∂gφc

∂nB
φ0nc

−∂gσc

∂nB
σns

c

)
, (14)

where the sum is over the baryons, c = b, for T = 0 MeV, and
over the baryons and clusters, c = b, i, for finite temperatures,
nc and ns

c designate, respectively, the particle c density and
scalar density, defined as

nc = (2Jc + 1)

2π2

∫ ∞

0
k2dk[ fk+ − fk−] (15)

ns
c = (2Jc + 1)

2π2

∫ ∞

0

m∗
c√

k2 + m∗2
c

k2dk
[

f c
k+ + f c

k−
]
, (16)

where the function f c
k± is the Fermi distribution function for

the particles c and respective antiparticles at finite temperature
T given as

f c
k±(p) = 1

exp[(ek,c ∓ μ∗
c )/T ] + η

, (17)

with ek,c = (p2
k + m∗2

c )1/2 being the single-particle energy
of the particle c, η = 1 (−1) for fermions (bosons), Jc the
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particle c spin, and μ∗
c the effective chemical potential

μ∗
c = μc − gωcω0 − gρcI3cρ03 − gφcφ0 − �R

0 . (18)

In the following, we consider matter in equilibrium with
a fixed charge fraction YQ. All particle chemical potentials
can be written in terms of the chemical potentials correspond-
ing to two conserved charges, baryonic charge and electrical
charge. We consider that the strangeness chemical potential is
zero, because the weak force does not conserve strangeness.
Therefore the chemical potential of each particle c is a lin-
ear combination of the baryon and electric charge chemical
potentials:

μc = bcμn − qcμe, (19)

where bc is the baryon number of particle c; qc is the elec-
trical charge (in units of +e); and μn, μe are the baryon and
electrical charge chemical potentials, respectively. Since μe =
μn − μp, all chemical potentials can be written in terms of the
nucleon chemical potentials: for the hyperons, the chemical
potentials read

μ� = μn, (20)

μ�− = 2μn − μp, μ�0 = μn, μ�+ = μp, (21)

μ− = 2μn − μp, μ0 = μn. (22)

for the � isobars we have

μ�− = 2μn − μp, μ�0 = μn,

μ�+ = μp, μ�++ = 2μp − μn, (23)

and the cluster or hypercluster i chemical potential must sat-
isfy

μi = Niμn + Ziμp + �iμ�. (24)

The term involving �i in Eq. (24) only contributes to the
chemical potential of hypernuclei.

The total charge fraction YQ of the system is defined as

YQ =
∑

b

qbYb +
∑

i

qi

Ai
Yi, (25)

where qb and qi are the electric charge (in units of +e) of
baryon b and light cluster or hypercluster i. The mass fraction
Yi of the cluster or hypercluster i is given by

Yi = Ai
ni

nB
. (26)

The introduction of light clusters follows the formalism
first presented in Ref. [19], and the inclusion of hyperons
in these clusters, termed hyperclusters, was introduced in a
recent work [16], where the details of the calculations can be
found.

III. RESULTS

In the present section we present our main results. In the
first section we constrain the �-meson couplings imposing
that the effective mass must be nonzero. In a second section,
we analyze the effect of the heavy baryons on the cluster
abundances.

A. Constraining the � couplings

To introduce the � isobars, �−, �0, �+, �++, it is
necessary to constraint the � couplings to the mesons. The un-
certainty on the � couplings can be accounted for by allowing
them to vary within a large interval of values. As explained in
Sec. II A, we take them to be 0.9 � xσ� � 1.2, 0.9 � xω� �
1.2, xρ� = 0.8, 1, 2. To restrict these parameters, we start by
analyzing the EoS for cold NS with � s. At T = 0, the � s
only set in above 2n0 in the realistic models for which the
effective mass does not become zero at too low densities.

Further constraints are obtained from observations: the
EoS must be able to describe 2M� stars, and the effective
mass of nucleons must remain finite inside the star. To build
a complete EoS, it is necessary to match the core EoS to the
crust EoS. We have considered for the outer crust the BPS
EoS [44], and for the inner crust, we take the inner crust
EoS obtained within a Thomas-Fermi calculation, including
nonspherical heavy clusters [45,46]. The inner crust EoS for
DD2 [47] and for FSU2H [48] can be found in the CompOSE
database [49], an online, free, and public repository for EoS.
For the core EoS, the full spin-1/2 baryonic octet, the four �

isobars, electrons, and muons were included in β equilibrium
and at T = 0 MeV.

In the left panels of Fig. 1 we plot the mass-radius
relations obtained with the EoSs corresponding to a
few representative sets of the � couplings: xσ� = xω� =
0.9; xσ� = xω� = 1; xσ� = 1.1, xω� = 1; xσ� = 1.2, xω� =
1.05; xσ� = 1.2, xω� = 1.1; xσ� = xω� = 1.2. xρ� is fixed to
1. For comparison, we also show the EoS without � isobars:
the star branches that separate from the black mass-radius
curve contain stars with � baryons, while the black mass-
radius curve only contains nucleons and hyperons. The effect
of � s is clearly seen in this figure: after the onset of � s the
EoS becomes softer and smaller radii are predicted. We also
include horizontal bands corresponding to two of the most
massive pulsars ever observed, PSR J0740 + 6620 [40], and
PSR J0348 + 0432 [41], with masses M = 2.08 ± 0.07M�
and M = 2.01 ± 0.04M�, respectively, and to two indepen-
dent analysis of the NICER data of the PSR J0030 + 0451,
M = 1.44+0.15

−0.14M� with R = 13.02+1.24
−1.06 km [42], and M =

1.34+0.15
−0.16M� with R = 12.71+1.14

−1.19 km [43]. The uncertainties
are given at 68% confidence interval.

For both models, the EoSs which include the � isobars
show a significant decrease in the radius of the intermediate-
mass stars (≈1.4M�), compared with the stars without � s.
The appearance of the � s softens the EoS, and, therefore, the
star is further compressed due to gravity and, consequently,
has a smaller radius, as discussed in Ref. [11]. On the other
hand, the presence of the � s does not seem to significantly
affect the maximum masses.

There is also a visible difference in the intermediate-mass
radius between the EoSs with different values of the � cou-
plings to mesons, denominated �x = xσ� − xω�. The EoSs
with the same difference in the �x have similar intermediate-
mass radii. This is easily understood if we consider the �

potential in nuclear matter:

U N
� (n0) = −gσbσ + gωbω0 + gρbI3�ρ03. (27)
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FIG. 1. Mass-Radius relations (left) and nucleon effective mass as a function of the density (right) for several sets of values for the xσ�,
xω� couplings, fixing xρ� = 1, and the two RMF models considered, DD2 and FSU2H. The black curves correspond to the EoS without the
� baryons. The horizontal bands, from top to bottom, indicate the mass and radius uncertainties associated with the PSR J0740 + 6620 [40]
(blue), PSR J0348 + 0432 [41] (brown), and the two independent analysis of the NICER data of the PSR J0030 + 0451, M = 1.44+0.15

−0.14M�
with R = 13.02+1.24

−1.06 km [42] (green), and M = 1.34+0.15
−0.16M� with R = 12.71+1.14

−1.19 km [43] (red).

If gσb increases, the � potential decreases and becomes more
attractive, which leads to an increase in the abundances of
the � s. On the other hand, if gωb increases, the potential
becomes less attractive and the � s are less favored. There-
fore, the larger the �x, the higher the abundances of the � s
and the earlier their onset (see Table IV). An earlier onset
of � s and a higher abundance leads to a more significant
softening of the EoS and a larger reduction of its intermediate-
mass radius. Looking at Eq. (27), it is also reasonable to
conclude that different EoSs with the same difference �x
(e.g., xσ� = xω� = 0.9 and xσ� = xω� = 1) will have similar
potentials and, therefore, similar intermediate-mass radii since
the increase in xσ� is approximately compensated by a similar
increase in xω�.

Some of the mass-radius relations in the left panels of
Fig. 1 do not reach the maximum mass star. The nucleon
effective mass corresponding to the EoSs with � s decreases
much faster than those without � s and eventually becomes
zero, see the right panels of Fig. 1. For some parametriza-
tions the effective mass drops so fast that it becomes zero
before the maximum mass star is reached. These EoSs are not

appropriate to describe NSs if no phase transition to quark
matter is considered, and, therefore, they will be discarded
in the present study. Notice, however, that in Ref. [50] the
authors could describe a two solar mass hybrid star, with
the transition to quark matter occurring for stars with a mass
below 1.5M�.

Considering the couplings tested for the DD2 model
satisfying Eqs. (12), the following sets of � couplings
are not valid: xσ� = xω� = 0.9; xσ� = 1.1, xω� = 1; xσ� =
1.2, xω� = 1.05. For the FSU2H model only the pair xσ� =
xω� = 1.2 corresponds to a valid EoS. The valid � couplings,
i.e., those that are able to reach the maximum mass before the
nucleon effective mass becomes zero, are shown in Table IV.

B. Clusterized matter with � baryons

In the following we discuss the effect of the presence
of � baryons on the properties of clusterized matter for
temperatures above 10 MeV, when heavy clusters are not
expected anymore. We are mainly going to work with the
DD2 model with the � couplings equal to the nucleons, i.e.,
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TABLE IV. Maximum mass Mmax, correspondent radius R(Mmax), central density nc, 1.4M� radius R(1.4M�), onset density of the �−

baryon n�− , onset density of the � hyperon n�, for the DD2 and FSU2H models and considering only the valid � couplings.

DD2 Mmax(M�) R(Mmax) (km) nc (fm−3) R(1.4M�) (km) n�− (fm−3) n� (fm−3)

Baryonic octet 2.04 11.45 0.99 13.91 0.33
xσ� = xω� = 1, xρ� = 1 2.02 11.11 1.05 12.93 0.28 0.36
xσ� = 1.2, xω� = 1.1, xρ� = 1 2.06 10.95 1.05 12.26 0.23 0.39
xσ� = xω� = 1.2, xρ� = 1 2.05 11.31 1.01 12.97 0.27 0.35
xσ� = xω� = 1.2, xρ� = 2 2.04 11.32 1.01 13.13 0.32 0.34
xσ� = xω� = 1.2, xρ� = 0.8 2.05 11.31 1.00 12.92 0.26 0.36
FSU2H Mmax(M�) R(Mmax) (km) nc (fm−3) R(1.4M�) (km) n�− (fm−3) n� (fm−3)

Baryonic octet 1.99 12.39 0.79 13.29 0.33
xσ� = xω� = 1.2, xρ� = 1 1.98 11.73 0.91 12.97 0.26 0.35
xσ� = xω� = 1.2, xρ� = 2 1.97 11.97 0.87 13.26 0.30 0.34
xσ� = xω� = 1.2, xρ� = 0.8 1.98 11.72 0.91 12.90 0.25 0.36

xσ� = xω� = xρ� = 1. However, whenever we compare the
DD2 and FSU2H models we have to set xσ� = xω� = 1.2,
since these are the only FSU2H valid couplings that remained
from the initial six sets of � couplings.

In the left panel of Fig. 2, we show the nucleon and purely
nucleonic light cluster abundances with (thick lines) and with-
out (thin lines) hyperons as a function of the temperature for
a charge fraction of YQ = 0.1 and a density of nB = 0.1 fm−3.
The right panel shows the same calculation but for a system
including � isobars as well, with the correspondent couplings
those of the nucleons, xσ� = xω� = xρ� = 1. The inclusion
of hyperons increases the fraction of light clusters above
T = 25 MeV as discussed in Ref. [16]. The presence of both
hyperons and � s increases even further the abundances of
light clusters. This is justified by the reduction of the nucleon
density in the presence of hyperons and � s which leads to
smaller binding-energy shifts.

In Fig. 3 we show again the abundances of clusters and
unbound nucleons in a system with � isobars but for the
two models considered in this work: DD2 (thin lines) and
FSU2H (thick lines). The scalar cluster-meson coupling is
fixed to xs = 0.91 for the FSU2H model, whereas for DD2 is

fixed to 0.93 [24]. Although there are some small differences,
the overall behavior is very similar. The main difference is
the larger abundances of light clusters at low temperatures
obtained within FSU2H.

The hyperon abundances are also affected by the inclusion
of the � isobars, as clearly seen in Fig. 4, where we plot the
unbound nucleon and hyperon fractions as a function of the
temperature with (thick lines) and without (thin lines) � s for
a charge fraction of YQ = 0.1 and density nB = 0.1 fm−3. The
� abundances are also displayed with thick pink lines. The
main effect of introducing � s is a reduction of the neutrons
as well as of the neutral and negatively charged hyperons,
whereas the abundances of protons and positively charged �+
hyperon increase. The most abundant � isobar is clearly the
�− which is negatively charged, so its appearance is com-
pensated by a reduction of the neutral and negatively charged
particles and an increase of the positively charged ones. Ex-
cept for the neutrons, all particles increase their abundances
with the temperature. At finite temperature new channels open
and the interaction, the mass and the charge define the abun-
dances. It is energetically favorable to convert highly energetic
neutrons into other particles. The more attractive couplings of

FIG. 2. Unbound nucleon (red) and light cluster (blue) fractions for the DD2 model in a calculation with (thick lines) and without (thin
lines) (a) hyperons and (b) hyperons and � isobars as a function of the temperature for a fixed charge fraction of YQ = 0.1, and density of
nB = 0.1 fm3. The scalar cluster-meson coupling is fixed to xs = 0.93. The � couplings are fixed to xσ� = xω� = xρ� = 1.
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FIG. 3. Unbound nucleon and light cluster fractions as a function
of the temperature in a calculation with hyperons and � isobars for
the DD2 (thin lines) and FSU2H (thick lines) models, and a fixed
charge fraction of YQ = 0.1, and density of nB = 0.1 fm−3. The �

couplings are fixed to xσ� = xω� = 1.2, xρ� = 1.

the � s compared with the hyperons explains why they are
more abundant than their equally charged hyperon counter-
parts.

In Fig. 5, we show the impact on the total mass fractions
and dissolution densities of the clusters caused by the inclu-
sion of hyperons only (solid lines) and by the inclusion of both

FIG. 4. Unbound nucleon and hyperon fractions as a function of
the temperature in a calculation with (thick lines) and without (thin
lines) � isobars for the DD2 model, and a fixed charge fraction
of YQ = 0.1 and density nB = 0.1 fm−3. The scalar cluster-meson
coupling fraction is set to xs = 0.93. The � abundances are also
displayed with thick pink lines. Light clusters are present in the
calculation but their fractions are not shown. The � couplings are
fixed to xσ� = xω� = xρ� = 1.

hyperons and � s (dash-dotted lines) for two charge fractions
YQ = 0.3 (orange) and 0.1 (blue), and for the DD2 model. The
dashed lines were obtained for nucleonic matter, and have
been included for comparison. Like in previous figures, the
scalar cluster-meson coupling fraction is set to xs = 0.93, and
the � couplings are fixed to xσ� = xω� = xρ� = 1. In the left
panel, the behavior of the total cluster mass fraction is plotted
for T = 50 MeV and two charge fractions as a function of
density. For YQ = 0.3, the largest cluster fractions are reached
for densities below saturation density. Besides, in these range
of densities the three different scenarios consider do not differ
much. The larger differences occur for ρ � 0.2 fm−3, for
densities above the maximum in the cluster distribution and
close to the dissolution. The presence of the heavy baryons
shifts the dissolution density to larger densities. This effect is
present considering only hyperons but it is intensified when
� baryons are also included. The presence of � s reduces the
nucleon fraction, and this is reflected on the medium effects
felt by the clusters through a smaller binding-energy shift. For
the smaller charge fraction, YQ = 0.1, the difference between
the distributions occurs also for densities at the abundance
peak, with the largest mass fractions occurring for matter with
� s and hyperons, followed by matter with hyperons, and
the smallest fraction for nucleonic matter. It is clear that the
smaller the charge fraction, the larger the difference between
the three distributions. The right panel of Fig. 5 summarizes
the effect of the heavy baryons on the dissolution density of
clusters: the differences occur for temperatures above 25 MeV,
with the largest dissolution densities occurring for matter with
the smallest charge fraction and containing both hyperons
and � baryons. These effects are all understood by realizing
that the presence of heavy baryons reduces the nucleonic
background gas, and, therefore, the binding-energy shift, pre-
venting clusters from melting.

In Fig. 6, we plot the fractions of unbound nucleons, light
clusters, light hypernuclei, the � fraction, the total � fraction
corresponding to the sum of the �+, �0, and �− fractions,
the total  fraction corresponding to the sum of the 0 and
− fractions, the total � fraction corresponding to the sum
of �−, �0, �+, and �++, for a charge fraction of YQ =
0.3 (left) and 0.1 (right) in a calculation with (thick lines)
and without (thin lines) � s. The � couplings were chosen
equal to those of the nucleons, xσ� = xω� = xρ� = 1. We
see that the inclusion of � s increases the abundances of the
purely nucleonic light clusters above their maxima through
the reduction of the binding-energy shift of the clusters, so
we would expect a similar increase for the hyperclusters. In
fact, that is exactly what Fig. 6 shows. Once again, the effect
is higher for the charge fraction YQ = 0.1, since a smaller
charge fraction favors negatively charged particles, which is
the case of the �− (the most abundant of the � s). Therefore,
if the � s are more abundant for YQ = 0.1, the reduction
of the binding-energy shifts of the hyperclusters after their
maxima will be larger, resulting in higher dissolution den-
sities and fractions. On the other hand, for densities below
the hyperclusters maxima, the introduction of � s actually
slightly reduces the abundances of hyperclusters, which may
be due to a drop in the � s, which are essential to build
hyperclusters.
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FIG. 5. Total mass fraction Ytot of the light clusters as a function of the density at T = 50 MeV (left) and the dissolution density of the
clusters, nd , as a function of the temperature (right) for a calculation without hyperons and � s (dashed), with hyperons and without � s (solid),
and with hyperons and � s (dash-dotted). The charge fraction is fixed to YQ = 0.3 (orange) and 0.1 (blue), and the DD2 model is considered.

FIG. 6. Mass fractions of the �, �, and  hyperons (green), and � isobars (orange) (top panel), and mass fractions of the light clusters
(blue), and light hypernuclei (pink) (bottom panel), as a function of the density for T = 50 MeV and xs = 0.93, with YQ = 0.3 (left) and 0.1
(right). The calculations are performed for the DD2 RMF model with (thick lines) and without (thin lines) � particles. The mass fractions of
the unbound nucleons are shown in red in both panels.
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FIG. 7. Mass fractions of the �, �, and  hyperons (green),
and � isobars (orange) (top panel), and mass fractions of the light
clusters (blue) and light hypernuclei (pink) (bottom panel), within
the DD2 model (thin) and FSU2H model (thick) as a function of the
density for T = 50 MeV and YQ = 0.1. The � couplings are fixed
to xσ� = xω� = 1.2, xρ� = 1. The mass fractions of the unbound
nucleons are shown in red in both panels.

In Fig. 7, the particle fractions obtained with the mod-
els DD2 (thin lines) and FSU2H (thick lines) are compared.
Although, the overall behavior is similar in both models,
there are visible differences, in particular, after the peak of
the cluster distributions: FSU2H model gives smaller clus-
ter fractions and smaller dissolution densities. FSU2H also
shows smaller fractions of neutrons and hyperons but larger
� fractions. FSU2H favors the appearance of � baryons
with respect to DD2, probably due to the difference on the
ρ-meson couplings, see Eq. (27). A higher � abundance for
the FSU2H results in smaller fractions of hyperons compared
with the DD2, especially negatively charged ones since the
appearance of �− disfavors negatively charged particles. The
fractions of light clusters and hyperclusters are also smaller
for the FSU2H. This may be due to a smaller value of the
fraction xs for the FSU2H (xs = 0.91) compared with the DD2
(xs = 0.93). In fact, the larger the xs the larger the σ -cluster
couplings, resulting in a stronger binding, and therefore higher
abundances.

Finally, let us now compare the total fraction of � isobars,
Y�, corresponding to the sum of �−, �0, �+, and �++

fractions, as a function of the density for a temperature T =
50 MeV and a charge fraction of YQ = 0.3, in a calculation
for different values of the � couplings using the DD2 and
FSU2H models that includes unbound nucleons, hyperons,
light clusters and hyperclusters. In the left panel of Fig. 8,
we fix xρ� = 1 and perform the calculation for the three pre-
viously validated DD2 EoSs and the only valid FSU2H EoS.
As we have mentioned before, the larger �x = xσ� − xω�,
the higher the abundances of � isobars. On the other hand,
DD2 parametrizations with �x = 0 show similar abundances
of � s: the model with higher σ and ω couplings produces
slightly higher abundances at smaller densities (where the σ

coupling is dominant [11]) and lower abundances at higher
densities (where the repulsion associated with the ω coupling
dominates [11]). As for the difference between the DD2 and
FSU2H models with xσ� = xω� = 1.2, we can see that for
small densities they show a similar fraction of � s, whereas
for higher densities the FSU2H starts yielding a higher frac-
tion of � s. In the right panel of Fig. 8, we fix xσ� = xω� =
1.2 and perform the calculation for two values of xρ� = 1 and
2 for DD2 and FSU2H. As we can see from Eq. (27), the larger
the value of xρ�, the less attractive the �− potential is, making
its presence less favorable, which is observed for both models.
All these different parametrizations affect the fractions of the
various particles, since a parametrization with more � s than
the one presented in Fig. 6 accentuates the effects mentioned
in the discussion whereas a smaller abundance reduces the
impact of the � s.

The effect of heavy baryons on the presence of light clus-
ters at low densities has also been discussed in Ref. [15]. In
that study, the author includes pions, the � quadruplet and
� hyperons, besides nucleons and the classical light clus-
ters (2H, 2H, 2H, 2H). The calculation is performed in the
dilute limit within a Green’s function formalism. Medium
effects on the distribution of particles are included through
the definition of the particle self-energies. For the nucleons,
the self-energies are approximated by the nucleon effective
masses and are calculated within a Skyrme nuclear matter
model. A similar approach is introduced for the light clus-
ters whose self-energies are defined in terms of the nucleons
effective masses. Besides, it is also included for clusters a
temperature- and density-dependent binding energy, based on
results from many-body calculations. The � hyperon and
the � isobars are taken with their vacuum masses and for
the pions the leading contribution to the self-energy within a
chiral perturbation theory was considered. With the simplified
description of the heavy baryons, the effect of the clusters on
the heavy cluster fractions is not seen. In particular, the heavy
baryon fractions are insensitive to the cluster formations. An-
other effect is the fact that, in Ref. [15], the � fraction is larger
than the � fraction because they are defined by the baryon
mass and the interaction with the medium is not considered.
In our system, all particles interact with the medium in a
self-consistent way, therefore the introduction of the heavy
baryons such as hyperons and � s does have an effect on the
clusters abundance. Since our heavy baryons interact with the
medium, their abundances do not depend only on their masses,
which allows the � isobars to be more abundant than the �

hyperon for certain conditions.
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FIG. 8. Total fraction of � isobars, Y� as a function of the density for T = 50 MeV and a charge fraction of YQ = 0.3. The σ -cluster meson
fractions are xs = 0.93 (DD2) and xs = 0.91 (FSU2H), and several � couplings are considered.

In our study we did not include pions. Since the � isobars
decay into a nucleon and pion through the strong force if there
are available states, the presence of pions is expected in a
finite-temperature scenario. This will be analyzed in a future
study.

IV. CONCLUSIONS

We have performed a calculation of clusterized matter in-
cluding five light clusters (2H, 2H, 2H, 2H, 2H) and three light
hyperclusters (3

�H, 4
�H, 4

�He), all hyperons belonging to the
baryonic octet and the isospin multiplet of � baryons. The
calculation was undertaken in the framework of relativistic
mean-field theory, in particular, the models DD2 [18] and
FSU2H [17] have been used. Light clusters and hyperclusters
were described as point-like particles, that interact with the
mesons of the model, and besides feel a binding-energy shift
due to the presence of the medium as introduced in Ref. [19].
The binding-energy shift is important to take into account in
an effective way Pauli blocking effects. The hyperon-meson
couplings were obtained from a calibration to hypernuclear
properties [51]. To choose adequate �-meson couplings we

have considered experimental constraints as summarized in
Ref. [9] and imposed as well observational constraints. Many
parametrizations for the � baryons had to be disregarded
because nucleon effective masses would become zero before
a maximum star mass would be reached.

The main conclusions of the present work are (i) the pres-
ence of heavy-baryons, both hyperons and � s favor the
formation of clusters and shift their dissolution to larger den-
sities; (ii) a larger number of clusters decreases the fraction
of free nucleons, and, in particular, the difference between the
fractions of neutrons and protons decrease, which favors pro-
cesses like direct Urca reactions. In the future, it is important
to implement the presence of heavy baryons in the low-density
warm EoS used in core-collapse supernova or neutron-star
merging simulations.
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