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There has been much work in recent years pertaining to viability studies for the intranuclear observation of
neutron-antineutron transformations. These studies begin first with the design and implementation of an event
generator for the simulation of this rare process, where one hopes to retain as much of the underlying nuclear
physics as possible in the initial state, and then studying how these effects may perturb the final-state observable
particles for detector efficiency studies following simulated reconstruction. There have been several searches
for intranuclear neutron-antineutron transformations, primarily utilizing the 16

8 O nucleus, and completed within
large underground water Cherenkov detectors such as Super-Kamiokande. The latest iteration of a generator is
presented here for use in such an experiment. This generator includes several new features, including a new radial
(position) annihilation probability distribution and related intranuclear suppression factor for 16

8 O, as well as a
highly general, modern nuclear multifragmentation model with photonic de-excitations. The latter of these may
allow for improved identification of the signal using large underground detectors such as Super-Kamiokande
and the future Hyper-Kamiokande, potentially increasing the overall signal efficiencies of these rare searches.
However, it should be noted that certain fast photonic de-excitations may be washed out by π0 decays to photons.
These new features implemented in these n̄ 15

8 O simulations increase the overall physical realism of the model
and are easily portable to other future searches such as to extranuclear n̄ 12

6 C for the ESS NNBAR experiment, as
well as intranuclear n̄ 39

18Ar used in DUNE.

DOI: 10.1103/PhysRevC.105.065501

I. INTRODUCTION

Baryon number (B) must be violated via the Sakharov
conditions [1] in order to explain the baryon asymmetry of
the universe. This is the case despite the fact that within
the Standard Model (SM) B is accidentally conserved [2] at
perturbative scales and is only infinitesimally violated within
nonpertubative regimes [3]. Even though it is a key beyond
Standard Model (BSM) prediction, it has yet to be observed
through the now classic |�B| = 1 proton decay [4]. Further-
more, it has been shown that many BSM theories do not
require such decays [5,6], and many actually prefer |�B| = 2
operators [7] such as those associated with dinucleon decays
and neutron-antineutron transformations (n → n̄) [8–11]. It
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may also be said that, generically, only B-L-violating pro-
cesses may contribute to the baryon abundance [7,12], as
all primordial B asymmetries originating from higher-scale
interactions are usually washed out via sphalerons; this is not
the case in models of leptogenesis [13–15].

Postsphaleron baryogenesis [10,11] provides a testable
framework through the potential observation of n → n̄, pre-
dicting both lower and. upper limits to the characteristic mean
free transformation (oscillation) time, τnn̄. Any observation of
n → n̄ by one instrument, be it in an intranuclear or extranu-
clear context, requires confirmation studies in complimentary
experiments using different techniques (such as with a free
n beam) or within different nuclei. The relation of the mean
intranuclear transformation time, τM , to τnn̄ is τM = TR τ 2

nn̄ and
requires the computation of an intranuclear suppression factor,
TR; deviations from these relations may also yield signs of new
physics [16], though of course require an initial observation
above backgrounds.

A series of recent workshops and associated reports have
served as both a nursery and a stage for much of this collective
progress and have inspired this work; for those interested,
consider Refs. [7,17–27].

The work discussed here is aimed at creating a model
for describing the n → n̄ transition’s initial position within
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the nucleus, along with its subsequent annihilation on a
constituent nucleon within 16

8 O. Such a generator is use-
ful to large underground water Cherenkov detectors such as
the Super-Kamiokande experiment. Within detectors such as
these, reconstruction of nuclear remnant de-excitation pho-
tons are in principle possible at appropriate energies, and
current searches for B-violation in Super-Kamiokande [4]
include these de-excitations within their simulations. Given
these distinctive experimental capabilities, the inclusion of
simultaneous break-up and associated γ de-excitations have
been added to this version of the model, improving on the
de-excitation simulations already implemented in previous
iterations; this also increases the overall physical realism of
the generator.

This paper is organized as follows: Section II will shortly
summarize the main features of the latest model and will
highlight some of the main contrasts between this work and
the model currently used within Super-Kamiokande [23]. In
Sec. III, a new calculation describing the transition and sub-
sequent annihilation of an n̄ in 16

8 O is considered, permitting
the computation of its associated intranuclear suppression
factor. In Sec. IV, a newly added statistical model for the de-
excitation of nuclear remnants resulting from the annihilation
is described, taking into account the emission of photons.
Section V will present some details for the simulation of
intranuclear n → n̄ in 16

8 O most useful for large underground
Cherenkov detectors such as Super-Kamiokande and the fu-
ture Hyper-Kamiokande, followed by some conclusions.

II. REVIEW OF THE MONTE CARLO MODEL

A. The current generator

Over the past several years, the core members of this work-
ing group have improved the underlying physical modeling
of both extranuclear and intranuclear n̄ annihilation following
an n → n̄ transition [19,28]. Consider now some of the main
features of this model and some important differences with the
Monte Carlo generator currently used by Super-Kamiokande
(MCSK):

(1) The initial annihilation position is taken from theoreti-
cal calculations for both extranuclear and intranuclear
annihilations; examples of this past work include ex-
tranuclear p̄ 12

6 C and n̄ 12
6 C [28] (the former of which

has been compared to available data) and for the in-
tranuclear case in n̄ 39

18Ar [19]. The calculation of the
radial dependence of the annihilation position for 16

8 O
will be presented in Sec. III. In all cases, calculations
indicate the predominately peripheral nature of the
annihilation, which affects the number of final-state in-
teractions (FSIs) for the simulation. Within the current
MCSK, and in contrast to the model discussed here,
it is assumed that the annihilation occurs with equal
probability over the entire volume of the nucleus [23].

(2) The Monte Carlo generator describes the nucleus as
a local, degenerate Fermi gas of nucleons enclosed
within a spherical potential well with a radius equal
to the nuclear radius. To take into account the diffuse
boundary of the nucleus, the nuclear density distribu-

TABLE I. Meson multiplicity comparisons for elementary pp̄ an-
nihilation using this generator [19,28] and available data sets [29,30].

p̄p Sim. p̄p Expt.

M(π ) 4.95 4.98 ± 0.35 [31], 4.94 ± 0.14 [32]
M(π±) 3.09 3.14 ± 0.28 [31], 3.05 ± 0.04 [31], 3.04 ± 0.08 [32]
M(π 0) 1.86 1.83 ± 0.21 [31], 1.93 ± 0.12 [31], 1.90 ± 0.12 [32]
M(η) 0.09 0.10 ± 0.09 [33], 0.07 ± 0.01 [31]
M(ω) 0.27 0.28 ± 0.16 [33], 0.22 ± 0.01 [34]
M(ρ+) 0.19 –
M(ρ−) 0.18 –
M(ρ0) 0.18 0.26 ± 0.01 [34]

tion is split into seven concentric zones,1 within which
the nucleon density is considered to be constant. The
momentum distribution of the nucleons in individual
zones will be the same as for a degenerate Fermi
gas, although corresponding to an ith-zone’s bound-
ary Fermi momentum value [28]. Thus, in this model,
there is a correlation between the radius and momen-
tum of intranuclear nucleons, as the Fermi boundary
energy is higher the larger the density of the nuclear
medium and so is local in character. In the MCSK, the
Fermi motion is simulated via a nonlocal spectral func-
tion sourced directly from experimental measurements
[23].

(3) The phenomena of N̄N annihilation can lead to the
creation of many particles through many possible (at
times ≈ 200) exclusive reaction channels [28]. Many
neutral particles may be present, which can make
experimental study quite difficult, and so experimen-
tal information for exclusive channels is known only
for a small fraction of possible annihilation channels.
For this reason, semiempirical tables of annihilation
channels are employed for use in the modeling of the
annihilation. These are obtained as follows: First, all
experimentally measured channels are included. Then,
by using isotopic relations, probabilities were found
for those channels which have the same configurations
but different particle charges. Finally, the predictions
of a statistical model with SU(3) symmetry produces
the remaining intermediate channels. It is considered
that channels for n̄n are identical to p̄p channels and
that annihilation channels for n̄p are charge conjugated
to p̄n channels [19,28]. The p̄p simulation results of
this model are compared with experimental data on p̄p
annihilation at rest, where Table I shows the average
multiplicity of mesons formed therein. The simulation
results are within the range of experimental uncertain-
ties. From these simulation results, it follows that more
than 35% of all pions have been formed by the decay
of heavy mesonic resonances. The decays of ω and
η mesons also act as sources of high-energy photons.

1In addition, an eighth zone at high radii beyond the periphery takes
on an an extremely low density.

065501-2



NEW MODEL OF INTRANUCLEAR NEUTRON-ANTINEUTRON … PHYSICAL REVIEW C 105, 065501 (2022)

TABLE II. A list of updated multiplicities from experimental data and the model for p̄ 12
6 C, taking into account all annihilation branching

ratios, the intranuclear antinucleon potential, and an associated nuclear medium response [19,28]. Averages are shown for 100 000 events.

M(π ) M(π+) M(π−) M(π 0) Etot (MeV) M(p) M(n)

p̄C experiment 4.57 ± 0.15 1.25 ± 0.06 1.59 ± 0.09 1.73 ± 0.10 1758 ± 59 – –
p̄C calculation 4.60 1.22 1.65 1.73 1762 0.96 1.03

In the current MCSK, a smaller (but greatly expanded
[35]) portion of these possible annihilation channels
[23] are utilized.

(4) The propagation and interaction of annihilation
mesons in the nuclear medium are simulated in great
detail within the intranuclear cascade model [28]. The
model similarly includes effects related to the influ-
ence of the nuclear environment via the introduction
of an antinucleon potential and “off-shell” masses for
both the n̄ and annihilation partner nucleon [19]. This
approach demonstrates a good description of the few
available experimental data on p̄A annihilation at rest
[28]. In Table II, the experimental multiplicities of the
emitted final-state annihilation-generated pions and
the energy carried away by those pions and photons
(from heavy resonance decays) are shown. It can be
seen that the simulation results are in good agreement
with the experimental data, which allows us to con-
clude that the proposed model as a whole correctly
describes both the annihilation process and the FSIs
of annihilation-generated mesons; thus, it is expected
that there should be small uncertainties associated with
the simulation of an intranuclear n̄ 15

8 O annihilation.
(5) During the propagation of cascade particles (mesons

and nucleons), the nucleus accumulates excitation en-
ergy. The final stage of n̄A annihilation is thus the
de-excitation of the residual nucleus. In Sec. IV, a new
implementation describing de-excitations of residual
nuclei with γ emission is presented for the first time.
A de-excitation model, taking into account gamma
emission, does currently exist within MCSK.

III. NUCLEAR EFFECTS IN 16
8 O

A. Annihilation density for 16
8 O

The formalism of intranuclear n → n̄ has been explained
in several papers [19,36–38]. Thus, we restrict ourselves here
to a brief reminder of key features of the physics at play. The
model of the 16

8 O nucleus is described in terms of an effective
and realistic shell model, tuned to describe its main properties.
Each n shell is characterized by its radial number, n, orbital
angular momentum, 	, and total angular momentum, J (after
suitable spin-orbit coupling), resulting in the radial equation

−u′′
i (r)

2 μ
+

[
	(	 + 1)

2 μ r2
+ Ui(r) − εi

]
ui(r) = 0,

ui(0) = ui(∞) = 0, (1)

where i collectively stands for the quantum numbers {n, 	, J},
and μ is the reduced mass of the neutrons with respect to the
rest of the nucleus. A small n̄ component, vi(r), is attached to

each n shell, which, to the first nonvanishing order, is given by
the inhomogoneous equation

−v′′
i (r)

2 μ
+

[
	(	 + 1)

2 μ r2
+ V (r) − εi

]
vi(r) = γ ui(r),

vi(0) = vi(∞) = 0. (2)

Once the n̄ radial wave function vi is calculated, its contribu-
tion �i to the width is given by

−�i

2
=

∫ ∞

0
|vi(r)|2 Im V dr = γ

∫ ∞

0
ui(r) Im vi(r) dr.

(3)
The inputs considered here for the calculation of the radial

annihilation probability distribution are the n wave func-
tions ui(r), given by the effective shell model [39,40], the
corresponding shell energies εi, and the complex antineutron-
nucleus potential V . The strength δ of the transition is δ =
1/τnn̄ (which is unknown), and the potential V is determined
by a fit to data on antiprotonic atoms and antiproton-nucleus
scattering; for a review and references, see, e.g., Ref. [41].

In the present calculation, a simple form for the optical
potential V has been adopted, where

V (r) = −4π

μ
ρ(r) b, (4)

where ρ(r) is the local nuclear density calculated by the radial
functions ui(r) and their analogs for protons and b is an
effective scattering length taken as b = 1.3 + i 1.9 fm [38].

The most remarkable property of Eq. (3) is its stability
with respect to changes in the n̄ potential; Fig. 1 shows how
the width varies in a simple model when the real (xr) and
imaginary (xi) parts of the n̄ potential V are varied, namely
V → [xr Re(V ) + i xi Im(V )], where xi,r are continuous fac-
tors representing a percentile change.

Another concern is the use of antiproton-nucleus data to
determine the n̄ interaction, U . The optical potential V re-
sults from folding the antinucleon-nucleon (N̄N) amplitude
M with the distribution of the nucleons within the nucleus.
However, it is known that M is weakly isospin dependent,
as shown by the smallness of the charge-exchange cross sec-
tion p̄p → n̄n which is governed by MI=0 − MI=1.

The most comforting observation is that the n → n̄ and
the subsequent n̄N annihilation occurs at the surface of the
nucleus, precisely the same region probed by antiprotonic
atoms and antinucleon scattering experiments. An illustration
is given in Fig. 2 for the case of the 1P1/2 shell for 16

8 O.
The n̄, generated à la Eq. (3), is clearly seen to be outside
the n distribution. However, the n̄ requires some partner to
annihilate with, and so as a compromise the annihilation takes
place at the surface.
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FIG. 1. The change in the width �r for a simple model when the
real part of the antineutron-nucleus potential is modified by a factor
xr and its imaginary part by xi.

Altogether, from these and past studies [19,38], the nuclear
part of the calculation is viewed to be rather safe.

B. Comparisons of intranuclear suppression factors for 16
8 O

From the above formalism, one obtains a suppression
factor (averaged over all neutrons) of TR = 0.65 × 1023 s−1,
which is comparable with the estimates 0.65 × 1023 s−1 dis-
cussed in Ref. [38] and 0.8 × 1023 s−1 in the early calculation
by Dover et al. [37]. Adopting the second model of that latter
reference,

V = − UR + i UI

1 + exp[(r − R)/a)]
, (5)

with UR = 107 MeV, UI = 222 MeV, R = 2.388 fm, and
a = 0.523 fm, one arrives at exactly the same TR = 0.65 ×
1023 s−1. This implies that the small discrepancy with respect
to Ref. [37] comes here from a choice of better n wave
functions.

FIG. 2. Radial density distributions for the 1P1/2 shell of 16
8 O: n,

n̄, and annihilation. The units are arbitrary for the vertical axis. The
full annihilation density shown in dashed black is the same as will be
shown later in Fig. 5.

Note that the effective scattering length used in Ref. [38]
has been adopted; however, in this work, a finite range is
introduced for the folding with the nuclear density. It has been
checked that, indeed, increasing the size of the optical poten-
tial somewhat reduces the suppression factor TR. Moreover,
it has been checked that the antinucleon wave functions and
the radial annihilation distribution, such as the one shown in
Fig. 2, are very similar to the ones displayed by Friedman and
Gal [38].

IV. STATISTICAL DESCRIPTION OF NUCLEAR
DISINTEGRATION

Statistical approaches have proven very successful for de-
scribing the evolution of excited nuclei. According to the
statistical hypothesis, any initial dynamical interactions be-
tween nucleons lead to a redistribution of the available energy
among many degrees of freedom, and the nuclear system
evolves toward equilibrium. The most famous example of
such an equilibrated nuclear system is the “compound nu-
cleus” introduced by Niels Bohr in 1936 [42]. However, as
was more recently established, the further evolution of thermal
nuclear systems depend crucially on their excitation energy
and mass number. The standard compound nucleus picture
is valid only at low excitation energies and for large nuclei
when sequential evaporation of light particles and fission are
the dominant decay channels [43–45]. The concept of the
compound nucleus cannot be applied at high excitation en-
ergies, E∗ � 3 MeV per nucleon, the reason being that time
intervals between subsequent fragment emissions can become
very short at ≈ 10 fm/c ≈3.3 × 10−23 s. In this case there
will not be enough time for the residual nucleus to reach
equilibrium between subsequent emissions. Moreover, the nu-
clear fragments produced will be in the vicinity of each other
and, therefore, should interact together strongly. Thus, the
rates of particle emission generally calculated for an isolated
compound nucleus will not be reliable in this situation.

There are many other theoretical and experimental argu-
ments in favor of a simultaneous break-up at high excitation
energy for light excited nuclei [43,44]. Since after an intranu-
clear n̄N annihilation one can expect a spectrum of excitation
energies from low to very high energies, the de-excitation
code used here it taken to be the statistical multifragmentation
model (SMM), mainly described in review [43]. This model
includes all de-excitation processes which can be present in
such excited nuclei: the multifragmentation of larger nuclei
at high energies, their evaporation and fission at low ener-
gies, and the simultaneous break-up of light excited nuclei
(so-called Fermi-break-up). All these processes are properly
connected and self-consistent within the code. The code has
demonstrated a very good description of various experimental
data [43,46–52].

At high excitation energies, the SMM assumes statistical
equilibrium of the nuclear system with mass number A0,
charge Z0, and excitation energy E0 within a low-density
freeze-out volume. This volume can be parameterized as
V = V0 + Vf , so the baryon density is ρ = A0/V ; here V0

is the volume of the system at a normal nuclear density
ρ0 ≈ 0.15 fm−3, and Vf is the so-called free volume available
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for any translational motion of nuclear fragments. In the ex-
cluded volume approximation, Vf may be taken as a constant
for all break-up channels; however, under more realistic as-
sumptions, it is known to depend on the nuclear fragment
multiplicity, M, within each of the channels [43]. The model
considers all break-up channels (an ensemble of partitions
{p}) composed of nucleons and excited fragments, all tak-
ing into account the conservation of baryon number, electric
charge, and energy. An important advantage of the SMM is
that besides its many multifragment break-up channels, it also
includes compound nucleus decay channels and accounts for
the rate competition between all these channels.

For the freeze-out volume, light nuclei with mass numbers
A � 4 and charges Z � 2 are treated as elementary stable
particles with masses and spins taken from the nuclear tables
(a “nuclear gas”). Only the translational degrees of freedom of
these particles contribute to the entropy of the system. Frag-
ments with A > 4 are treated as heated nuclear liquid drops;
in this way, one may study the coexistence of both nuclear
liquid-gas phases in the freeze-out volume. Their individual
free energies FAZ are parameterized as a sum of the bulk,
surface, Coulomb, and symmetry energy contributions:

FAZ = F B
AZ + F S

AZ + EC
AZ + E sym

AZ . (6)

The standard expressions for these terms are F B
AZ =

(−W0 − T 2/ε0)A, where T is the temperature, the param-
eter ε0 is related to the level density, and W0 = 16 MeV
is the binding energy of infinite nuclear matter; F S

AZ =
B0A2/3(T 2

c − T 2)5/4(T 2
c + T 2)−5/4, where B0 = 18 MeV is

the surface coefficient and Tc = 18 MeV is the critical tem-
perature of infinite nuclear matter; EC

AZ = cZ2/A1/3, where
c = (3/5)(e2/r0)(1 − (ρ/ρ0)1/3) is the Coulomb parameter
(obtained in the Wigner-Seitz approximation) [43], with
the charge unit e and r0 = 1.17 fm; E sym

AZ = γ (A − 2Z )2/A,
where γ = 25 MeV is the symmetry energy parameter. These
parameters are those of the Bethe-Weizsäcker formula, corre-
sponding to the assumption of isolated fragments with normal
density in the freeze-out configuration; such an assumption
has been found to be quite successful in many applications
[43]. It is to be expected, however, that in a more realistic
treatment one must expand this description, whereby primary
nuclear fragments will have to be considered not only ex-
cited but also subject to a nuclear interaction between them.
These effects can be accounted for in the fragment free en-
ergies by changing the corresponding liquid-drop parameters.
The Coulomb interaction of fragments in the freeze-out vol-
ume is described within the Wigner-Seitz approximation; see
Ref. [43] for details.

As is well known, the number of partitions of medium
and heavy systems (A0 ≈ 100) is enormous [43]. In order to
take these into account, the SMM uses a few prescriptions.
At small excitation energies, the standard SMM code [43]
uses a microcanonical treatment, though taking into account a
limited number of disintegration channels: As a rule, only par-
titions with total fragment multiplicity M � 3 are considered.
This is a very convenient approximation at low temperature,
wherein the compound nucleus and low-multiplicity channels
dominate, permitting a smooth transition into these chan-
nels. Recently, a full microcanonical version of the SMM

using a Markov-chain Monte Carlo method was introduced
[53]. Thus, it can be used for exploring all partitions without
limitation.

Within the microcanonical ensemble, the statistical weight
of a partition p is calculated as

Wp ∝ eSp, (7)

where Sp is the corresponding entropy; this further depends on
fragments in this partition, as well as on the excitation energy
E0, mass number A0, charge Z0, and volume V of the residual
nuclear system. In the standard treatment, a description which
corresponds to an approximate microcanonical ensemble is
followed; namely, a temperature Tp characterising all final
states in each partition p is introduced. This is determined
from the energy balance equation taking into account the
total excitation energy E0 [43]. In the following, Sp for the
calculated Tp is determined by using conventional thermody-
namical relations [43]. In the standard case, it can be written
as

Sp = ln

(∏
A,Z

gA,Z

)
+ ln

(∏
A,Z

A3/2

)
− ln

(
A3/2

0

)

− ln

(∏
A,Z

nA,Z !

)
+ (M − 1) ln

(
Vf

λ3
Tp

)

+ 1.5(M − 1) +
∑
A,Z

[
2TpA

ε0
− ∂F S

AZ (Tp)

∂Tp

]
, (8)

where nA,Z as the number of fragments with mass A and
charge Z in the partition, gA,Z = (2sA,Z + 1) is the spin degen-
eracy factor, λTp = (2π h̄2/mN Tp)1/2 is the nucleon thermal
wavelength (mN ≈ 939 MeV is the average nucleon mass),
and the summation is performed over all fragments of the
partition p. One may enumerate all considered partitions and
select one of them according to its statistical weight by the
Monte Carlo method.

At very high excitation energy, the standard SMM code
makes a transition to the grand-canonical ensemble [43] since
the number of partitions with high probability becomes too
large. In the grand-canonical formulation, after integrating
out translational degrees of freedom, one can write the mean
multiplicity of nuclear fragments with A and Z as

〈nA,Z〉 = gA,ZVf A3/2

λ3
T

e−(FAZ (T,V )−μA−νZ )/T . (9)

Here the temperature T can be found from the total energy
balance of the system by taking into account all possible
fragments with A from 1 to A0, and with Z from 0 to Z0 [43].
The chemical potentials μ and ν are found from the mass and
charge constraints:∑

A,Z

〈nA,Z〉A = A0,
∑
A,Z

〈nA,Z〉Z = Z0. (10)

In this case, the grand-canonical occupations 〈nA,Z〉 are
used for Monte Carlo sampling of the fragment partitions
[43]. These two methods of partition generation are carefully
adjusted to provide a proper transition from the low energy to
the high energy regimes [43].
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After the Monte Carlo generation of a partition, the tem-
perature, excitation energy, and momenta can be found for
“hot” fragments from the energy balance equation. In this
approach, the temperature may slightly fluctuate from parti-
tion to partition since the total energy of the system E0 is
always conserved. At the next stage, Coulomb acceleration
and propagation of the nuclear fragments must be taken into
account. For this purpose, the fragments are placed randomly
across the freeze-out volume V (without overlapping), and
their positions are adjusted by taking into account that their
Coulomb interaction energy, which must be equal to the value
calculated in the Wigner-Seitz approximation [43]. Note that,
in the case of the Markov-chain SMM version [53], this ad-
justment is not necessary since the positions of the nuclear
fragments are sampled directly. Subsequently, the method em-
ployed here resolves the Hamilton equations of motion for
all of the nuclear fragments from these initial positions in
their mutual Coulomb field. At this stage, a possible collective
flow of nuclear fragments can be also taken into account [43].
Usually this is done by adding supplementary radial velocities
to the fragments (proportional to their distances from the
center of mass) at the beginning of Coulomb acceleration. The
energy and momentum balances are strictly respected during
this dynamical propagation.

The secondary de-excitation of the primary hot fragments
(including the compound nucleus) involves several mecha-
nisms. For light primary nuclear fragments (with A � 16),
even a relatively small excitation energy can be comparable
to the fragments’ total binding energies. In this case, it is
assumed that the principal mechanism of de-excitation is an
explosive decay of the excited nucleus into several smaller nu-
clei (the Fermi break-up) [43,54]. In this decay, the statistical
weight of the channel p containing n particles with masses mi

(where i = 1, . . . , n) in a volume Vp can be calculated in the
microcanonical approximation as:

��p ∝ S

G

[
Vp

(2π h̄)3

]n−1(∏n
i=1 mi

m0

)3/2

× (2π )
3
2 (n−1)

�[ 3
2 (n − 1)]

(
Ekin − UC

p

) 3
2 n− 5

2 , (11)

where m0 = ∑n
i=1 mi is the mass of the decaying nucleus,

S = ∏n
i=1(2si + 1) is the degeneracy factor (si is the ith parti-

cle spin), G = ∏k
j=1 n j! is the particle identity factor (n j is

the number of particles of kind j), Ekin is the total kinetic
energy of particles at infinity (which can be found through the
energy balance by taking into account the fragment excitation
energy), and UC

p is the Coulomb barrier for the decay. Slight
modifications to this model have been made by including
nuclear fragment excited states which may remain stable with
respect to any nucleon emission but which instead can decay
via γ emission afterwards. Also, some long-lived unstable
nuclei (like 5He, 5Li, 8Be, 9B) are included, which decay later.

The successive particle emission from the primary hot
fragments with A > 16 is assumed to be the fundamental de-
excitation mechanism, as in the case of a compound nucleus’
decay. Due to the high excitation energy of these fragments,
the standard Weisskopf evaporation scheme [43] was modified

to take into account any heavier ejectiles up to 18O (besides
light particles such as nucleons, d , t , α) in ground and particle-
stable excited states [54]. The decay width for the emission of
a particle j from the compound nucleus (A, Z ) is given by:

� j =
n∑

i=1

∫ E∗
AZ −Bj−ε

(i)
j

0

μ jg
(i)
j

π2h̄3 σ j (E )
ρA′Z ′ (E∗

AZ − Bj − E )

ρAZ (E∗
AZ )

EdE .

(12)
Here the sum is taken over all ground and particle-stable

excited states ε
(i)
j (i = 0, 1, . . . , n) of the nuclear fragment

j, g(i)
j = (2s(i)

j + 1) is the spin degeneracy factor of the ith
excited state, μ j and Bj correspond to the reduced mass and
separation energy, E∗

AZ is the excitation energy of the initial
nucleus, E is the kinetic energy of an emitted particle in the
center-of-mass frame, ρAZ and ρA′Z ′ are the level densities of
the initial (A, Z ) and final (A′, Z ′) compound remnant nu-
clei, and σ j (E ) is the cross section of the inverse reaction
(A′, Z ′) + j = (A, Z ) calculated using the optical model with
a nucleus-nucleus potential [54]. The evaporation process was
simulated via the Markov-chain Monte Carlo method, and the
conservation of energy and momentum is strictly controlled in
each emission step.

At very low excitations when a nucleon emission is not
possible, emission of photons is permitted. The decay width
for the evaporation of γ quanta from the excited remnant
nuclei is taken in the statistical approximation as:

�γ =
∫ E∗

AZ

0

E2

π2c2 h̄2 σγ (E )
ρAZ (E∗

AZ − E )

ρAZ (E∗
AZ )

dE . (13)

This integration is performed numerically, and a dipole
approximation for the photo-absorption cross section is used:

σγ (E ) = σ0E2�2
R(

E2 − E2
R

)2 + �2
RE2

. (14)

Here E is the γ energy, and the empirical parameters of
the giant dipole resonance take values σ0 = 2.5A mb, �R =
0.3ER, and ER = 40.3/A0.2 MeV.

An important channel for the de-excitation of heavy nu-
clei (A > 100) is fission. This process competes with particle
emission, and it is also simulated within this Monte Carlo
method. Following the Bohr-Wheeler statistical approach
[43], the partial width for a compound nucleus’ fission is
assumed to be proportional to the level density at the saddle
point ρsp(E ):

� f = 1

2πρAZ (E∗
AZ )

∫ E∗
AZ −B f

0
ρsp(E∗

AZ − B f − E )dE , (15)

where B f is the height of the fission barrier determined from
the Myers-Swiatecki prescription [43]. For an approximation
of ρsp, the results of an extensive analysis of nuclear fissility
and �n/� f branching ratios have been used [43,46–52]. Other
important details of the code one can find in Refs. [43,45].

Before connecting the SMM into simulations of n̄N an-
nihilation, all these models for de-excitation were rigorously
tested by numerical comparisons to experimental data on de-
cays of compound nuclei with excitation energies less than
2-3 MeV per nucleon. It is important that after all stages
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FIG. 3. A correlation plot showing all intranuclear n → n̄ de-
rived remnant nuclei with A � 1 following the breakup of the 16

8 O
nucleus. On average, when ignoring evaporative particles with A <

2, there are roughly two residual nuclei per annihilation event.
Lack of A = 5 nuclei is due to fast decays via strong interactions,
and so do not produce photons; examples include 5He → 4He +n,
5Li → 4He +p, and 8Be → 4He + 4He. Shown for 500 000 gener-
ated events; note that some statistical fluctuations occur and populate
rare states, for instance at (A, Z ) = {(11, 8), (13, 9)}.

the SMM provides event-by-event simulation for the whole
break-up process and allows for direct comparison with ex-
perimental events. Furthermore, like the parent intranuclear
n̄N simulation, this code is modular and generic, allowing for
many future isotopes to be studied.

The abundant production of many nuclei in ground and ex-
cited states can be used for potentially improved identification
of an intranuclear n → n̄ event; some of these can be seen in
Fig. 3. The subsequent decays of nuclear remnants provide
photons with different energies and different decay times and
can be in principle recognized with the advanced experimental
methods. As an example, some population within the the high,
narrow peaks shown in Fig. 4 at γ energies of 0.43 and
0.47 MeV correspond to the first excited levels of 7Be and
7Li nuclei, each expected with the very short decay times of
133 and 77 fs, respectively.2

2Note as well that, as seen from the chart of Fig. 3, many nuclei
in the ground state can decay as well; for example, 11C under-
goes a positron emission decay, emitting a positron, and travels a
short distance before colliding with an electron within the detector
medium, producing a pair of gamma rays simultaneously in nearly
opposite directions with an energy of 511 keV each. This half-life is
around 20 minutes. Another nucleus in the ground state, 7Be, will
decay via the electron capture with a half-life of around 53 days.
All these processes provide an additional possibility for studying the
phenomenon. These timescales are not necessarily useful for large
underground liquid detectors due to fluid circulation and purification,
but similar predictions for other nuclei could be useful within solid-
state detectors as a confirmation of future activity at a potential vertex
position of a candidate event.

FIG. 4. The single emission de-excitation photon spectrum of
remnant nuclei (with A � 2) arising from the nuclear decay and
evaporative processes following intranuclear n → n̄ in 16

8 O, shown
in linear and logarithmic scales (labeled with some predominant
nuclear isotopes for clarity). There do exist simulated events where
� 2 photons are emitted, though these are produced exceedingly
rarely and are not included here for simplicity. Shown for 500 000
generated events.

V. GENERATOR VALIDATION

Here some main features of the intranuclear n̄ 15
8 O annihi-

lation simulation are discussed and presented. Consider again
Fig. 2 and its new cousin Fig. 5, where the radial distribution
of nuclear density and of annihilation probability for different
variants of the simulation are presented. It is seen that the
radial annihilation probability is different for various gener-
ator assumptions and is dependent on the value (depth) of
n̄ potential [19,55], a free parameter of the model. Figure 5
shows a solid blue histogram of the radial distribution of the
relative nuclear density for the oxygen nucleus used in the
model alongside three variants of radial annihilation prob-
ability distributions in arbitrary units. In orange, a modern
quantum mechanical formalism [19] is employed as discussed
in Sec. III, and the distribution is calculated for a well depth
value of Vn̄(r = 0) = −140 MeV for the attractive antinu-
cleon potential. In purple a curve is shown simulating the
same value of Vn̄(r = 0) = −140 MeV, but the annihilation
probability follows directly from the nuclear density, i.e., the
quantum mechanical dynamics are not taken into account;
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FIG. 5. The radial annihilation probability distribution is shown
for 16

8 O using several models of the n̄ potential well depth, including
Vn̄(r = 0) = −140 MeV (orange), Vn̄ = −210 MeV (gray), and an
annihilation distribution derived from the nuclear density (purple).
Each of these are compared to the fitted, eight-zoned nuclear density
distribution of 16

8 O in solid blue; see Ref. [19] for a discussion. All
plots use an arbitrary vertical axis.

without the antinucleon potential, this is somewhat similar
to MCSK. In gray, the distribution shown is calculated for
a value of Vn̄(0) = −210 MeV using the same modern for-
malism. It follows from these curves that the annihilation
preferentially occurs within the diffuse peripheral layers of the
nucleus, largely independent of these parameters. Importantly,
though, it is seen that a higher n̄ potential shifts the annihila-
tion distribution further outside the nucleus. This is somewhat
counterintuitive but has an interesting explanation: If one has
a weakly attractive potential, then increasing its strength will
gradually pull the wave function of a given particle inside.
However, if one maintains a very strong absorptive potential,
then it repels the wave function. This is obvious for a strong
repulsion; however, for a strong attraction, it creates nodes
in the low-energy solution and is effectively equivalent to a
repulsion. Thus, this can actually force the n̄ further out of the
nucleus. This point is a critical one, especially in understand-
ing how annihilation generated pions might avoid final-state
interactions.

With this in mind, now consider the histograms of Fig. 6.
Within this model of the nucleus, the momentum distribution
of the nucleons within individual concentric nuclear zones are
the same as for a degenerate Fermi gas; thus, the probability
of a nucleon taking on a momentum p in the ith zone depends
from its boundary Fermi momentum, which in turn depends
on the local nuclear density. The nucleons located in the cen-
tral zone of the nucleus have the maximum value of boundary
Fermi momenta, pFN , and generate the high-momentum part
of the spectrum. Conversely, the nucleons located within the
peripheral zone of the nucleus take on momenta of ≈ 40–
100 MeV/c; the most diffuse zone (beyond the periphery)
occupies even lower initial values [28]. Of course, the larger
the annihilation probability within any particular concentric
zone, the greater the contribution to the final-state pions’ mo-

FIG. 6. The initial momenta of intranuclear (anti)nucleons are
shown for 500 000 generated events for an assumed n̄ potential of
Vn̄(r = 0) = −140 MeV (orange in Fig. 5). Vn̄ affects the annihila-
tion probability distribution (Fig. 5) and is clearly visible from the
larger Fermi momentum of the n̄. The peaks throughout each nu-
cleon momentum distribution are caused by the concentrically zoned
structure of the nucleus, each with their own Fermi momentum; this
structure becomes somewhat smeared out in the n̄ case due to the
presence of the extra antinucleon potential.

mentum spectra from the (anti)nucleons participating in the
annihilation. Thus, in this model, there is a local correlation
of the momentum with nuclear density and, respectively, with
the radius (for details, see Ref. [28]). The green and red
histograms of Fig. 6 show the momentum distributions of the
nucleons which are the annihilation partners within 15

8 O. The
initial intranuclear momentum distribution for the n̄ species
following its transition (yet before the annihilation) is also
presented in blue in Fig. 6. Because of the introduction of
an antinucleon potential and an associated off-shell mass for
the n̄, this distribution extends to higher momenta of ≈ 500
MeV/c [19]. Note that the histograms plotted here are con-
sidered for the annihilation density distribution derived from
a potential well depth of Vn̄(r = 0) = −140, as seen in the
orange curve of Fig. 5. Now consider the total energy available
to the annihilation as presented in Fig. 7. The plot shows that
the total annihilation energy limit is independent of the depth
of the antinucleon potential used and are indeed identical,
as it must be from the energy conservation law En̄ = En for
any potential well depth following the n → n̄ transition. The
average values of the total annihilation energy are close for all
calculation options (from 1.851 to 1.857 GeV), however, the
shape of the distributions differ from one assumption for the
antinucleon potential to another, due to how the n̄N annihila-
tion pair populations differ across various the nuclear radius
(see again Fig. 5). From this, it can be interpreted that the more
attractive the potential and peripheral the annihilation process
is, the larger the proportion of events with high energy values,
independent of final-state interactions.

Now consider the total vector momentum and invariant
mass distributions of the mesonic annihilation products at
the annihilation point and after leaving the nucleus following
FSIs. The top left plot of Figs. 8 shows the n̄N annihi-
lation pair momentum distributions for all variants of the
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FIG. 7. The initial total annihilation energy of the n̄N pair
and resulting annihilation-generated mesons within the nucleus are
shown for several models of the n̄ potential [19] and associated
radial annihilation probability distribution (see again Fig. 5), includ-
ing the modern annihilation densities with Vn̄(r = 0) = −140 MeV
(orange), Vn̄ = −210 MeV (gray), and an annihilation distribution
derived from the nuclear density (purple); note that the model derived
from the nuclear density also assumes Vn̄(r = 0) = −140 MeV.
Each is shown for 500 000 generated events.

antinucleon potential and associated annihilation probability
distributions available to the simulation, just as presented in
Fig. 5; by conservation, this is exactly the initial total vector
momentum distribution of all annihilation-generated mesons
at the annihilation point, before FSIs. These distributions are
simply the vector sum of n̄ and N species (see again Fig. 6),
and their high momentum tail depends on the potential Vn̄(r =
0) depth. One might think that the greater the depth of the
antinucleon potential, the greater the mass defect of the antin-
ucleon, and thus the greater the momentum the annihilating
pair can attain within the nucleus. However, as can be seen,
this is not necessarily the case once the antinucleon potential
grows to larger values, which actually leads to more peripheral
annihilations and thus shifts to a lower total initial vector mo-
mentum. The bottom left plot of Figs. 8 shows the distribution
of the total invariant mass of annihilation products before FSIs
for all simulation variants. At the initial annihilation stage, the
result significantly depends on the annihilation radius, which,
as discussed, is itself a function of the simulation parameters
(Fig. 5). For example, the deeper the antinucleon potential,
the further annihilation occurs at the periphery of the nucleus,
and so one should expect more events with greater invariant
mass. Thus, Fig. 7 and the left Figs. 8 collectively demonstrate
how the initial energy, momentum and invariant mass of the
annihilation depend on the potential, a free parameter of the
model. At the same time, when the dynamics of the annihi-
lation process and associated modifications connected to the
nuclear medium are taken into account in these simulations
[19], the shape of the spectra changes significantly. In this
way, an important distinguishing feature of this work is the
maintenance of correlation between the values of momentum
and invariant mass with the annihilation radius.

Further, consider now how FSIs affect the expected distri-
butions of observable momentum and invariant mass. It can

be seen from the right plots of Figs. 8 that FSI, even with the
pronounced peripheral character of annihilation, significantly
reduces the differences between the simulation options in all
but the highest invariant mass region. This is due to the relative
isotropy of the nuclear medium, wherein a large proportion
of the particles emanating from the annihilation generated
meson “stars” are still forced to move through the nucleus and
undergo rescattering and absorption.

A visual demonstration of the n̄ and the n̄N annihilation
pair’s total momentum correlation with the annihilation ra-
dius is presented in Figs. 9 for the variant of the calculation
with Vn̄(r = 0) = −140 MeV because from our point of view,
the most reasonable value of the potential is Vn̄(r = 0) =
−140 MeV; thus, all following figures are presented for cal-
culations utilizing this option. (see again Fig. 5).

Furthermore, in Figs. 10, we see a parameter space show-
ing the invariant mass of annihilation-generated mesons in
the initial and final state as a function of annihilation radius.
Critically, it is seen that a large proportion of the events
are peripheral in character; more importantly, this is seen to
drastically increase the predicted invariant mass in the final
state (bottom). In contrast to the assumption of a uniform
annihilation probability across the whole nucleus, due to the
lessened FSIs, this simulation predicts a greater potential sig-
nal observation viability.

The final state, constructed following intranuclear transport
of annihilation-generated pions and photons generated from
heavy mesons decays as well as the de-excitation of all nu-
clear remnants, can also be investigated via iteration over the
available model configurations. Figures 8 show the effect of
increases in the antinucleon potential, where when combined
with peripheral annihilation allow for a higher reconstructed
invariant mass and similarly lower total vector momentum.
Note that the invariant mass can decrease due to loss of parti-
cle, while this can thus increase (cause greater imbalance) to
the total vector momentum. Though some of these differences
appear marginal in one dimension, the local correlations of
these variables together can greatly affect the observability of
the signal.

The mesonic parameter space (total momentum vs. total
invariant mass of annihilation-generated mesons) is infor-
mative of the initial annihilation dynamics and the effects
of final-state interactions on the signal, and is presented in
Figs. 11. In the top plot of Figs. 11, the initial condition of the
annihilation generated mesons is shown before intranuclear
transport; here, the invariant mass decreases due to of-shell
mass defects in correlation with radial position. The bottom
plot of Figs. 11 shows the same parameter space, though now
after the mesons’ intranuclear propagation and fast decays
of ρ, ω, and η mesons. Note that this model includes pho-
tons in the final state from η and ω resonance decays. The
disconnected regions toward the left of the plots are signs
of single pion emission after at least one or more meson
absorptions.

In Figs. 12 the pions’ (top), resonance decay photons’
(middle), and final-state nucleons’ (bottom) momentum spec-
tra are shown. Note here that the decay photons arise primarily
via processes such as η → 2γ with a branching fraction of
39.3%, η → π+π−γ at 4.9%, and ω → π0γ at 8.7% [28].
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FIG. 8. Top left: The initial total vector momentum of annihilation generated mesons is shown; by conservation, these distributions are
equivalent for the initial annihilation pair. Top right: The final-state total vector momentum of subsequent pions and photons is shown following
heavy mesonic resonance decays and the intranuclear cascade. Bottom left: The initial total invariant mass of annihilation generated mesons is
shown, where strengths of the expected peaks around ≈ 1.9 GeV critically depend on the strength of the antinucleon potential. Bottom right:
The final-state total invariant mass of subsequent pions and photons is shown following heavy mesonic resonance decays and the intranuclear
cascade; due to rescattering and absorptive processes, many events move toward a lower valued tail. The hierarchy of peaks among the models
remains, owing to the their progressively peripheral annihilations and thus avoidance of FSIs. All plots shown include the modern annihilation
densities with Vn̄(r = 0) = −140 MeV (orange), Vn̄ = −210 MeV (gray), and an annihilation distribution derived from the nuclear density
(purple); note that the model derived from the nuclear density also assumes Vn̄(r = 0) = −140 MeV. Each is shown for 500 000 generated
events.

All of these plots are well summarized in Table III, which
shows the average multiplicities of pions, photons, and nu-
cleons emitted by the oxygen nucleus as a result of the n →
n̄ intranuclear transition. It can be seen that the closer the
annihilation occurs to the center of the nucleus, the more
significant the role FSIs play via the absorption of pions and,
accordingly, the smaller the number of pions which exit the
nucleus; correspondingly, this creates a higher number of nu-

cleon knock-outs. The similar multiplicity of heavy-resonance
decay photons across the model configurations is due to
limited rescattering of these short-lived species and lack of
photon absorption processes within the intranuclear cascade.
A progressively decreasing de-excitation photon multiplicity
is observed as the annihilation position becomes more inte-
rior; this is due to the increasingly violent breakup of the
nucleus, reducing the overall number of potential nuclear rem-

TABLE III. A list of final-state particle multiplicities from three versions of the model for intranuclear n̄ 15
8 O, taking into account all

annihilation branching ratios, the intranuclear antinucleon potential, and an associated nuclear medium response [19,28]. Based on simulations
of 500 000 events with different intranuclear antinucleon potential depths. Nucleon multiplicities include evaporative processes.

Simulation M(π ) M(π+) M(π−) M(π 0) M(γ res.
dec. ) M(γ nuc.

rem. ) M(p) M(n)

n̄ 15
8 O w/ Vn̄ = |210| MeV 4.37 1.56 1.12 1.68 0.08 0.34 2.14 1.44

n̄ 15
8 O w/ Vn̄ = |140| MeV 4.33 1.54 1.10 1.68 0.08 0.31 2.28 1.54

n̄ 15
8 O w/nuclear density 4.23 1.49 1.07 1.67 0.07 0.27 2.59 1.78
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FIG. 9. Top: The local nature of the n̄ momentum is shown,
with little to no visible zoned structure. Bottom: The local nature
of the annihilation pair total vector momentum for intranuclear n̄p
annihilation is shown. Each is shown for 500 000 generated events
for an n̄ potential of Vn̄(r = 0) = −140 MeV.

nants with A � 2 and excitation energies conducive to photon
emission.

Each of these can have critical implications for any defini-
tive observation of an intranuclear n → n̄ event in 16

8 O. Also,
the three models presented (with different values of the in-
tranuclear n̄ potential Vn̄ [19]) can help to estimate potential
uncertainties in the event generator beyond those discussed
within Sec. II and Refs. [19,28].

VI. IMPLICATIONS

Through the above discussions, one comes to realize the
important interplay between a few key variables: the strength
of the antinucleon potential, the annihilation radius, along
with the total momentum and the total invariant mass of
initial- and final-state mesons and photons. Though the anni-
hilation potential and radius cannot be determined from what
may in the end be but a single observed event, the dependence
of the two other definitive observables on these variables is
critical. Namely, even when accounting for quantum effects
which produce a more peripheral annihilation, a stronger
antinucleon potential together yields still fewer final-state in-
teractions, thus increasing the possibility of reconstructing a

FIG. 10. Top: The initial state’s invariant mass of annihilation-
generated mesons and photons vs. radius is seen before FSIs,
showing the local effects of the (anti)nucleon potential and asso-
ciated mass defects. Bottom: The same for the final state’s truth
invariant mass of all pions and photons following FSIs, showing
the importance of taking account of both the (anti)nucleon poten-
tial and radial position of the annihilation to avoid excessive FSIs.
Each is shown for 500 000 generated events for an n̄ potential of
Vn̄(r = 0) = −140 MeV.

pionic-photonic system with higher invariant mass and lower
total vector momentum; this makes the observation of an
n → n̄ event more probable in that it is likely to occur within
a more localized (and arguably more reconstruction-stable)
part of the mesonic parameter space. Ignoring these impor-
tant correlations can thus act to limit the final experimental
lower limit sensitivities one extrapolates from current mea-
surements, even when overcome by irreducible atmospheric
neutrino backgrounds. The qualia of these observables be-
come still more important as the field adopts more automated
techniques, such as with machine learning [55–57].

VII. FUTURE WORK

This set of improvements to the underlying antineutron-
annihilation model can be applied to other nuclei, including
for nuclei relevant for the Deep Underground Neutrino
Experiment (40Ar) and the European Spallation Source’s
HIBEAM/NNBAR program (12C). The addition of de-
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FIG. 11. The initial- and final-state mesonic parameter space is
shown for all mesons and photons generated from the annihilation.
Top: Decrease of invariant mass is due to the off-shell nature of the
annihilating (anti)nucleons. Bottom: Final-state interactions cause
the rescattering of and losses of mesons, generating a less constrained
parameter space. Each is shown for 500 000 generated events for an
n̄ potential of Vn̄(r = 0) = −140 MeV.

excitation photons to this model add extra potentially
observable qualities to the expected signal, possibly cutting
background still further. Secondarily, given the modularity of
the new final-state interactions code, it may be possible to
apply such computational techniques other types of interac-
tions via their generated initial-state four-momenta, allowing
for more consistent comparisons between various signals and
backgrounds, such as atmospheric neutrinos and cosmogenic
muons. There is interest in extending this work toward mod-
eling of proton decay inside a nucleus.

VIII. CONCLUSIONS

A new set of simulations of intranuclear n̄ annihilation
within the 16

8 O nucleus have been completed with the addition
of a modern statistical nuclear disintegration model capa-
ble of predicting the de-excitation photon spectra of nuclear
remnants. While the addition of these de-excitation photons
and nuclear remnants to the model make it more physically
complete and in principle create still more handles to discrim-

FIG. 12. Top: Momentum spectra for all final-state pion species.
Middle: Heavy mesonic resonances can arise following an n̄N anni-
hilation within the nucleus, some of which may decay into photons;
see Ref. [28] for branching fractions. These occur for only � 10%
of events. Bottom: Final-state momentum spectra for neutrons (blue)
and protons (red), shown with (solid) and without (dashed) the con-
sideration of fragmentary and evaporative processes.

inate signal from background, this will likely prove difficult
within water Cherenkov detectors given their high hadronic
thresholds and expected π0 → γ γ decays dominating the
detector. The nuclear disintegration technique is portable to
other nuclei of interest, and it is hoped that such additional
realistic outputs from the model will permit more sensitive
searches for n → n̄ transformations at current and future

065501-12



NEW MODEL OF INTRANUCLEAR NEUTRON-ANTINEUTRON … PHYSICAL REVIEW C 105, 065501 (2022)

experiments such as Super- and Hyper-Kamiokande, NNBAR
at the European Spallation Source, and the Deep Underground
Neutrino Experiment. Further, a modern quantum mechan-
ical radial n̄ annihilation probability distribution has been
calculated for the 16

8 O nucleus, predicting an associated in-
tranuclear suppression factor of TR = 0.65 × 1023 s−1, in line
with past estimates. This annihilation probability distribution
has been integrated into the intranuclear annihilation simula-
tion framework, allowing for prediction of novel final states
of annihilation-generated pions. Critical among the findings
of this work is the important interplay of the initial annihi-
lation position within the nucleus depending on the strength
of the antinucleon potential, and from this the final states
pions’ observable total momentum and invariant mass. It is
likely that the peripheral character of the annihilation will
increase potential sensitivities to dinucleon decay signals, as
fewer final-state interactions occur when these correlations are

properly accounted for. Samples of 500 000 events or more are
available on request to the authors.
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