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Spin symmetry energy and equation of state of spin-polarized neutron star matter
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The equation of state (EOS) of spin-polarized nuclear matter (NM) is studied within the Hartree-Fock (HF)
formalism using the realistic density-dependent nucleon-nucleon interaction. With a nonzero fraction � of spin-
polarized baryons in NM, the spin- and spin-isospin dependent parts of the HF energy density give rise to the
spin symmetry energy that behaves in about the same manner as the isospin symmetry energy, widely discussed
in the literature as the nuclear symmetry energy. The present HF study shows a strong correlation between the
spin symmetry energy and nuclear symmetry energy over the whole range of baryon densities. The important
contribution of the spin symmetry energy to the EOS of the spin-polarized NM is found to be comparable with
that of the nuclear symmetry energy to the EOS of the isospin-polarized or asymmetric (neutron-rich) NM. Based
on the HF energy density, the EOS of the spin-polarized (β-stable) npeμ matter is obtained for the determination
of the macroscopic properties of neutron stars (NS). A realistic density dependence of the spin-polarized fraction
� has been suggested to explore the impact of the spin symmetry energy on the gravitational mass M and radius
R, as well as the tidal deformability of NS. Based on the empirical constrains inferred from a coherent Bayesian
analysis of gravitational wave signals of the NS merger GW170817 and the observed masses of the heaviest
pulsars, the present study shows the strong impact of the spin symmetry energy W , nuclear symmetry energy S,
and nuclear incompressibility K on the EOS of nucleonic matter in magnetar.

DOI: 10.1103/PhysRevC.105.065802

I. INTRODUCTION

Rotating neutron stars are known to possess strong mag-
netic fields [1–3], with the field strength B on the order of
1014 to 1019 G, so that the effects of magnetic fields on the
equation of state (EOS) of neutron star (NS) matter should not
be negligible. In particular, a significant fraction of baryons
in NS matter might have their spins polarized along the axis
of the magnetic field. The full spin polarization of neutrons
was shown by Broderick et al. [2] to likely occur at the high
field strength of B � 4.41×1018 G. It is commonly assumed
that the magnetic field of NS is usually much weaker than
the upper limit of B ≈ 1019 G, and the spin polarization of
baryons is often neglected in the mean-field studies of the
EOS of NS matter. Recently, the “blue” kilonova ejecta ob-
served in the aftermath of the NS merger GW170817 [4–6]
have been suggested by Metzger et al. [7] to be caused by
both the γ decay of the r-process nuclei and magnetically
accelerated wind from the strongly magnetized hypermassive
NS remnant. A rapidly rotating hypermassive NS remnant
with the magnetic field of B ≈ (1–3)×1014 G at the surface
has been assumed to explain the velocity, total mass, and
enhanced electron fraction of the kilonova ejecta [7]. Such a
scenario seems to agree with the prediction made by Fujisawa
et al. [8] for the strength of magnetic field in the outer core
of magnetar, and a partial spin polarization of baryons might

well occur in the two merging neutron stars of GW170817. To
investigate such effects, a nonrelativistic Hartree-Fock (HF)
study of the spin-polarized nuclear matter (NM) has been
done recently [9], assuming different (relative) strengths �

of the spin polarization of baryons. The EOS obtained in the
HF approach for NS matter consisting of strongly interacting
baryons and leptons, i.e., the npeμ matter in β equilibrium
was used as input to determine the gravitational mass M and
radius R of NS [9,10] from the solutions of the Tolman-
Oppenheimer-Volkoff (TOV) equations [11].

Given a realistic EOS of NS matter, general relativity not
only explains the compact shape of NS in the hydrostatic
equilibrium but also predicts interesting behavior of NS in the
strong gravitational field formed by two inspiralling neutron
stars during their merger. In particular, the shape of each NS
is tidally deformed by the mutual attraction of two coalescing
neutron stars to gain nonzero multipole moments [12–14],
with the energy being lost via the emission of gravitational
waves (GW). The tidal deformation is usually expressed in
terms of the tidal Love number k2 of the second order, which
has been inferred recently from the analysis of the observed
GW signals from GW170817 and translated into the con-
straint for the gravitational mass M and radius R of NS [15].
Because this empirical constraint serves now as an important
reference in validating different models of the EOS of NS
matter, we have applied in the present work the HF approach
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suggested in Ref. [9] to study in more detail the impact by
the spin polarization of baryons to the EOS of NS matter.
Governed by the same SU(2) symmetry, the spin symmetry
energy W is shown in Sec. II to behave in about the same
manner as the isospin symmetry energy S, widely known
as the nuclear symmetry energy. In particular, the parabolic
approximation is valid also for the spin symmetry energy,
so that the (repulsive) contribution from W to the total NM
energy is directly proportional to �2. An interesting correla-
tion between the slope parameter L of the nuclear symmetry
energy S and the slope Ls of the spin symmetry energy W has
been found and discussed in detail.

The EOS of the β-stable spin-polarized NS matter obtained
in Sec. III is used as the input to solve the linearized Einstein
equation for the metric perturbation of the stress-energy tensor
of NS to determine the tidal deformability � of NS matter and
compare with the empirical � deduced from the analysis of
the GW data of GW170817 in Sec. IV. The explicit treatment
of the spin- and isospin variables in the CDM3Yn density-
dependent interaction allows us to show explicitly the impact
by the spin symmetry energy W , nuclear symmetry energy
S, and nuclear incompressibility K on the EOS of nucleonic
matter, the tidal deformability, and the mass and radius of NS.

II. HARTREE-FOCK CALCULATION OF
SPIN-POLARIZED NUCLEAR MATTER

The nonrelativistic Hartree-Fock (HF) approach [16] has
been extended recently [9] to study spin-polarized NM at zero
temperature. In this case, NM is characterized by the neutron
and proton number densities, nn and np, or equivalently by
the total baryon number density nb = nn + np and neutron-
proton asymmetry δ = (nn − np)/nb. The spin polarization of
baryons is treated explicitly for neutrons and protons by using
the densities with baryon spin aligned up or down along the
axis of magnetic field �n,p = (n↑n,p − n↓n,p)/nn,p. In general,
the total HF energy density of NM is given by

E = Ekin + 1

2

∑
kστ

∑
k′σ ′τ ′

[〈kστ, k′σ ′τ ′|vd|kστ, k′σ ′τ ′〉

+ 〈kστ, k′σ ′τ ′|vex|k′στ, kσ ′τ ′〉], (1)

where |kστ 〉 are plane waves, and vd and vex are the direct and
exchange components of the (in-medium) density-dependent
nucleon nucleon (NN) interaction. Although the neutron and
proton magnetic moments are of different strengths and of
opposite signs, in the presence of a strong magnetic field, |�n|
and |�p| should be of the same order. Like the previous HF
study [9], we also assume hereafter the baryon spin polariza-
tion � = �n ≈ −�p.

We have used in the present work several versions of the
density-dependent CDM3Yn interaction which is based upon
the (G matrix) M3Y-Paris interaction [17]. These interactions
were well tested in the earlier HF studies of NM [9,10,16]
as well as the folding model analyses of nucleus-nucleus
scattering [18,19]. Explicitly, the CDM3Yn interaction is just
the original M3Y-Paris interaction [17] supplemented by an
empirical density dependence [9,18,19]

vd(ex)(nb, r) = F00(nb)vd(ex)
00 (r) + F10(nb)vd(ex)

10 (r)(σ · σ ′)

+ F01(nb)vd(ex)
01 (r)(τ · τ ′)

+ F11(nb)vd(ex)
11 (r)(σ · σ ′)(τ · τ ′). (2)

The radial dependence of the central interaction (2) is deter-
mined from the spin (isospin) singlet and triplet components
of the M3Y-Paris interaction [17] and expressed terms of three
Yukawa functions [20] as

v
d(ex)
st (r) =

3∑
κ=1

Y d(ex)
st (κ )

exp(−Rκr)

Rκr
. (3)

The Yukawa strengths Y d(ex)
st (κ ) are given explicitly, e.g., in

Table I of Ref. [9]. If the spin polarization is neglected (� =
0) then the NM can be treated as spin-saturated, and the σ

components of plane waves are averaged out in the HF calcu-
lation (1). As a result, only the st = 00 and st = 01 terms of
the central interaction (2) are necessary for the determination
of the energy density of NM. The situation becomes different
when � �= 0, and the spin-dependent (st = 10) and spin-
isospin-dependent (st = 11) terms of the interaction (2) need
to be properly taken into account in the HF calculation. In this
case, the total HF energy density (1) of the spin-polarized NM
is obtained as

E = Ekin + F00(nb)E00 + F10(nb)E10

+ F01(nb)E01 + F11(nb)E11. (4)

The explicit expressions of Est obtained with the density
dependent CDM3Yn interaction are given in Ref. [9]. We
note that the isoscalar density dependence F00(nb) was first
parametrized in Ref. [18] to properly saturate symmetric NM
at the density n0 ≈ 0.17 fm−3, while giving different values
of the nuclear incompressibility K . The isovector density
dependence F01(nb) was parametrized later to reproduce the
microscopic Brueckner-Hartree-Fock (BHF) results of asym-
metric NM, with the total strength fine tuned by the folding
model description of the charge exchange (p, n) reaction to
the isobar analog states in finite nuclei [21,22]. Because the
spin polarization of baryons gives rise to the nonzero contri-
bution from E10 and E11 to the total NM energy density (4),
the density dependencies F10(nb) and F11(nb) of the CDM3Yn
interaction (2) need to be properly determined for the HF
calculation of the spin-polarized NM. For the convenience
in numerical calculations, the density-dependent functional
Fst (nb) of the CDM3Yn interaction (2) has been assumed in
the analytical form

Fst (nb) = Cst [1 + αst exp(−βst nb) + γst nb]. (5)

Such a procedure has been carried out for the CDM3Y8
version of the interaction in the HF calculation of the spin-
polarized NM [9], where the parameters of F10(nb) and F11(nb)
were adjusted to reproduce the BHF results for the spin-
polarized symmetric NM and neutron matter by Vidaña et al.
[23] using the Argonne V18 free NN potential added by the
Urbana IX three-body force. In the present work, we apply
the same procedure to four versions (CDM3Y4, CDM3Y5,
CDM3Y6, and CDM3Y8) of the CDM3Yn interaction for
a comparative HF study. Note that the isovector density de-
pendence F01(nb) of these four interactions were fine tuned
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TABLE I. Parameters of the density dependence (5) of 4 versions
of the CDM3Yn interaction used in the present HF calculation. K is
the nuclear incompressibility (6) of symmetric NM determined at the
saturation density n0 ≈ 0.17 fm−3.

βst γst K
Interaction st Cst αst (fm3) (fm3) (MeV)

CDM3Y4 00 0.3052 3.2998 2.3180 −2.0 228
01 0.2129 6.3581 7.0584 5.6091
10 0.1494 6.7055 2.5766 116.5455
11 0.6830 0.6949 3.2104 1.0433

CDM3Y5 00 0.2728 3.7367 1.8294 −3.0 241
01 0.2204 6.6146 7.9910 6.0040
10 0.1607 3.3867 2.8341 106.7274
11 0.7016 0.6299 3.4552 1.0752

CDM3Y6 00 0.2658 3.8033 1.4099 −4.0 252
01 0.2313 6.6865 8.6775 6.0182
10 0.1887 −0.9998 3.1342 92.1075
11 0.7259 0.5452 3.6416 1.0775

CDM3Y8 00 0.2658 3.8033 1.4099 −4.3 257
01 0.2643 6.3836 9.8950 5.4249
10 0.2162 −2.3396 3.3397 77.3144
11 0.7573 0.4858 4.2011 1.0179

recently [10] to reach a good agreement of the nuclear sym-
metry energy given by the HF calculation with that given by
the ab initio calculations [24,25] at suprasaturation densities
nb > n0. The isoscalar density dependence F00(nb) of these in-
teractions has been kept unchanged as suggested in Ref. [18].
All the parameters used in the present work are given ex-
plicitly in Table I. Dividing the total NM energy density (1)
by the baryon number density nb we obtain the NM energy
per baryon E/A, which is shown for the spin-unpolarized
and spin-polarized NM in Figs. 1 and 2, respectively. The
energy of symmetric NM at high baryon densities correlates
strongly with the nuclear incompressibility K determined at
the saturation density as

K = 9n2
b

∂2

∂n2
b

E

A
(δ = 0)

∣∣∣
nb→n0

= 9
∂P(δ = 0)

∂nb

∣∣∣
nb→n0

. (6)

Note that a slight difference of the HF results for the energy
of symmetric NM at high baryon densities (upper panel of
Fig. 1) is due to the different values of the incompressibility
K obtained with four versions of the interaction (see Table I).
The K value is strongly sensitive to the EOS of NM, and K has
been, therefore, a key research topic of numerous structure
studies of nuclear monopole resonances (see, e.g., Ref. [26]
and references therein) as well as studies of the refractive light
heavy-ion (HI) scattering [27]. These studies have narrowed
the empirical range to K ≈ 240 ± 20 MeV. While the four
density-dependent versions of the CDM3Yn interaction (2)
give K ≈ 228–257 MeV, which is well within the empirical
range, such a difference in K values was shown to affect
significantly the gravitational mass of NS obtained with the
EOS given by these interactions [10]. In the present work
we explore this effect also for the EOS of the spin-polarized
NM. One can see in Fig. 2 that the full spin polarization of
baryons (� = 1) substantially enhances the energy of both the
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FIG. 1. Energy per baryon of the spin-unpolarized (a) symmetric
NM and (b) pure neutron matter given by the HF calculation (1)
using four versions of the CDM3Yn interaction, in comparison with
the BHF results (squares) [23]. The circles and stars are results of
the ab initio calculations by Akmal, Pandharipande, and Ravenhall
(APR) [24] and the microscopic Monte Carlo (MMC) calculation by
Gandolfi et al. [25], respectively.

symmetric NM and pure neutron matter over the whole range
of densities, and the energy required per baryon to change
the spin-unpolarized NM into the fully spin-polarized NM
is the spin symmetry energy W [9]. Governed by the same
SU(2) symmetry, the spin symmetry energy behaves in about
the same manner as the isospin symmetry energy S, which is
widely known as the nuclear symmetry energy S. Thus, the
total energy of NM can be expressed alternatively as

E

A
= E

A
(nb,�, δ = 0) + S(nb,�)δ2 + O(δ4) + · · · (7)

= E

A
(nb,� = 0, δ) + W (nb, δ)�2 + O(�4) + · · · . (8)

The contribution from both the higher-order terms O(δ4) and
O(�4) were proven to be small and can be neglected in the
well-known parabolic approximation [9,20]. In the present
context, we find it illustrative to consider the pure neutron
matter as the fully isospin polarized NM (δ = 1), so that the
nuclear symmetry energy S(nb) equals just the energy re-
quired per baryon to change the (isospin) symmetric NM into
the fully isospin-polarized NM, i.e., the pure neutron matter.
The (isospin) symmetry energy S(nb,�), widely discussed
in the literature as the nuclear symmetry energy, is the key
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FIG. 2. The same as Fig. 1 but for the fully spin-polarized (a)
symmetric NM and (b) pure neutron matter, in comparison with the
BHF results (squares) [23].

characteristics of the EOS of NS matter and is, therefore, a
longstanding goal of numerous nuclear physics studies (see,
e.g., Refs. [28–30]). However, these studies were done mainly
for the spin-saturated NM and describe, therefore, S(nb,� =
0). The HF results obtained with the CDM3Y8 interaction
for the nuclear symmetry energy (7) at different spin polar-
izations of baryons � are compared in the upper panel of
Fig. 3 with the ab initio results obtained at � = 0 [24,25]
as well as the constraint implied by the analysis of the HI
fragmentation data [31,32]. Using the parameters of F01(nb)
of the CDM3Yn interaction fine tuned recently [10], the HF
results obtained with � = 0 agree nicely with those of the ab
initio calculations at high densities. The nuclear symmetry en-
ergy increases significantly with increasing spin polarization
�, but the S(nb,�) values remain well within the empirical
range inferred from a Bayesian analysis of the correlation
of different EOS’s of the npeμ matter with the GW170817
constraint on the radius R1.4 of NS with mass M = 1.4 M

[33] (the vertical bars in the upper panel of Fig. 3). It is natural
to expect that this GW170817 constraint also has an imprint of
the spin polarization of baryons in the two coalescing neutron
stars. The density dependence of the nuclear symmetry energy
is widely investigated in terms of the symmetry coefficient J ,
slope L, and curvature Ksym of an expansion of S around the

FIG. 3. (a) The HF results obtained with the CDM3Y8 in-
teraction for the nuclear symmetry energy (7) at different spin
polarizations of baryons, in comparison with the ab initio results
[24,25] obtained with � = 0; the shaded region is the constraint
by the HI fragmentation data [31,32]; the vertical bars are given at
90% confidence level by the Bayesian analysis [33]. (b) The spin
symmetry energy (8) given by the CDM3Y8 interaction at different
isospin polarizations δ, in comparison with the BHF results for the
fully spin-polarized neutron matter [23].

saturation density n0 [28–30]

S(nb) = J + L

3

(
nb − n0

n0

)
+ Ksym

18

(
nb − n0

n0

)2

+ · · · . (9)

These quantities and the incompressibility K of symmetric
NM are the main characteristics of the EOS of NM. For the
spin-unpolarized asymmetric NM, the symmetry coefficient
J is well established to be around 30 MeV, but the L and
Ksym values remain much less certain. A recent systematic
survey by Li et al. [34] quotes L ≈ 57.7 ± 19 MeV at the
68% confidence level. The relativistic mean-field studies have
suggested [35] that the neutron skin thickness Rskin = Rn − Rp

of the 208Pb nucleus is a stringent laboratory constraint on
the slope L of the symmetry energy S(nb). Given Rskin ≈
0.283 ± 0.071 fm deduced recently from the measurement of
the parity-violating asymmetry in the elastic scattering of po-
larized electrons from 208Pb by the PREX Collaboration [36],
one obtains L ≈ 106 ± 37 MeV using different relativistic
energy density functionals [35]. This L value is significantly
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TABLE II. The symmetry coefficient, slope, and curvature of the
nuclear symmetry energy (9) for the spin-unpolarized asymmetric
NM (� = 0), and those of the spin symmetry energy (10) for the
spin-polarized symmetric NM (δ = 0) given by the present HF cal-
culation using four versions of the CDM3Yn interaction.

J L Ksym Js Ls Ksyms

Interaction (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

CDM3Y4 30.0 50.0 −63.5 40.4 96.0 −70.7
CDM3Y5 30.0 50.0 −52.1 40.3 96.5 −67.7
CDM3Y6 30.0 50.0 −44.2 40.3 97.4 −64.0
CDM3Y8 29.9 49.5 −31.4 40.1 96.7 −63.3

higher than that predicted by most mean-field calculations and
impacts strongly the calculated macroscopic properties of NS
[35].

At variance with the nuclear symmetry energy (7), the spin
symmetry energy (8) (see lower panel of Fig. 3) was much less
studied, and we could compare the HF results for W (nb, δ)
only with the BHF result obtained for the fully spin-polarized
neutron matter [23]. With the quadratic dependence on δ and
� of the NM energy, the stiffness of the EOS of spin-polarized
NM increases significantly with the increasing polarization of
spin (�) and isospin (δ) of baryons. Such effect is well seen
in the behavior of S(nb,�) and W (nb, δ) with increasing �

and δ, respectively. Given such a correlation of the S and W , it
is obvious that the spin polarization of baryons should not be
neglected in a mean-field study of NS matter. It is interesting
that the density dependence of the spin symmetry energy can
also be expressed in terms of the spin-symmetry coefficient
Js, slope Ls, and curvature Ksyms, in the same manner as the
expansion (9),

W (nb) = Js + Ls

3

(
nb − n0

n0

)
+ Ksyms

18

(
nb − n0

n0

)2

+ · · · .

(10)
Js, Ls, and Ksyms have not been investigated so far in dif-
ferent mean-field models of the EOS of NM. In the present
work these quantities are obtained with four versions of the
CDM3Yn interaction, and the those determined at δ = 0 are
shown in Table II together with the symmetry coefficient,
slope, and curvature of the nuclear symmetry energy (9) de-
termined at � = 0. Although the spin symmetry energy at the
saturation density W (n0) = Js ≈ 40 MeV, which is only about
10 MeV larger than S(n0) = J ≈ 30 MeV. The slope Ls of
the spin symmetry energy is nearly twice that of the nuclear
symmetry energy L, and this makes the EOS of the spin-
polarized NM much stiffer than that of the spin-unpolarized
NM (see Figs. 1 and 2). In general, the parameters J, L,
and Ksym of the nuclear symmetry energy must depend on
the spin polarization � of baryons, and vice versa, Js, Ls,
and Ksyms also depend on δ. Such a spin-isospin correlation
of the two slope parameters is shown in Fig. 4 and one can
see about the same increasing trend of L(�) and Ls(δ) with
the increasing spin and isospin polarization, respectively. Over
the whole range 0 � � � 1, the obtained L(�) values remain
well within the empirical range implied by the nuclear physics
studies and astrophysical observations [34], but are still below

FIG. 4. (a) The HF results obtained with four versions of the
CDM3Yn interaction for the slope L of the nuclear symmetry energy
(9) at different spin polarizations � of baryons in comparison with
the empirical range suggested by Li et al. [34] at the 68% confidence
level (the shaded region). (b) The slope Ls of the spin symmetry
energy (10) at different isospin asymmetries δ.

the lower limit of the L value implied by the neutron skin
of 208Pb measured in the PREX-2 experiment [35,36]. As
discussed above, the energy of the spin-polarized asymmetric
NM depends on both the spin polarization � of baryons and
the neutron-proton asymmetry (or the isospin polarization) δ

in about the same manner. As a result, it turns out to be pos-
sible to expand E/A simultaneously in the spin- and isospin
polarizations, which enables the description of the energy of
NM in terms of the nuclear symmetry (9) and spin symmetry
energy (10) that depend on the baryon density only

E

A
= E0(nb) + S0(nb)δ2 + W0(nb)�2 + O(δ4)

+ O(�4) + · · · ,

where E0(nb) = E
A (nb,� = 0, δ = 0),

S0(nb) = S(nb,�=0), and W0(nb)=W (nb, δ = 0). (11)

By comparing the full HF result for E/A and that given by the
parabolic approximation in the expansion (11), we found that
the contributions from the quartic and higher orders in δ and
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FIG. 5. (a) Energy per baryon (11) of the fully spin-polarized
neutron matter given by the HF calculation using the CDM3Y8 inter-
action (solid line), and that given by the BHF calculation (squares)
[23]. The energy per baryon E0 of the spin-unpolarized symmetric
NM, nuclear symmetry energy S0 and spin symmetry energy W0 are
shown as dotted, dashed, and dash-dotted lines, respectively. (b) The
total baryonic pressure of the fully spin-polarized neutron matter
(solid line) in terms of the contributions obtained separately from
E0, S0, and W0.

� are negligible over baryon densities up to nb ≈ 0.9 fm−3.
This important feature shows a close similarity between the
spin symmetry and isospin symmetry in the mean-field study
of the spin-polarized NS matter. The explicit contributions of
the spin-symmetry and isospin-symmetry energies to the EOS
of the fully spin-polarized neutron matter (� = δ = 1) are
illustrated in Fig. 5, and one can see that W0(nb) has about
the same strength as that of S0(nb) at low baryon densities
nb � 0.1 fm−3. However, the spin symmetry energy becomes
much stronger with increasing nb, and W0 is nearly double the
nuclear symmetry energy S0 at high baryon densities, which
significantly stiffens the EOS of neutron matter. It can be seen
in the lower panel of Fig. 5 that the baryonic pressure of the
fully spin-polarized neutron matter is also about twice that of
the spin-unpolarized neutron matter. We note that the total
energy per baryon (11) of the fully spin-polarized neutron
matter given by the present HF calculation is quite close to
that given by the microscopic BHF calculation [23] using the
Argonne V18 potential supplemented by a realistic three-body
force (see upper panel of Fig. 5). The nuclear symmetry en-
ergy S0(nb) given by the HF calculation is also close to that

given by the ab initio calculations [24,25] (see upper panel of
Fig. 3). Consequently, the expansion (11) should be of interest
for the mean-field studies of the spin-polarized NS matter,
where some estimate of the spin symmetry energy W0(nb) can
be done based on the expansion (10) using parameters given
in Table II.

III. EQUATION OF STATE OF SPIN-POLARIZED
NEUTRON STAR MATTER IN β EQUILIBRIUM

The HF approach (1)–(4) describes NM that contains nu-
cleons only. In fact, the NS matter contains significant lepton
fraction in both the crust and uniform core, and a realistic EOS
of NS matter should include the lepton contribution. For the
inhomogeneous NS crust, we have adopted the EOS given
by the nuclear energy density functional calculation [37,38]
using the BSk24 Skyrme functional, with atoms being fully
ionized and electrons forming a degenerate Fermi gas. At
the edge density nedge ≈ 0.06 fm−3, a weak first-order phase
transition takes place between the NS crust and the uniform
core of the NS. At baryon densities nb � nedge, the core of NS
is described as a homogeneous matter of neutrons, protons,
electrons, and negative muons (μ− appear at nb above the
muon threshold density μe > mμc2 ≈ 105.6 MeV). The total
mass-energy density E of the spin-polarized npeμ matter is
determined as

E (nn, np,�, ne, nμ) = EHF(nn, np,�) + nnmnc2

+npmpc2 + Ee(ne) + Eμ(nμ), (12)

where EHF(nn, np,�) is the HF energy density (4) of the
spin-polarized baryonic matter, and Ee and Eμ are the energy
densities of electrons and muons given by the relativistic
Fermi gas model [39]. In such a Fermi gas model, the spin
polarization of leptons does not affect the total energy density
E , and the lepton number densities ne and nμ are determined
from the charge neutrality condition (np = ne + nμ), and the
β-equilibrium of (neutrino-free) NS matter is sustained by the
balance of the chemical potentials

μn = μp + μe and μe = μμ, where μ j = ∂E j

∂n j
. (13)

The fractions of the constituent particles in the spin-polarized
npeμ matter are determined at the given baryon density nb as
x j = n j/nb. Below the muon threshold density (μe < mμc2 ≈
105.6 MeV) the charge neutrality condition leads to the fol-
lowing relation [16]:

3π2(h̄c)3nbxp − μ̂3 = 0, μ̂ = μn − μp = 2
∂

∂δ

(EHF

nb

)
.

(14)

The proton fraction in the β-stable (spin-polarized) npeμ
matter, xp(nb,�), can then be obtained from the solution
of Eq. (14). If we assume the parabolic approximation and
neglect the contribution from higher-order terms in (7), then
xp(nb,�) is given by the solution of the well-known equation

3π2(h̄c)3nbxp − [4S(nb,�)(1 − 2xp)]3 = 0, (15)
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which shows the direct link between the nuclear symmetry
energy S(nb,�) and the proton abundance in the NS matter.
Above the muon threshold, μe > mμc2 ≈ 105.6 MeV, it is
energetically favorable for electrons to convert to negative
muons, and the charge neutrality condition results in the fol-
lowing equation for xp(nb,�):

3π2(h̄c)3nbxp − μ̂3 − [μ̂2 − (mμc2)2]3/2θ (μ̂ − mμc2) = 0,

(16)
where θ (x) is the Heaviside step function. The proton fraction
xp(nb,�) is known to correlate with the NS cooling rate.
In particular, the direct Urca (DU) process of NS cooling
via neutrino emission is possible only if xp is above the DU
threshold xDU [16]:

xDU(nb) = 1

1 + [
1 + r1/3

e (nb)
]3 , (17)

where re(nb) = ne/(ne + nμ) is the leptonic electron fraction
at the given baryon number density. At low densities re = 1
and xDU ≈ 11.1%, which is the muon-free threshold for the
DU process. Since the lepton-baryon interaction is neglected
in the present study, xDU depends very weakly on the spin
polarization � of baryons. Because the nuclear symmetry
energy S(nb,�) increases steadily with the increasing spin
polarization of baryons � (see Fig. 3), from Eqs. (14)–(16)
one can expect the same trend for the proton fraction xp of the
spin-polarized β-stable npeμ matter. As shown in the lower
panel of Fig. 6, xp increases significantly with the increasing
spin polarization of baryons, and it exceeds the DU threshold
at densities nb � 2n0 for the fully spin-polarized NS matter
with � = 1. It is also natural that the neutron-proton asymme-
try δ decreases with increasing xp, as shown in the upper panel
of Fig. 6. The charge neutrality implies also an increasing
electron fraction with the increasing xp, up to 20%–30% when
� � 1. Such a high electron fraction was found in the blue
kilonova ejecta following GW170817 [4–6], and suggested
by Metzger et al. [7] to be of the magnetar origin. The EOS of
the spin-polarized npeμ matter in β equilibrium is determined
entirely by the mass-energy density ρm(nb,�) = E (nb,�)/c2

and the total pressure

P(nb,�) = n2
b

∂

∂nb

[EHF(nb,�)

nb

]
+ Pe + Pμ. (18)

We show in Fig. 7 the total pressure (18) of the spin-polarized
NS matter P(nb,�) obtained with different � values from the
HF calculation using the CDM3Y8 interaction over baryon
densities up to above 6n0, in comparison with the empiri-
cal pressure given by the “spectral” EOS inferred from the
Bayesian analysis of the GW signals of GW170817 at the 50%
and 90% confidence levels [15]. One can see the substantial
impact by the spin symmetry energy (8) with the increasing
�, which stiffens the EOS and compresses nucleonic matter
inside the NS core to the higher pressure over the whole range
of densities. It is noticeable that P(nb,�) obtained with 0.8 �
� � 1 overestimates the empirical constraint at the baryon
densities within the range 0.05 n0 � nb � 2n0.

FIG. 6. (a) The isospin asymmetry δ and (b) proton fraction xp

of β-stable npeμ matter at different spin polarizations � of baryons
given by the HF calculation (12)–(15) using the CDM3Y8 interac-
tion. The circles are δ and xp values obtained at the maximum central
densities nc, and the thin lines are the corresponding DU thresholds
(17).

IV. TIDAL DEFORMABILITY, MASS,
AND RADIUS OF NEUTRON STAR

The interesting effect inferred from the GW170817 obser-
vation is the tidal deformation of NS induced by the strong
gravitational field which enhances the GW emission and ac-
celerates the decay of the quasicircular inspiral [15]. We recall
briefly the tidal deformability of a static spherical star being
exposed to the gravitational field created by the attraction of
the companion star in a binary system [12,13]. At the range
close enough, this star is tidally deformed and gains a nonzero
quadrupole moment Qi j that is directly proportional to the
strength Ei j of the gravitational field,

Qi j = −λEi j . (19)

λ characterizes the star response to the gravitational field and
is dubbed as the tidal deformability or quadrupole polarizabil-
ity of the star. In general relativity, λ is related to the l = 2
tidal Love number k2 [12] as

λ = 2

3G
k2R5, (20)
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FIG. 7. The total pressure (18) inside the core of NS at different
spin polarizations � given by the HF calculation using the CDM3Y8
interaction and over the range of the mass-energy (ρm) and baryon-
number (nb) densities. The dark and light shaded regions are the
empirical constraints given by the “spectral” EOS inferred from
the Bayesian analysis of the GW170817 data at the 50% and 90%
confidence levels, respectively [15]. The circles are P(nc, �) values
at the corresponding maximum central densities nc.

where R and G are the star radius and gravitational constant,
respectively. It is convenient to consider the (dimensionless)
tidal deformability parameter � [15] expressed in terms of
the compactness C of star with mass M and radius R as

� = 2

3
k2C

−5, with C = GM

Rc2
. (21)

Using the linearized Einstein equation, the Love number k2

can be expressed in terms of the nonzero metric perturba-
tion of the stress-energy tensor H (r) and its radial derivative
H ′(r) [12,13], which are determined from the solution of
a differential equation that is integrated together with the
Tolman-Oppenheimer-Volkoff equations. More details on this
computation can be found, e.g., in Ref. [10].

The tidal deformability and gravitational mass-radius of
NS given by the EOS of the spin-polarized NS matter obtained
with different � values from the HF calculation using the
CDM3Y8 interaction are shown in Figs. 8 and 9, respectively.
One can see that the heavier the NS, the smaller its tidal
deformability, and the impact by the spin symmetry energy
to � is very well revealed in Fig. 8, where only the � values
given by the EOSs of the partially spin-polarized NS matter
with � � 0.6 are inside the empirical range implied by the
GW170817 data at the 90% confidence level for NS with
M = 1.4 M
 [15]. Like the tidal deformability, the NS mass
and its radius comply with the GW170817 constraint for NS
with mass M = 1.4 M
 [15] (the colored contours in Fig. 9)
when the EOSs of the partially spin-polarized NS matter with
� � 0.6 are used for the input of the TOV equations. The
stiffening of the EOS of the spin-polarized NS matter by the
spin symmetry energy shown in Fig. 6 is well reflected in the

FIG. 8. The tidal deformability parameter (21) given by the EOS
of the spin-polarized NS matter obtained with different � values
from the HF calculation using the CDM3Y8 interaction. The vertical
bar is the empirical � value for NS with M = 1.4 M
 inferred from
the Bayesian analysis of the GW170817 data at the 90% confidence
level [15], and the circles are � values obtained at the corresponding
maximum central densities nc.

calculated M-R values, and the obtained maximum masses M
of NS (solid circles in Fig. 9) span the whole empirical range
of the masses deduced for the second PSR J0348 + 0432 [40]
and millisecond PSR J0740 + 6620 [41], the heaviest neutron

FIG. 9. The gravitational mass of NS versus its radius given by
the EOS of the spin-polarized NS matter obtained with different
� values from the HF calculation using the CDM3Y8 interaction.
The colored contours are the GW170817 constraint for NS with
mass M = 1.4 M
 [15], and the circles are M-R values calculated at
the corresponding maximum central densities nc. The shaded areas
are the observed masses of the second PSR J0348 + 0432 [40] and
millisecond PSR J0740 + 6620 [41].
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stars observed so far. The results shown in Figs. 8 and 9
confirm that the GW170817 constraint excludes the full spin
polarization of baryons (� = 0.8–1) inside the core of NS, as
pointed out earlier in Refs. [9,42].

A. Density dependence of spin polarization

The above results were obtained with the uniform spin
polarization of baryons, which is independent of the baryon
density nb. However, nucleons inside the inner core of NS are
known to be fully degenerate and occupy all possible quantum
states allowed by the Pauli principle [43]. Such a full de-
generacy exhausts all spin orientations of baryons and a spin
polarization (or asymmetric spin orientation of baryons with
� > 0) is unlikely inside the inner core of NS. As a result,
� inside the core of NS must depend on the baryon density.
Moreover, the distribution of magnetic field inside magnetar
was shown to be quite complex [8], and the spin polarization
of baryons is expected to decrease gradually to � ≈ 0 in the
central region of magnetar where the intensity of the magnetic
field is diminishing to zero [8]. Although it is beyond the
scope of the present mean-field approach to properly calculate
the density profile �(nb) of the spin polarization of baryons
in magnetized NS, we try to explore this effect by assuming a
realistic scenario for the density dependence of � based on the
magnetic-field distribution in magnetar obtained by Fujisawa
and Kisaka using the Green’s function relaxation method [8].

Several simple scenarios of �(nb) having its maximum
at the surface and decreasing gradually to zero towards the
center of NS were considered in Ref. [9], and it was shown
that up to 60% of baryons might have their spins polarized
during the NS merger GW170817. A more elaborate density
dependence of �(nb) is suggested in the present work, based
on the spatial distribution of the magnetic flux � derived in
Ref. [8]. Namely, the radial distribution of � from the star
center to the surface (see Fig. 5 in Ref. [8]) has first been
translated into the density profile of this quantity, then it is
reasonable to assume the density profile of �(nb) to have
the same shape as that of �(nb). In such a scenario, the
spin polarization of baryons � and the intensity of magnetic
field reach their maximum values at the same baryon density
(around 2n0). The asymmetric spin orientation � is expected
to decrease gradually to zero in the inner core of NS where
baryons are believed to be fully degenerate [43]. To explore
the impact of the spin symmetry energy, we have probed
different maximum values of �(nb) at its peak, as shown
in Fig. 10. We show in Fig. 11 the gravitational mass and
radius of NS given by the EOS of the β-stable spin-polarized
NS matter obtained with different (density dependent) spin
polarizations of baryons �(nb) shown in Fig. 10. Following
the trend of �(nb), the strength of the spin symmetry energy
(10) is also diminishing to zero in the inner core of NS, and the
impact of the spin polarization of baryons on the maximum
mass of magnetar becomes weaker compared with that shown
in Fig. 9. Based on the suggested scenario for �(nb), we found
that the gravitational mass and radius of NS given by the
EOS of the spin-polarized NS matter with � � 0.8 are well
within the empirical range implied for NS with M = 1.4 M

[15]. In general, NM becomes less compressible [9] when the

FIG. 10. Density dependence of the spin polarization � of
baryons inside the core of NS that mimics the distribution of the
magnetic field in NS obtained by Fujisawa and Kisaka using the
Green’s function relaxation method [8], with different maximum �

values.

spin polarization of baryons is nonzero, and NS expands its
size with the maximum mass Mmax and radius Rmax becoming
larger with increasing �, as shown in Fig. 9. With the damping
of the � strength in the inner core of NS shown in Fig. 10, the
impact of the spin symmetry energy at high densities becomes
less significant, and the enhancement of the NS mass and

FIG. 11. The same as Fig. 9 but obtained with the density-
dependent spin polarization �(nb) of different strengths shown in
Fig. 10.

065802-9



KHOA, TAN, AND KHOA PHYSICAL REVIEW C 105, 065802 (2022)

FIG. 12. The same as Fig. 7 but obtained with four versions of
the CDM3Yn density dependent interaction (2)–(5) that are asso-
ciated with four different values of the nuclear incompressibility
K . (a) The results obtained for the spin-unpolarized NS matter.
(b) The results obtained for the partially spin polarized NS matter
with the maximum � = 0.6 of the spin-polarization strength shown
in Fig. 10.

radius (see Fig. 11) with the increasing maximum � value
is not as drastic as shown in Fig. 9. At variance with the spin
symmetry energy, the impact of the nuclear symmetry energy
to the EOS of NS matter remains still strong at large baryon
densities where the δ value sustained by the β equilibrium
is up to 0.6 (see upper panel of Fig. 6). Thus, the nuclear
symmetry energy S(nb) at high baryon densities in the inner
core of NS, where the spin symmetry energy W (nb) decreases
quickly to zero, is the most important input for the EOS of the
β-stable NS matter.

B. Impact of nuclear incompressibility

Although the impact of the nuclear incompressibility on
the EOS of NM is well known as shown in Fig. 1, it is
of interest to explore explicitly this effect on the calculated
macroscopic properties of NS. The total pressure (17) inside
the uniform core of NS obtained with four versions of the
CDM3Yn density-dependent interaction (2)–(5), associated

FIG. 13. The same as Fig. 9 but obtained with four versions of
the CDM3Yn density dependent interaction (2)–(5) that are associ-
ated with four different values of the nuclear incompressibility K .
(a) The results obtained for the spin-unpolarized NS matter. (b) The
results obtained for the partially spin-polarized NS matter with the
maximum � = 0.6 of the spin-polarized fraction of baryons shown
in Fig. 10.

with four different values of the nuclear incompressibility K ,
is shown in Fig. 12. One can see that the difference caused
by different K values is significant at high baryon densities
nb > 2n0 for both the spin-unpolarized and spin-polarized
cores of NS. Such a difference in the pressure results in
quite different maximum masses of NS, and the results shown
in Fig. 13 suggest that a slightly stiffer EOS of NS matter
associated with K ≈ 250–260 MeV not only complies with
the GW170817 constraints but also gives the maximum mass
of NS close to 2M
, at the lower mass limit of the heaviest
pulsars observed so far [40,41]. Although the partial spin
polarization of baryons expands the size of NS and increases
the radius R1/4 up to about 1 km, the difference in the NS
maximum masses up to 0.3 M
 shown in the upper and lower
panels of Fig. 13 is mainly due to the difference in the K
values. In connection with these results, we note that Annala
et al. have suggested recently [44] that the NS matter in
the interior of massive NS with M ≈ 2 M
 might contain a
quark-matter core that contributes up to 0.25 M
 to the total
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mass of NS. In any case, the present mean-field results are
complementary to those of a joint analysis of the NICER and
LIGO-Virgo data [45] that prefers a stiff EOS associated with
the observed masses of the heaviest pulsars.

V. SUMMARY

The equation of state of the spin-polarized NM is studied
within the HF formalism by using the realistic CDM3Yn
density-dependent interaction. Given the nonzero spin polar-
ization or asymmetric spin orientation of baryons, the spin-
and spin-isospin dependent terms of the HF energy density
give rise to the spin symmetry energy W , which behaves in
a manner similar to that of the isospin- or nuclear symmetry
energy S. The parabolic approximation is shown to be valid
also for the spin symmetry energy, so that the (repulsive)
contribution from the spin symmetry energy to the total NM
energy is directly proportional to �2. The EOS of NM be-
comes much stiffer with the increasing spin polarization of
baryons, with the pressure given by the spin symmetry energy
at high baryon densities being much larger than that given by
the nuclear symmetry energy.

Like the nuclear symmetry energy (9), the density depen-
dence of the spin symmetry energy can also be expressed
(10) in terms of three quantities: the symmetry coefficient Js,
slope Ls, and curvature Ksyms. A close correlation of these
characteristics with those of the nuclear symmetry energy S
has been discussed; in particular, a very similar behavior of the
slope parameters L and Ls of S(nb) and W (nb), respectively.
The slope L of the nuclear symmetry energy depends strongly
on the spin polarization � of baryons, and the slope Ls of
the spin symmetry energy depends on the isospin polariza-
tion δ in exactly the same manner. The L values obtained
at 0 � � � 1 comply well with the constraint inferred from
the nuclear physics studies and astrophysical observations
[34], but remain below the lower limit of L implied by the
neutron skin of 208Pb measured in the PREX-2 experiment
[35,36].

With the EOS of the β-stable npeμ matter of NS obtained
at different spin polarization of baryons, we found that the

proton fraction xp increases strongly with the increasing �,
which should result in the larger probability of the direct Urca
process in the cooling of the magnetar. The charge neutrality
then implies an increasing electron fraction with the increas-
ing xp that might reach up to around 30%.

The stiffening of the EOS of the NS matter with the in-
creasing spin polarization of baryons affects significantly the
calculated tidal deformability as well as the gravitational mass
and radius of NS. This effect of the spin symmetry energy
is very strong if we assume a uniform (density-independent)
spin polarization of baryons in both the outer and inner cores
of NS. In such a scenario, the GW170817 constraint for the
tidal deformability, mass and radius of NS with M = 1.4 M

[15] excludes the spin polarization of baryons inside the core
of NS with 0.6 � � � 1.

A more realistic scenario of �(nb) is further suggested,
based on the distribution of magnetic field inside magnetar
obtained in Ref. [8] and the full degeneracy of baryons in
the inner core of NS [43], where � reaches its maximum
in the outer core and decreases quickly to zero in the inner
core of NS. By subjecting the mean-field results obtained at
different spin polarizations of baryons in this scenario to the
GW170817 constraint, we found that up to 80% of baryons in
the outer core of NS might have their spins polarized during
the NS merger.

The impact of the nuclear incompressibility K on the
macroscopic properties of NS is shown clearly for both the
spin saturated (� = 0) and spin polarized (� �= 0) NS matter.
While the M-R results given by four versions of the CDM3Yn
interaction comply well with the GW170817 constraint de-
duced for NS with mass M = 1.4 M
 [15], only the EOS
associated with K ≈ 250–260 MeV gives the maximum mass
of NS close to 2M
, at the lower mass limit of the second PSR
J0348 + 0432 [40] and millisecond PSR J0740 + 6620 [41],
the heaviest neutron stars observed so far.
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