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Background: Theoretical approaches based on energy density functionals (EDF) are gaining in popularity due
to their broad range of applicability. One of their key features is the proper treatment of symmetries of the
nuclear interaction. It is because of this that EDF-based methods may provide another independent verification
of foundations of the standard model, i.e., the assumption that hadronic structure of matter is indeed built upon
three generations of quarks. However, such a study cannot be precisely performed without including very subtle
isospin-symmetry-breaking (ISB) terms both in the long- and short-range part of the nuclear interaction. Only
very recently, the latter part of ISB interaction has been successfully adapted to EDF to describe Nolen-Shiffer
anomaly.
Purpose: The aim of the paper is to study the impact of the short-range ISB terms on isospin impurities in the
wave functions of T = 1/2 mirrors (αISB) and the ISB corrections to their Fermi decays (δISB). The consequent
purpose is to eventually lead the calculation towards evaluation of the Vud matrix element of Cabbibo-Kobayashy-
Maskawa (CKM) quark mixing matrix.
Methods: We use multireference density functional theory (MR-DFT) that conserves angular-momentum and
properly treats isospin. Moreover, for the very first time, the functional includes both short- and long-range
isospin-symmetry-breaking forces. Calculations are performed using three different variants of the ISB in-
teraction: (i) involving only the Coulomb force, (ii) involving the Coulomb and leading-order (LO) contact
isovector forces, and (iii) involving the Coulomb and next-to-leading-order (NLO) contact isovector forces. The
evaluation of Vud matrix element requires more subtle approach involving configuration mixing. For this reason,
the calculation is performed with DFT-rooted no core configuration interaction (DFT-NCCI) model including
above-mentioned ISB terms as well.
Results: We compute isospin impurities and ISB corrections in T = 1/2 mirrors ranging from A = 11–47 with
MR-DFT formalism. Next, we focus on the best measured A = 19, 21, 35, and 37 mirror pairs, calculate the ISB
corrections to their Fermi decays with DFT-rooted NCCI method and then extract Vud matrix element. The final
result shows that Vud = 0.9736(16), which (central value) is in a good agreement with the value assessed from
the superallowed 0+ → 0+ Fermi transitions and is only slightly above the value obtained using state-of-the-art
shell model. Last but not least, we demonstrate the stability of our calculation.
Conclusions: The isovector short-range interaction surprisingly strongly influences the isospin impurities and
ISB corrections in the T = 1/2 mirrors as compared to the calculation where Coulomb interaction is the only
source of the isospin-symmetry-breaking. Moreover, Vud matrix element is sensitive to the short-range isovector
terms in the interaction and can be successfully extracted within DFT-rooted approach that includes configuration
mixing.

DOI: 10.1103/PhysRevC.105.065505

I. INTRODUCTION

With high-precision experiments and theoretical modeling
of atomic nuclei one can test fundamental equations govern-
ing properties of subatomic matter. Of particular interest are
processes used to search for possible signals of new physics
beyond the standard model (SM) such as the superallowed
0+ → 0+ β decays, see Refs. [1,2] and references quoted
therein. With small, of order of a percent, theoretical correc-
tions accounting for radiative processes and isospin-symmetry
breaking (ISB), these pure Fermi (vector) decays allow us to

verify the conserved vector current (CVC) hypothesis with
a very high precision. In turn, they provide the most precise
values of the leading element, Vud, of the Cabbibo-Kobayashi-
Maskawa (CKM) matrix.

The mixed Fermi-Gamow-Teller decays of T = 1/2 mirror
nuclei, which are a subject of this work, offer an alternative
way for the SM tests [3,4] provided that another observable
such as the β-neutrino correlation (a), β-asymmetry (A), or
neutrino-asymmetry (B) coefficient is measured with high
accuracy. The SM expressions for aSM, ASM, and BSM can
be found, for example, in the review [5]. These coefficients
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depend on angular momenta of the participating nuclear states
and a mixing ratio � of the Gamow-Teller (MGT) and Fermi
(MF) matrix elements:

� = gAMGT

gVMF
, (1)

where gV/A are vector and axial-vector electroweak currents
coupling constants, respectively. Precision measurements of
aSM, ASM, or BSM provide, therefore, empirical values of �,
which are instrumental for the Vud calculation since they allow
us to avoid using theoretical values of � which, in spite of a
recent progress in the ab initio GT-decay calculation [6], are
not yet accurate enough to be directly used for that purpose.
With the experimental � the Vud calculation depends upon
precision measurement of the partial lifetime and theoretically
calculated radiative (δ′

R, δV
NS,�

V
R) and many-body ISB (δV

ISB)
corrections to the Fermi branch. The latter are defined together
with δV

NS as a deviation from Fermi matrix element in its
isospin-symmetry limit M0

F :

|MF |2 = ∣∣M0
F

∣∣2(
1 + δV

NS − δV
ISB

)
. (2)

Indeed, the reduced lifetime for an allowed semileptonic β

decay of T = 1/2 mirror nuclei can be written as [3,4]:

Ftmirror ≡ fVt (1 + δ′
R)

(
1 + δV

NS − δV
ISB

)
= K

G2
FV 2

udC2
V

(
1 + �V

R

)(
1 + fA

fV
�2

) , (3)

where K/(h̄c)6 = 2π3h̄ ln 2/(mec2)5 = 8120.2787(11) ×
10−10 GeV−4s is a universal constant, GF is the
Fermi-decay coupling constant equal GF/(h̄c)3 =
1.16637(1) × 10−5 GeV−2, and fV/A denote phase space
factors. Hence, similar to the superallowed 0+ → 0+ decays,
the quality of the test depends on the accuracy of empirical
data and the quality of theoretical models used to compute
the corrections, in particular the many-body δV

ISB corrections,
which are a subject of this work. Current precision of T = 1/2
mirror decay experiments is achieved only for a handful of
isotopes, which is still not enough for stringent testing of the
SM. Fast progress in β-decay correlation techniques though
opens up new opportunities and keeps the field vibrant see, for
example, Ref. [7] for the recent high-precision β-asymmetry
measurement in 37K decay.

The goal of this work is to study the impact of isovector
effective contact interaction that is adjusted to account for
the Nolen-Schiffer anomaly [8] in nuclear masses on isospin
impurities in the wave functions of T = 1/2 mirrors, the
isospin symmetry-breaking (ISB) corrections to their Fermi
decays, and the Vud matrix element in sd-shell T = 1/2 mirror
nuclei. We use different variants of symmetry-restored density
functional theory (DFT), which were successfully applied in
the past to compute isospin impurities and ISB corrections
to superallowed 0+ → 0+ decays, see Refs. [9,10]. After
brief presentation of the methods in Sec. II we demonstrate
that the class-III local force strongly affects the calculated
isospin impurities, see Sec. III A. This rather counterintuitive
observation sparked a motivation for undertaking a detailed
theoretical study of the ISB corrections to the Fermi branch of
T = 1/2 ground-state decays. In this context, in the first place,

we present isospin and angular-momentum projected mul-
tireference DFT calculations covering T = 1/2 nuclei with
11 � A � 47, see Sec. III A. Next, in Sec. III B, we focus on
decays of A = 19, 21, 35, and 37 mirror nuclei for which ex-
perimental data on correlation parameters are precise enough
to allow for extracting Vud matrix element. For these cases
we perform the DFT-based no-core-configuration-interaction
calculations (DFT-NCCI), see Ref. [11] for details, including
theoretical uncertainty analysis, see Sec. III C. The paper is
summarized in Sec. IV.

II. METHODS

The nuclear mean-field-based models are almost perfectly
tailored to study the ISB effects. The single-reference DFT
(SR-DFT) treats Coulomb polarization properly, without in-
volving an approximation of an inert core, and accounts
for an interplay between short- and long-range forces in
a self-consistent way. The spontaneous symmetry break-
ing (SSB) effects that accompany the SR-DFT solutions
and introduce, in particular, spurious isospin impurities and
angular-momentum nonconservation can be then taken care
of by extending the framework beyond mean field to mul-
tireference level (MR-DFT) with an aid of isospin- and
angular-momentum projection techniques [9,10,12]. How-
ever, the nuclear energy density functionals (EDF), which
are conventionally applied in the DFT-based calculations use
Coulomb as the only source of ISB. Therefore they are in-
complete in the context of the ISB studies and cannot fully
describe ISB observables such as triplet (TDE) or mirror
displacement energies (MDE) of nuclear binding energies.
The latter deficiency is known in the literature under the
name of Nolen-Schiffer anomaly [8]. There is a consensus
that these deficiencies cannot be cured without introduc-
ing non-Coulombic sources of ISB as shown within the
nuclear shell model (NSM), Hartree-Fock (HF) theory or
ab initio calculations in Refs. [13–20] and references given
therein.

Recently, we constructed the single-reference charge-
dependent DFT (SR-CDDFT) that includes, apart of the
Coulomb and isoscalar Skyrme interactions, the leading-
order (LO) [21] zero-range and next-to-leading order (NLO)
[22] gradient interactions of class II, which introduces
charge-independence breaking (CIB) and class III describing
charge-symmetry-breaking (CSB) effects in the Henley and
Miller classification [23,24]. We have subsequently demon-
strated that the SR-CDDFT allows for very accurate treatment
of MDEs and TDEs in a very broad range of masses already
in LO [21] and showed that the description can be further im-
proved by adding NLO terms [22]. In Ref. [22] we have also
provided the arguments that the newly introduced ISB terms
model strong-force-related effects of CIB and CSB rather than
the beyond-mean-field electromagnetic corrections.

The aim of this work is to extend the SR-CDDFT to
MR-CDDFT and perform a systematic study of the isospin
impurities and ISB corrections to the beta decays in T = 1/2
mirrors. In this case the ISB effects due to class II or class IV
forces are negligible [17,21,22]. Therefore, non-Coulombic
ISB force can be approximated by the isovector effective
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interaction up to NLO in the effective theory expansion:

V̂ III(i, j) = (
t III
0 δ(ri j ) + 1

2 t III
1 [δ(ri j )k

2 + k′2δ(ri j )]

+ t III
2 k′δ(ri j )k

)(
τ̂

(i)
3 + τ̂

( j)
3

)
, (4)

where k = 1
2i (∇i − ∇ j ) [k′ = − 1

2i (∇i − ∇ j )] are relative mo-
mentum operators acting to the right (left), respectively.

The essence of MR-DFT is to cure the spurious effects
of SSB. The procedure boils down to a rediagonalization of
the entire Hamiltonian in a good isospin and good angular-
momentum basis generated by acting on HF configuration |ϕ〉
with the standard one-dimensional (1D) isospin P̂T

TzTz
and 3D

angular-momentum P̂I
MK projection operators:

|ϕ; IMK ; T Tz〉 = 1√
Nϕ;IMK ;T Tz

P̂T
TzTz

P̂I
MK |ϕ〉, (5)

where

P̂T
Tz,Tz

= 2T + 1

2

∫ π

0
dT

TzTz
(βT )R̂(βT ) sin βT dβT , (6)

P̂I
M,K = 2I + 1

8π2

∫
DI ∗

MK (
)R̂(
) d
. (7)

Here, R̂(βT ) = e−iβT T̂y stands for the rotation operator about
the y axis in the isospace, dT

TzTz
(βT ) is the Wigner function,

and Tz = (N − Z )/2 is the third component of the total isospin
T while R̂(
) = e−iγ Ĵz e−iβ Ĵy e−iαĴz is the three-dimensional
rotation operator in space, 
 = (α, β, γ ) are the Euler an-
gles, DI

MK (
) is the Wigner function, and M and K denote
the angular-momentum components along the laboratory and
intrinsic z axis, respectively [25,26].

Due to overcompleteness of the set (5), the rediago-
nalization of the Hamiltonian is performed by solving the
Hill-Wheeler-Griffin equation in the collective space —
a subspace spanned by the linearly independent natural states
|ϕ; IM; T Tz〉(i) accounting for the K mixing, see Ref. [27], for
further details. The resulting eigenfunctions are

|n; ϕ; IM; Tz〉 =
∑

i,T�|Tz |
b(nI;ϕ)

iT |ϕ; IM; T Tz〉(i), (8)

where n enumerates eigenstates in ascending order according
to their energies. The quantum state (8) is free from spurious
isospin mixing.

Let us observe that, contrary to SR-DFT, which uses one
Slater determinant (single reference state) and is therefore
a true mean-field theory, MR-DFT goes evidently beyond
mean-field approximation. Indeed, the state (5) is a lin-
ear (continuous) combination of Slater determinants rotated
in space and isospace |ϕ(
,βT)〉 ≡ R̂(
)R̂(βT)|ϕ〉 weighted
with appropriate (symmetry dictated) Wigner D functions,
which cannot be cast into a single Slater determinant. Since
the MR-DFT uses only one mean-field state |ϕ〉 representing
concrete self-consistent nucleonic configuration the expansion
coefficients in good angular momentum and isospin basis
(5) can be interpreted as mean-field isospin impurities. It is
well known, however, that these numbers contain substantial
amount of unphysical isospin mixing [9] and, as such, cannot
be compared to experiment. In order to remove unphysical

mixing one has to rediagonalize the Hamiltonian in good
isospin basis. Moreover, since the MR-DFT uses one con-
figuration the wave function may not be equipped with the
correlation coming from higher excitations or, as it will be
demonstrated below, can inherit certain bad features of the
underlying mean-field configuration. These deficiencies can
be compensated by applying configuration mixing in DFT-
NCCI formalism.

The DFT-NCCI scheme proceeds as follows. One starts
with computation of relevant (multi)particle-(multi)hole de-
formed HF configurations ϕi. Next, with an aid of pro-
jection methods, one computes a set of projected states
|ϕi; IMK ; T Tz〉, see Eq. (5), which are subsequently mixed
to account for K mixing and physical isospin mixing. At this
stage one obtains a set of nonorthogonal states |n; ϕi; IM; Tz〉
of Eq. (8), which are eventually mixed by solving the Hill-
Wheeler-Griffin equation. In the mixing we use the same
Hamiltonian that was used to create the HF configurations.
Further details concerning the DFT-NCCI scheme can be
found in Ref. [11].

All calculations presented below were done using the code
HFODD [28] with the SVSO Skyrme force, a variant of the
SV EDF of Ref. [29] with the tensor terms included and the
spin-orbit strength increased by a factor of 1.2 as proposed in
Ref. [30]. The code includes the local ISB EDF, in the LO and
NLO variants, and allows for simultaneous 1D isospin and
3D angular-momentum projections, and is also equipped with
the DFT-NCCI module. In the following we compare three
variants of the calculations including different ISB forces:
(i) involving only the Coulomb force (V̂C), (ii) involving the
Coulomb and LO contact ISB forces (V̂C + V̂ III

LO), and (iii) in-
volving the Coulomb and NLO local ISB forces (V̂C + V̂ III

NLO).
These variants will be labeled by the acronyms C, LO, and
NLO, respectively.

III. RESULTS

A. Influence of zero-range isovector interaction on isospin
impurities and ISB corrections to Fermi β decays

Contribution to MDE in T = 1/2 mirror nuclei due to the
contact class-III interaction constitutes, on average, around 7–
8 % of the contribution coming from the Coulomb force as
shown in Refs. [21,22]. One would therefore naively expect
that the class-III ISB force would also have a rather modest
impact on the isospin impurity in the nth state of spin I: α(n)

ISB =
1 − ∑

i |b(nI;ϕ)
iT =|Tz ||2. Figure 1 shows arithmetic means

ᾱISB(A) = [αISB(A, Tz = 1/2) + αISB(A, Tz = −1/2)]/2

in the ground states of Tz = ±1/2 for 11 � A � 47. The
curves illustrate impurities obtained using C (αC), LO (αLO),
and NLO (αNLO) variants of the ISB interaction with parame-
ters taken from Ref. [22].

It is surprising to see that the local class-III force strongly
increases isospin mixing. The relative difference between αLO

and αC gradually decreases with A (see insert in Fig. 1) from
90% to approximately 40% (50%) in the lower f p-shell nuclei
for the LO (NLO) theory, respectively. Note also that the NLO
theory brings much smaller increase of αISB as compared to
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FIG. 1. Arithmetic means of ᾱC (blue), ᾱLO (green), and ᾱNLO

(orange) over the ground-state values in Tz = ±1/2 mirror partners
versus A. The insert shows relative differences δᾱLO ≡ ᾱLO−ᾱC

ᾱLO
and

δᾱNLO ≡ ᾱNLO−ᾱLO
ᾱNLO

.

the LO what is expected for a converging effective theory. We
have also verified (using isospin-projected theory) that strong
increase in αISB due to class-III force takes place for density-
dependent popular Skyrme forces such as SLy4 [31].

The additional isospin mixing introduced by ISB contact
terms, see Eq. (4), is expected to impact the ISB corrections
to the Fermi branch in mirror β decays. In order to assess
the effect quantitatively we performed systematic calculation
of δV

ISB in 11 � A � 47 using the SVSO Skyrme force and
three variants C, LO, and NLO of the ISB forces. Since the
precision is of utmost importance we refitted the class-III
ISB interaction and adjusted its parameters to MDEs in 11 �
A � 47 calculated at the MR-DFT level. The fit gives t III

0 =
−6.3 ± 0.3 MeV fm3 for the SVLO

SO functional and t III
0 = 0 ± 2

MeV fm3, t III
1 = −2 ± 2 MeV fm5, and t III

2 = −4 ± 1 MeV
fm5 for the SVNLO

SO functional. In the latter case we observed
that the t III

0 and t III
1 parameters are strongly correlated, which

increases their theoretical uncertainty and, in turn, the uncer-
tainty on the calculated δV

ISB. The results of δV
ISB calculation are

presented in Fig. 2. As anticipated, an enhancement in αISB

implies strong enhancement in δV
ISB, of the order of 70% on

average, caused by the LO term and further, albeit as expected
much smaller, increase obtained in the NLO calculation.

B. Evaluation of Vud matrix element in DFT-NCCI calculation

The calculated δV
ISB versus A curve shows two irregularities

for A = 19 and A = 37. Such irregularities indicate enhanced
mixing among single-particle Nilsson orbitals and, indirectly,
suggest that the MR-DFT calculations are not sufficient.
Similar problems were encountered already in our seminal
MR-DFT calculation of δV

C for 0+ → 0+ superallowed Fermi
decays in A = 38 (and A = 18) cases, see Ref. [10]. The
value of δV

C calculated in Ref. [10] for A = 38 was anoma-
lously large due to accidental near degeneracy and very strong
mixing of the Nilsson orbitals originating from the 1s1/2 and
0d3/2 spherical subshells. Within the MR-DFT framework
(involving projection from a single Slater determinant) such

FIG. 2. ISB corrections to the Fermi branch of ground-state β

decay in T = 1/2 mirror nuclei calculated using variants C (blue
dots), LO (green squares), and NLO (orange triangles) of our MR-
DFT model.

an anomalous case must be treated as an outlier and re-
moved from further analysis of Vud, which was in fact done
in Ref. [10]. At the MR-DFT level of approximation there
is no cure for such an effect. Hence, the large values of δISB

for A = 37 and, to a lesser extend, for A = 19 mirror decays,
caused by the same 1s1/2 − 0d3/2 unphysical mixing, should
be also rejected from further analysis of Vud. This, in turn,
would limit the Vud analysis within the MR-DFT to the two
well-measured cases only making the entire procedure statis-
tically questionable.

With the development of DFT-NCCI [11], however, we
have at our disposal a new theoretical tool, which allows
us to control, at least to some extent, such an unwanted
mixing. The model provides rediagonalization of the entire
Hamiltonian within the model space that includes the inter-
acting mean-field configurations. We, therefore, decided to
analyze all four well-measured A = 19, 21, 35, and 37 mirror
decays using this formalism. Moreover, in the present work
DFT-NCCI calculations were limited to one-particle-one-hole
(p − h) configurations only. Such approach was widely tested
in our previous β-decay calculation reported in Ref. [32]. The
calculated ground-state (gs) and excited p − h configurations
in the four mirror nuclei are axially deformed, which im-
plies that the number of participating p − h configurations is
very limited due to the K quantum number conservation. In
such case, the configuration mixing, which proceeds through
spherically symmetric Hamiltonian, is effective only within
the collective subspace built upon HF configurations of the
same K . In A = 19 and A = 37 the gs configuration is built
upon K = 1/2 Nilsson state having the spin I = 1/2 and
I = 3/2, respectively. Hence, the mixing is effective within
3 HF configurations having �K = 0. These configurations
are built upon one of the three active K = 1/2 Nilsson orbits
[220 1/2], [200 1/2], and [211 1/2] originating from the d5/2,
s1/2, and d3/2 spherical subshells, respectively. In A = 21 and
A = 35 the gs spin is I = K = 3/2. The active model space
then consists of only two HF configurations built upon either
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FIG. 3. ISB corrections to the Fermi branch of ground-state β

decay in T = 1/2 mirror nuclei calculated using NLO (orange tri-
angles) of our MR-DFT model in comparison with the nuclear shell
model (NSM) results (gray diamonds) taken from Ref. [3]. Black
crosses mark the DFT-NCCI results for A = 19, 21, 35, and 37
decays, see Table II.

the [211 3/2] or [202 3/2] Nilsson orbits originating from d5/2

and d3/2 spherical subshells.
Large energy gap between [211 3/2] or [202 3/2] Nils-

son orbits decreases considerably the effect of configuration
mixing on δV

ISB in A = 21 and A = 35. In contrast, the ef-
fect is very strong in A = 19 and A = 37. For the 19Ne →
19F, in the NLO variant, the ISB correction δV

ISB drops from
0.738% calculated for the single configuration representing
the ground state to 0.580% after admixing the first excited
configuration and further to 0.430% after admixing the second
excited configuration. For the 37K → 37Ar decay the ISB
correction decreases from 1.833% to 1.099% and down to
1.042%, respectively. Note that the configuration mixing in
A = 19 and 37 corrects, to large extent, the irregular behavior
of δV

ISB versus A obtained for these two cases in MR-DFT,
see Fig. 3. The referential list of our best estimates of δV

ISB
values is given in Table I. For A = 19, 21, 35, and 37 the value
obtained with DFT-NCCI calculations is provided. Otherwise,
MR-DFT results are listed.

Table II summarizes the results of DFT-NCCI calculations.
It contains the results for the calculated values of δV

ISB, the
average values of nucleus independent reduced lifetime F̄t0

TABLE I. ISB corrections δV
ISB to the Fermi transitions in sd-shell

nuclei calculated using the NLO variants of MR-DFT and DFT-
NCCI model (the latter values are labeled with asterisk).

A δV
ISB A δV

ISB

17 0.34(3) 29 1.03(10)
19 0.430(56)* 31 1.06(11)
21 0.415(54)* 33 1.17(12)
23 0.45(4) 35 0.688(89)*
25 0.54(5) 37 1.04(14)*
27 0.86(9) 39 0.58(6)

TABLE II. ISB corrections δV
ISB to the Fermi transitions in A =

19, 21, 35, and 37 calculated using the NSM [3] and the C, LO, and
NLO variants of DFT-NCCI model. Last three rows show the results
for F̄t0, Vud, and for the unitarity test obtained by averaging over the
results in A = 19, 21, 35 and 37.

A NSM C LO NLO

19 0.415(39) 0.231(30) 0.412(54) 0.430(56)
δV

ISB 21 0.348(27) 0.251(33) 0.394(50) 0.415(54)
35 0.493(46) 0.474(62) 0.647(84) 0.688(89)
37 0.734(61) 0.714(93) 0.97(13) 1.04(14)

F̄t0 6162(15) 6166(18) 6156(18) 6152(21)
Vud 0.9727(14) 0.9725(14) 0.9732(14) 0.9736(16)
unitarity 0.9967(31) 0.9961(31) 0.9976(31) 0.9983(35)

defined, for a single transition, as:

Ft0 ≡ Ftmirror

(
1 + fA

fV
�2

)
, (9)

the extracted values of Vud, and the result of the unitarity test.
Note that the DFT-NCCI theory for Vud is convergent with
respect to addition of higher-order ISB terms as depicted in
Fig. 4 and that the final Vud matrix element

Vud = 0.9736 ± 0.0016

lies within 1
2σ from the value assessed from superal-

lowed 0+ → 0+ Fermi transitions, which is Vud = 0.97417 ±
0.00021 [1]. In the calculations of F̄t0 and Vud we used
the radiative corrections and phase-space factors taken from
Ref. [3]. The experimental data were taken from Refs. [33,34]
in case of A = 19 where we have taken an error-weighted
sum of a half-life time reported from these independent ex-
periments, the same for A = 21 [35,36], A = 35 [4], and for
A = 37 [7].

FIG. 4. Vud matrix element calculated from the T = 1/2, A = 19,
21, 35, and 37 mirror decays by means of the NSM [3] and the
three variants C, LO, and NLO of the DFT-NCCI model. Right point
represents the Vud obtained from superallowed Fermi β decays taken
from Ref. [1].
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TABLE III. Configurations used in the DFT-NCCI calculations for A = 21 T = 1/2 mirrors. Full dots denote pairwise occupied Nilsson
states, left (blue) and right (red) side of each column presents different type of nucleons. In the case of 21Na on the left (blue) the table shows
neutrons whereas on the right protons (red). Up (down) arrows denote singly occupied Nilsson states with positive (negative) K quantum
numbers, respectively. Note that excitation of a pair to the |202 5/2〉 Nilsson level leads to oblate shape.

↑
↑ ↑

↑ ↓

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
↑ ↑ ↓ ↓ ↑

C. Theoretical uncertainty analysis

Let us finally comment on theoretical uncertainties. The
overall uncertainty imposed on the calculated ISB comes from
three major sources: (i) from the cutoff on harmonic oscillator
basis, (ii) from the uncertainties of the class-III LECs, and
finally (iii) from the configuration mixing. The uncertainties
associated with the first two sources can be reliably estimated
and do not exceed ≈5%. The uncertainty associated with
configuration mixing can be evaluated only a posteriori, after
performing configuration-interaction calculations in the larger
configuration space.

In order to assess the uncertainty associated with configu-
ration mixing we decided to perform configuration-interaction
calculations for two representative cases A = 21 and A = 37.
In the case of 21Na → 21Ne decay we increased the model
space to 12 axially deformed configurations, which are de-
picted schematically in Table III. The result of the calculation
is shown in Fig. 5. The figure presents a relative change in

FIG. 5. ISB correction to the Fermi transition 21Na → 21Ne with
respect to an increase of a configuration space involving 1p − 1h and
2p − 2h pairing-type excitations. Configurations are added in the or-
der listed in Table III. Shaded area marks 5% error bar superimposed
on DFT-NCCI result calculated using 1p − 1h configurations. The
calculation was performed for LO variant of the isovector interac-
tion, see Eq. (4) using the single-particle basis consisting N = 12
harmonic oscillators shells.

the calculated ISB correction with respect to the value quoted
in Table II. As shown in the figure, admixture of seniority
one 1p − 1h excitations (configurations no. 1–5) does not
bring any relevant effect on δISB. A perceptible increase can
be noticed after admixing of nn-, pp-, and np-pairing-type
2p − 2h excitations in the configuration space. The amount
of the increase is around 5%, which means that for this, and
most likely A = 35 case, our predictions can be considered as
very stable with respect to the configuration mixing.

We performed similar calculation for the irregular and
therefore most difficult case of 37K → 37Ar transition. In
the analysis we included seven configurations depicted in
Table IV. The calculation indicates, see Fig. 6, that the total
estimated error due to configuration mixing in this case is
of the order of 15%. It might be even slightly larger after
including more 2p − 2h excitations. However, proximity of
Nilsson orbitals provoking unstable HF solutions disables per-
formance of such analysis. Nevertheless, at the moment, there
is no strong motivation for conducting such a study. Theo-
retical error associated with the δISB calculation constitutes
only a tiny fraction in the total error budget of |Vud|, which
is completely dominated by experimental uncertainties [4]. In
conclusion, we have imposed 15% error on our irregular δISB

TABLE IV. Configurations used in the DFT-NCCI calculations
for A = 37 T = 1/2 mirrors. Full dots denote pairwise occupied
Nilsson states, left (blue) and right (red) side of each column presents
different type of nucleons. In the case of 37K on the left (blue) the
table shows neutrons whereas on the right protons (red). Up (down)
arrows denote singly occupied Nilsson states with positive (negative)
K quantum numbers, respectively.

↑ ↑ ↓ ↑
↑

↑
↑ ↑

↑
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FIG. 6. ISB correction to the Fermi transition 37K → 37Ar with
respect to an increase of a configuration space involving 1p − 1h
and 2p − 2h pairing-type excitations. Configurations are added in the
order listed in Table IV. Shaded area marks 15% error bar superim-
posed on DFT-NCCI result calculated using 1p − 1h configurations.
The calculation was performed using the single-particle basis con-
sisting N = 12 harmonic oscillators shells with the Coulomb as the
only source of isospin-symmetry breaking.

in A = 19 and A = 37 and 5% error in regular A = 21 and
A = 35 cases due to configuration mixing.

Let us finally mention that our results are obviously a
subject to systematic error associated with the form and pa-
rameters of the employed EDF. Our earlier calculations, see
Ref. [12], as well as the random-phase approximation calcu-
lations by Liang et al. [37] suggest that variations in EDF
parametrizations should rather weakly influence the extracted
Vud. Detailed analysis of such uncertainties, however, is very
difficult and will not be performed here. As already mentioned
the total error budget of |Vud| is, at present, dominated by
experimental uncertainties [4].

The uncertainty analysis performed above allows us to
conjecture that our MR-DFT predictions presented in Fig. 3
can be considered as relatively stable with respect to the
configuration mixing. Hence, with the exception of A = 19
and A = 37 decays where the DFT-NCCI calculations are
indispensable, the MR-DFT values of δISB can be treated as
recommended after superimposing, on average, 10% error
due to configuration mixing. At present, due to the accuracy
of current experimental data, better accuracy of theoretical
corrections is not needed what allows us to refrain in this work
from performing time-consuming systematic computations of
δISB using the DFT-NCCI framework. Such calculations can
be always performed upon request. In turn, the conjecture
allows us to conclude, see Fig. 3, that our calculations for
δISB are in overall good agreement with the results of NSM
calculations with the exception of the very few cases such as
A = 11 and A = 27, which need to be examined separately.

IV. CONCLUSIONS

In this paper, we performed systematic study of isospin
impurities to the nuclear wave functions in T = 1/2 mir-
ror nuclei using MR-CDDFT that includes, apart from the
Coulomb interaction, the class-III ISB interaction adjusted
to reproduce the Nolen-Schiffer anomaly in MDEs. We have

investigated the impurities using three variants of the model
including different ISB forces, namely: (i) involving only the
Coulomb force, (ii) involving the Coulomb and LO contact
ISB forces, and (iii) involving the Coulomb and local ISB
forces up to NLO. We have demonstrated, for the first time,
that the class-III interaction very strongly increases isospin
mixing, see Fig. 1. Our results show that the NLO theory
is convergent and brings much smaller increase of αISB as
compared to the LO theory.

Next, we present a profound impact of class-III force on
the isospin-symmetry-breaking corrections δV

ISB to the Fermi
matrix elements of ground-state decays of T = 1/2 mirror
nuclei, which constitute a theoretical input for the precision
tests of the electroweak sector of the SM. In order to assess
the effect quantitatively we performed systematic study of
δV

ISB using MR-DFT with the three variants of the ISB force
described above. As expected from the αISB study, we observe
strong systematic increase in δV

ISB after including the LO class-
III force and further, albeit much smaller, increase within the
NLO theory.

The δV
ISB calculated using MR-DFT show irregularities for

A = 19 and 37 cases, which are among the decays that are
used for the SM test. Such irregularities usually indicate a
mixing among the active Nilsson orbitals, which can be taken
care of by performing configuration-interaction calculations.
In order to verify this conjecture and make our predictions
more precise we performed the DFT-NCCI calculations of the
ISB corrections in A = 19, 21, 35, and 37 T = 1/2 mirrors.
Since these nuclei are axial we have limited the DFT-NCCI
model space to particle-hole deformed Nilsson configura-
tions with �K = 0, with respect to K quantum number of
the ground-state configuration. The DFT-NCCI results are
collected in Table II. The values of δV

ISB calculated using
the LO and NLO theories are systematically larger than the
results obtained using only the Coulomb interaction. There
are also systematically larger than the corrections calculated
using the NSM in Ref. [3]. In turn, the extracted central
value of Vud matrix element is closer to the value obtained
using data on 0+ → 0+. Our |Vud| = 0.9736(16) was obtained
with the error-weighted average over four mirror (A = 19,
21, 35, and 37) transitions excluding the outlier A = 29, a
case measured with a lesser accuracy as compared to other
cases see Ref. [4]. This value is considerably larger than
the one, |Vud| = 0.9727(14), given in Ref. [7] and above the
value |Vud| = 0.9730(14) of Ref. [38], which includes also the
A = 29 decay in the average.

The results presented here for δV
ISB and |Vud| are very

consistent with the NSM results. This further increases a
confidence that the MR-DFT and DFT-NCCI models are reli-
able theoretical tools allowing to assess quantitatively diverse
isospin-symmetry-breaking phenomena in atomic nuclei from
MDEs and TDEs in nuclear binding energies, as shown in
Refs. [21,22], through mirror energy displacements (MEDs)
versus angular momentum calculated recently in Refs. [39,40]
to a very subtle pseudo-observables such as isospin im-
purities and corrections to Fermi decays as shown here
and in Refs. [9,10]. The results of MR-DFT or DFT-NCCI
calculations for these isospin-sensitive observables are com-
parable or, sometimes, only slightly worse as compared to the
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results of fine-tuned state-of-the-art NSM communicated in
Refs. [2,13,41] and references quoted therein. This, in turn,
seems to create new opportunities for comparative studies of
the NSM and DFT-rooted models, which can possibly shed
new light on the role of different sources of isospin symmetry
breaking and resolve certain ad hoc assumptions present in
both models. Such studies, however, are beyond the scope of
this work and are planned to be undertaken in the future.
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