
PHYSICAL REVIEW C 105, 064910 (2022)

Transport of hard probes through glasma

Margaret E. Carrington,1,2 Alina Czajka ,3 and Stanisław Mrówczyński 3,4

1Department of Physics, Brandon University, Brandon, Manitoba, Canada R7A 6A9
2Winnipeg Institute for Theoretical Physics, Winnipeg, Manitoba, Canada R3T 2N2
3National Centre for Nuclear Research, ul. Pasteura 7, PL-02-093 Warsaw, Poland

4Institute of Physics, Jan Kochanowski University, ul. Uniwersytecka 7, PL-25-406 Kielce, Poland

(Received 7 February 2022; revised 16 May 2022; accepted 7 June 2022; published 24 June 2022)

We calculate the transverse momentum broadening q̂ and collisional energy loss dE/dx of hard probes travers-
ing an evolving glasma during the earliest phase of a relativistic heavy-ion collision. We use a Fokker-Planck
equation and apply a proper time expansion to describe the temporal evolution of the glasma. The correlators
of the chromodynamic fields that determine the Fokker-Planck collision terms, which in turn provide q̂ and
dE/dx, are computed to fifth order. Both transport coefficients are strongly dependent on time. The maximum
values they acquire before the proper time expansion breaks down are large: q̂ is of the order of a few GeV2/fm
and dE/dx ∼ 1 GeV/fm. Their precise values depend on the probe’s velocity v, the saturation momentum Qs,
and an IR regulator m that is related to the confinement scale. We study the dependence of our results on these
quantities. Different regularization procedures are analyzed and shown to produce similar results. We also discuss
the validity of the proper time expansion and the compatibility of the approximations that are inherent in the
derivation of the Fokker-Planck equation. We show that hard probes lose a comparable amount of energy when
they propagate through the short-lived glasma phase, and the long-lasting hydrodynamic phase. The conclusion
is that the glasma plays an important role in jet quenching.
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I. INTRODUCTION

Hard probes, due to their large momenta (or masses), are
produced only through hard interactions with large momen-
tum transfer at the earliest phase of a heavy-ion collision at
the Relativistic Heavy Ion Collider (RHIC) and the Large
Hadron Collider (LHC). The production mechanisms of heavy
quarks and high pT partons are thus described by perturbative
QCD. These particles propagate through the evolving medium
probing QCD matter at different energy scales and different
phases of the evolution of the system. During this propagation
heavy quarks and high-pT partons lose a substantial fraction
of their initial energy. Parton energy loss causes significant
suppression of final high-pT hadrons, commonly known as jet
quenching. The suppression of high-pT hadrons is treated as
a signal of the formation of quark-gluon plasma, because only
a deconfined state of matter could produce such significant
braking of hard partons. The ultimate goal is to describe the
full process of parton branching, jet structure, and combined
multistage interactions (see the review [1] and Refs. [2–4] for
recent progress). A simpler goal on which much effort has
been focused is to understand the mechanisms of energy loss
for an individual colored probe in each phase.

The energy loss of a probe is caused by collisions and/or
radiation and depends on the medium content and the dynam-
ics of the system. Collisional energy loss is similar for high-pT

light partons and heavy quarks, but the situation with radiative
energy loss is less clear. While there is no principal difference

between the interactions of light and heavy particles with
their surroundings, since they are both universally governed
by QCD dynamics, the large masses of heavy quarks (charm
and beauty) make their evolution different when compared
to high-pT light partons. Heavy quarks are particularly inter-
esting because they are rare constituents of the quark-gluon
plasma, and therefore may be thought of as external and clean
probes of the medium. It is expected that the radiative energy
loss of heavy flavors is noticeably reduced when compared
to light flavors [5]. This phenomenon is called the “dead-
cone effect,” and is related to a restriction of the accessible
phase space of radiated gluons. This argument leads to the
conclusion that there should be a flavor hierarchy in radia-
tive energy loss ordered by the masses of the quarks. When
comparing quarks and gluons, there are also differences that
are not related to kinematics. Different numerical factors are
obtained, because quarks and gluons belong to different rep-
resentations of the group SU(Nc). Based on these arguments,
it was expected that gluons would lose a bigger amount of
energy than light quarks, and light quarks would lose more
energy than heavy quarks. However, experimental findings
on nuclear modification factors of charged hadrons do not
confirm this expectation (see the review [6]). The conclu-
sion is that the mechanism of parton energy loss is more
complex than anticipated and not well understood to date. In
this paper we consider primarily heavy quarks, but in some
cases the corresponding results for high-pT light partons are
also discussed. We study both collisional energy loss and the
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transverse momentum broadening coefficient q̂ which, along
with the emission probability of gluons, characterizes radia-
tive energy loss [7].

The medium produced in a heavy-ion collision quickly
approaches equilibrium, within about1 1 fm. A long-lasting
phase of equilibrated quark-gluon plasma follows, with life-
time approximately 10 fm. The system then hadronizes and
passes through chemical and kinetic freeze-outs. The spectra
of heavy quarks are expected to be mostly shaped in the equi-
librium phase and for a long time the effect of the preceding
nonequilibrium phases was entirely ignored. Only recently
progress has been made to quantify this influence. Below
we will concisely describe the main characteristics of hard
probes traversing the thermal QGP, which is relatively well
understood. Next we will give a short overview of more recent
work on nonequilibrated plasmas. To be specific, we discuss
heavy quarks in these media, but similar reasoning holds for
high pT light partons.

The Boltzmann equation provides a general method to de-
scribe a heavy quark embedded in a thermal medium, but it is
difficult to solve. A heavy quark can be treated as a Brownian
particle at both low and high pT for two reasons. First, the
typical momentum exchange in the collision of a heavy quark
with a plasma constituent is much smaller than the quark
momentum itself. Second, the collisions are frequent and can
be treated as uncorrelated with each other.

The Boltzmann equation can be converted into the Fokker-
Planck equation using the diffusion approximation [8], which
is realized as follows. Because of the low concentration of
heavy quarks in the plasma, their collisions with each other
may be neglected, and only collisions with light quarks and
gluons must be considered. The small momentum exchange
allows one to expand the transition matrix elements in the
collision terms of the Boltzmann equation in powers of mo-
mentum transfer. One obtains the Fokker-Planck equation by
performing momentum integrals over products of approxi-
mated transition matrix elements and distribution functions of
light quarks and gluons. The Fokker-Planck equation is usu-
ally much simpler to solve than the Boltzmann equation and it
directly gives transport coefficients. Alternatively, the Brown-
ian motion of heavy quarks can be studied via Langevin-type
equations (see Refs. [9,10]).

Depending on the value of the transverse momentum,
heavy quarks probe different features of the evolving matter.
At low pT , which is usually defined to be a few times larger
than the temperature T of the thermal bath, which varies
between approximately 450 and 150 MeV [11], a heavy quark
is a good probe to study thermalization and transport proper-
ties. In such a limit the quark’s energy loss is dominated by
collisional processes. Since the mass mQ of a heavy quark is
large compared to the temperature of the medium, quarks need
more time to adjust to their environment than light quarks or
gluons. Thus their thermalization time is a factor of mQ/T
longer than the thermalization time of light constituents [9]
(see also Refs. [10,12,13]). At a medium-pT scale one is able

1Throughout the paper we use the natural system of units with c =
h̄ = kB = 1.

to use heavy quarks as probes to study hadronization. At high
pT (usually of the order of a few GeV or more) heavy quarks,
light quarks, and gluons all behave like hard probes, and their
in-medium interactions are responsible for jet quenching. In
this case, the major interest is in calculating the energy loss of
the probe, which is expected to be radiation dominated. Vari-
ous models have been developed using a transport equation in
different forms to quantify the evolution, nuclear modification
factors, and other properties of heavy quarks in a thermal
medium (for a review see Refs. [14,15]).

When the plasma is in a nonequilibrium state, its properties
are much more difficult to study. Two distinct preequilib-
rium phases can be identified: one just before the thermal
quark-gluon plasma is formed, when the medium consists of
quasiparticles with nonequilibrium distributions of momenta,
and the strict earliest phase, when the medium is described in
terms of strong classical gluon fields rather than partons.

If the system is made up of quasiparticles, the meth-
ods of kinetic theory can be used to study the dynamics of
heavy quarks propagating through the medium. In Ref. [16]
a method was developed to take into account the effect of
this stage on the drag and diffusion coefficients of heavy
quarks, and to compare the results with their respective equi-
librium values. The coefficients are found from the Boltzmann
equation as functions of the momenta of test partons, and
have similar shapes and comparable sizes in kinetically equi-
librated and out-of-equilibrium gluonic systems. The study
was later developed to evaluate nuclear modification factors
and elliptic flow coefficients at RHIC energies [17]. It is
shown that when the preequilibrium phase with Kharzeev-
Levin-Nardi initial conditions for the transport equation is
included in the evolution the nuclear modification factor RAA

can change by 20–25% compared to the case where the initial
stage is directly switched to hydrodynamic evolution. On the
other hand, the prethermal phase does not have an important
impact on the elliptic flow coefficient v2. The dependence of
the quenching and flow of heavy quarks on the parameters
that define the preequilibrium evolution has also been studied
in Ref. [18]. Such modeling shows significant uncertainties in
D-meson suppression and flow at low pT . Different configura-
tions and various effects of the nonequilibrium dynamics have
been shown to modify the charm quark RAA and v2 [19] as well
as the drag coefficient and the momentum broadening coeffi-
cient [20]. Since different nonequilibrium scenarios influence
the calculations of observables, there are several aspects of
these models that need to be understood before we can use
them to interpret experimental data.

The preequilibrium momentum distribution of quasipar-
ticles is typically anisotropic, and in this case the weakly
coupled quark-gluon system is unstable due to color plasma
modes (see the review [21]). Chromodynamic fields are
spontaneously generated, exponentially grow in time, and
dominate the system’s dynamics. Hard probes traversing such
unstable systems have been studied in Refs. [22–24]. The
energy loss and momentum broadening are strongly direc-
tionally dependent and rapidly grow as functions of time.
Consequently, the magnitudes of dE/dx and q̂ can greatly
exceed typical equilibrium values. The effect of an anisotropic
QCD medium on heavy quarks was also studied recently in
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Ref. [25], but the impact of instabilities was ignored. Strong
dependence of various transport coefficients on the direc-
tion and strength of the momentum anisotropy of the QCD
medium is observed. In Ref. [26] a Keldysh-Schwinger ap-
proach was used to calculate the momentum broadening of
an anisotropic plasma with the unstable modes eliminated.
The collision kernel obtained for such a case is shown to lead
to a significant decrease in q̂ when compared to its isotropic
counterpart, and features mild angular dependence.

The earliest phase of the collision is the glasma which, in
the framework of a color glass condensate (CGC) descrip-
tion, is made mostly of gluon fields that can be treated as
classical long-wavelength fields generated by valence quarks
acting as color sources (see, for example, the review [27]).
The glasma state is populated with strong chromodynamic
fields, and is characterized by large anisotropies and high
energy density. These properties lead us to expect that the
initial dynamics could significantly influence the propagation
of high-pT particles. In Ref. [28] a first attempt was made to
assess the importance of synchrotronlike gluon emission from
fast partons due to interaction with coherent glasma color
fields, and it was found that the effect is much smaller than the
radiative energy loss from the quark-gluon plasma. However,
this result was obtained using a small-angle approximation
and may not give full information on the impact of this phase
on hard partons.

More recent studies have revisited the problem using dif-
ferent approaches. In Refs. [29,30] the effect of the glasma
on heavy quarks was studied through a properly formulated
Fokker-Planck equation, and it was found to be large. This
finding stimulated further interest in this direction. In Ref. [31]
the diffusion of heavy quarks in the evolving glasma was
compared to their Brownian motion in a thermalized medium
with the same energy density. In both systems, the average
transverse momentum broadening was shown to significantly
depend on the value of the saturation momentum Qs. Results
were comparable in the two approaches for small Qs. Calcula-
tions in both the weak and dense limits of the glasma have
been done using real-time lattice simulations [32,33]. The
results of these calculations show that the parameter q̂ depends
strongly on time and the orientation of the probe’s momentum.
One can also study the behavior of heavy quarks influenced by
gluon fields using the Wong equations, which is an alternative
to the Fokker-Planck equation that does not use the diffusion
approximation. This method was applied in Refs. [34–36]
to emphasize the remarkable impact of the evolving glasma
on diffusion, medium modification, and the flow of heavy
quarks. It was also used in Ref. [37] to study the energy loss
of heavy quarks including the effect of back-reaction. The
dynamics of the earliest phase can also be explored using
classical-statistical simulations, and this approach was used to
compute the momentum diffusion coefficient of a heavy quark
in Ref. [38].

The goal of the current paper is to provide an extension
of the analysis of the transport of heavy quarks propagating
through glasma which was proposed in Ref. [29], and further
developed in Ref. [30]. The most important results of the
current paper were recently presented in the Letter [39]. We
use a Fokker-Planck equation the collision terms of which

encode information about glasma dynamics through corre-
lators of strong chromoelectric and chromomagnetic fields.2

We calculate the relevant correlators using a CGC approach
combined with an expansion in the proper time τ . This analyt-
ical approach to solve the classical Yang-Mills equations was
originally proposed in Ref. [40], and developed further in
Ref. [41]. The key point is that because of the short lifetime
of the glasma the proper time can be treated as an expansion
parameter (the dimensionless small parameter is τQs, where
Qs is the saturation scale). Solutions for the glasma fields, and
the associated electric and magnetic fields, can be found to any
order in τ in terms of the initial gauge potentials using a re-
cursive method. In our previous work [30] we included terms
up to first order in the τ expansion to develop our method and
explore its general features. In this paper we include terms up
to fifth order in τ , which will allow us to study the radius of
convergence of the expansion, and to obtain reliable results.
We will also present a careful analysis of several technical
aspects of our method which were not explored in Ref. [30].
We study the dependence of our results on the choices of
the numerical values of two parameters that are a necessary
component of the CGC approach: the saturation scale and
an infrared regulator that is related to the QCD confinement
scale. In addition, our calculation requires the choice of a
regularization method to tame an ultraviolet singularity. We
will discuss different methods of regularization and demon-
strate that our results depend only weakly on the form that is
used. We will present some comparisons between the results
obtained for heavy quarks and high pT light partons.

Finally we add that the work described in this paper is a
part of a bigger project, which aims at exploring the general
properties of the glasma at very early times. Our previous
papers [42,43], in which we calculated the energy-momentum
tensor and various observables that can be obtained from it,
are also part of this main project. The proper time expansion
is used in all of these calculations, and our analyses provide
valuable information about the extent to which this method
can be applied to glasma calculations.

This paper is organized as follows. In Sec. II we describe
the Fokker-Planck equation, with particular emphasis on its
collision terms and their relationship to two transport coef-
ficients of hard probes in a glasma: collisional energy loss
and momentum broadening. In Sec. III we explain how to cal-
culate correlators of chromodynamic fields, which determine
the transport coefficients we are interested in. In Sec. III A
we review the basics of the McLerran-Venugopalan (MV)
model [44–46], which provides the forms of the precollision
potentials, and gives the boundary conditions that connect
precollision and postcollision glasma potentials. In Sec. III B
we describe how we use a proper time expansion to represent
glasma potentials and chromodynamic fields in the postcol-
lision region. The correlators of the initial gauge potentials,
which are the basic building blocks of the whole methodology,
are discussed in Sec. III C, and in Sec. III D the electric and

2For convenience, we neglect henceforth the prefix “chromo” when
referring to chromoelectric or chromomagnetic fields. Since we study
QCD only, this should not cause confusion.
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magnetic field correlators are derived. Section IV is devoted
to a detailed discussion of our results. In Sec. IV A we con-
sider the different variables and parameters that influence the
results obtained for collisional energy loss and momentum
broadening. In Sec. IV B we discuss the time evolution of
these transport coefficients. We also discuss several technical
aspects of the calculation. In Sec. IV C we study the depen-
dence of our results on the probe’s velocity and its initial
space-time rapidity. The dependence on UV and IR energy
scales is studied in Sec. IV D, and in Sec. IV E we discuss
our regularization method and demonstrate that results depend
only weakly on the method that we choose. The limitations
of our approach are analyzed in Sec. IV F. The impact of the
glasma on jet quenching is evaluated in Sec. V. We summarize
our results and make some concluding remarks in Sec. VI.

II. FOKKER-PLANCK EQUATION

The Fokker-Planck equation has been frequently employed
to study the transport of heavy quarks across a thermalized
quark-gluon plasma (see, for example, Refs. [9,10,12,13]). In
this paper our aim is to study the transport of both heavy
quarks and high-p⊥ light partons through glasma in the ear-
liest period of its temporal evolution. More specifically, we
focus on the situation where the hard probes interact with
the soft classical gluon fields of the glasma, and not with
quasiparticles, which emerge at later stages.

The formulation of the method and the derivation of the
Fokker-Planck equation that we use are presented in Ref. [29].
For the convenience of the reader we review the main points
below. We comment that although the derivation was origi-
nally presented in the context of heavy quarks traversing a
glasma the formalism can also be used to study relativis-
tic light partons, as long as the diffusion approximation is
applicable. For heavy quarks the method can be used for a
broad range of velocities, and therefore provides much richer
information about their spectra than is the case for light high-
energy partons.

When a heavy quark is embedded in a glasma it is subject
to stochastic processes due to the action of color forces. The
corresponding distribution function Q(t, r, p) can therefore
be decomposed into regular and fluctuating components as
follows:3

Q(t, x, p) = 〈Q(t, x, p)〉 + δQ(t, x, p), (1)

where t is time, x is position, p is momentum, and 〈· · · 〉
denotes a statistical ensemble average over events in a rela-
tivistic heavy-ion collision. The regular contribution, denoted
〈Q(t, x, p)〉, is assumed to be color neutral and gauge inde-
pendent, and is expressed as

〈Q(t, x, p)〉 = n(t, x, p)1, (2)

where 1 is a unit matrix in color space. We use δQ(t, x, p) to
denote the fluctuating part and we assume that 〈δQ〉 = 0. It is
also assumed that the regular part is a slowly varying function

3We denote three-vectors as x = (x1, x2, x3), and they are indexed
by α, β ∈ (1, 2, 3).

of time and space and is much larger than the fluctuating part.
With these conditions, starting from a Vlasov-type equation,
one is able to obtain the transport equation in the Fokker-
Planck form [29], which reads[D − ∇α

p X αβ (v)∇β
p − ∇α

pY α (v)
]
n(t, x, p) = 0, (3)

where v = p/Ep is the velocity of the quark with Ep =√
p2 + m2

Q. We also use D ≡ ∂
∂t + v · ∇ for the substantial, or

material, derivative. The collision terms entering the Fokker-
Planck Eq. (3) are given by

Y α (v) n(p) = 1

Nc
Tr[〈Fα (t, x)δQ0(x − vt, p)〉] (4)

and

X αβ (v) ≡ 1

2Nc

∫ t

0
dt ′ Tr[〈Fα (t, x)Fβ (t − t ′, x − vt ′)〉],

(5)
where δQ0 ≡ δQ(t = 0, x, p) is the initial condition. The
Lorentz color force entering the collision terms (4) and (5)
is F (t, x) ≡ g[E(t, x) + v × B(t, x)], where g is the coupling
constant. The electric E(t, x) and magnetic B(t, x) fields are
given in the fundamental representation of the SU(Nc) group.4

In equilibrium, the Boltzmann distribution function
neq(p) ∼ exp(−Ep/T ), where T is the temperature of the sys-
tem, should solve the Fokker-Planck equation. This requires a
relation between X αβ (v) and Y α (v) of the form

Y α (v) = vβ

T
X αβ (v), (6)

where T is the temperature of an equilibrated quark-gluon
plasma that has the same energy density as the glasma, or
equivalently the temperature the glasma would have, if it
equilibrated without expanding. Our calculation gives no in-
formation about this temperature, but in Sec. IV A we discuss
how to estimate its value. Since the formula (4) is difficult
to apply to a nonequilibrium system, we use the relation (6)
to determine Y α (v). As we will show below, the quantity
Y α (v) is needed to obtain dE/dx, but it is not required for
a calculation of q̂.

When the system under consideration is translationally
invariant, the tensor X αβ (v) is independent of the variable
x present on the right side of Eq. (5). We deal with a sys-
tem which is assumed to be translationally invariant in the
transverse plane but it is not fully uniform along the z axis.
We therefore expect a weak dependence of X αβ (v) on the
longitudinal coordinate z which is not explicitly shown on the
left side of Eqs. (4) and (5).

The tensor X αβ (v) in Eq. (5) is expected to saturate at a
large enough time t . This time independence occurs due to
finite correlation lengths. If the correlator 〈Fα (t, x)Fβ (t ′, x′)〉
vanishes for |x′ − x| > λx or |t ′ − t | > λt , the integral (5)
saturates for t > λt or t > λx/v. In practice, the saturation of
X αβ (v) at long times and its approximate independence on z

4The generators of the SU(Nc) group are defined through [t a, t b] =
i f abct c, where f abc are the structure constants, and Tr(t at b) = δab/2.
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provide an estimate of the range of validity of the approxi-
mations that we use to obtain the transport coefficients of the
glasma. We note that we have not indicated dependence on
time on the left side of Eqs. (4) and (5) since the transport
coefficients that we will calculate are only meaningful when
at least approximate saturation is observed. We return to these
points in Sec. IV.

The physical interpretation of the collision terms Y α (v) and
X αβ (v) is easy to understand. As discussed in the textbook
[47], they determine the average momentum change per unit
time, and the correlation of momentum changes per unit time,
as follows:

〈�pα〉
�t

= −Y α (v), (7)

〈�pα�pβ〉
�t

= X αβ (v) + X βα (v). (8)

The collisional energy loss dE/dx and the transverse momen-
tum broadening parameter q̂ of a heavy quark in a glasma
are obtained from the results in Eqs. (7) and (8) using the
equations

dE

dx
= vα

v

〈�pα〉
�t

, (9)

q̂ = 1

v

(
δαβ − vαvβ

v2

) 〈�pα�pβ〉
�t

, (10)

where v = |v|. Equations (6), (9), and (10) give

dE

dx
= − v

T

vαvβ

v2
X αβ (v), (11)

q̂ = 2

v

(
δαβ − vαvβ

v2

)
X αβ (v). (12)

The quantity X αβ (v) in Eq. (5) is determined by correlators
of components of the color Lorentz force, and consequently
by correlators of the glasma electric and magnetic fields as
follows:

X αβ (v) = g2

2Nc

∫ t

0
dt ′[〈Eα

a (t, x)Eβ
a (t − t ′, y)

〉

+ εβγ γ ′
vγ

〈
Eα

a (t, x)Bγ ′
a (t − t ′, y)

〉
+ εαγ γ ′

vγ
〈
Bγ ′

a (t, x)Eβ
a (t − t ′, y)

〉
+ εαγ γ ′

εβδδ′
vγ vδ

〈
Bγ ′

a (t, x)Bδ′
a (t − t ′, y)

〉]
, (13)

where y = x − vt ′. For future convenience we also define
v = (v‖, v⊥) and v⊥ = |v⊥|. In Sec. III we describe how to
calculate the correlators of the chromodynamic fields, which
provides an analytic form for the tensor X αβ (v). We comment
that the correlators in Eq. (13) are not gauge invariant. In
principle, this problem could be remedied by inserting link
operators between the two fields, as discussed in Ref. [29],
but practically this procedure is difficult to realize. The gauge
invariant implementation of our method is an interesting and
open issue that is beyond the scope of this paper.

We concentrate on two projections of the tensor X αβ (v),
which allow us to calculate the collisional energy loss and
momentum broadening coefficient [see Eqs. (11) and (12)].
However, as will be shown in Sec. III, we have calculated all

of the electric and magnetic field correlators, which means
that we have an analytic result for the full tensor, and this ex-
pression could be used in different calculations. For example,
one could solve the Fokker-Planck equation and determine
how the distribution functions of hard probes evolve in time.

III. CORRELATORS OF ELECTRIC AND MAGNETIC
FIELDS IN GLASMA

In this section we briefly describe the basic steps required
to calculate the correlators of the electric and magnetic fields
that enter the collision terms defined in Sec. II. Further details
are available in our previous paper [42].

Two heavy nuclei move along the z axis with the speed of
light. Because of Lorentz contraction, the nuclei are infinitely
thin in the longitudinal direction. They collide at t = z = 0,
and the gauge potential that describes the strongly interacting
matter both before and after the collision can be represented
by the following ansatz [45,46]:

A+(x) = �(x+)�(x−)x+α(τ, x⊥),

A−(x) = −�(x+)�(x−)x−α(τ, x⊥),

Ai(x) = �(x+)�(x−)αi
⊥(τ, x⊥) + �(−x+)�(x−)β i

1(x−, x⊥)

+�(x+)�(−x−)β i
2(x+, x⊥), (14)

which is written using both light-cone and Milne coordinates.5

The theta functions separate the precollision and postcollision
regions of space-time. The potential β i

1(x−, x⊥) is the prec-
ollision potential of the right moving nucleus and β i

2(x+, x⊥)
is the precollision potential of the left moving nucleus. The
glasma potentials produced after the collision are represented
by α(τ, x⊥) and αi

⊥(τ, x⊥) and they are smooth functions in
the forward light-cone region. Because of boost invariance the
glasma potentials do not depend on η.

A. Precollision potentials

The CGC effective theory relies on a separation of scales
distinguishing regions of large and small nucleon momentum
fraction, denoted x. The large-x partons, which are the valence
quarks, act as color sources for small-x gluons which are
represented as classical fields. Because of time dilation, the
valance quarks are effectively frozen and do not behave as
dynamical fields. The right-moving nucleus is independent of
the light-cone time x+ and is represented by an SU(Nc) four-
current Jμ(x−, x⊥) = δμ+ρ(x−, x⊥), where ρ(x−, x⊥) is the
color-charge density. The soft classical gluon four-potential is
denoted by βμ(x−, x⊥), and this potential is also independent
of the light-cone time x+, or “static,” because the four-current
that produced it is static. The gluon field satisfies the Yang-
Mills (YM) equations

[Dμ, Fμν] = Jν, (15)

5The light-cone coordinates are defined by xμ

lc = (x+, x−, x⊥),
where x± = (t ± z)/

√
2 and the transverse components are x⊥ =

(x1
⊥, x2

⊥), which are labeled by i, j ∈ (1, 2). The Milne coordinates
are x⊥, τ = √

2x+x−, and η = ln(x+/x−)/2.
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where [. . . , . . . ] denotes a commutator, Dμ = ∂μ − igβμ

is the covariant derivative, and Fμν = i
g[Dμ, Dν] = ∂μβν −

∂νβμ − ig[βμ, βν] is the gluon field strength tensor with g
being the coupling constant. The amplitude of the field is
big because of the large occupation numbers of the soft
gluons.

To solve the YM equation we use the ansatz

βμ
cov(x−, x⊥) = δμ+�(x−, x⊥) , (16)

which is conventionally called covariant gauge because it
satisfies the equation ∂μβμ

cov = 0. The only nonzero compo-
nents of the field strength tensor are F i+

cov = ∂ i�, and the YM
equation reduces to

−∇2
x⊥�(x−, x⊥) = ρ(x−, x⊥). (17)

The solution can be written in the adjoint representation as

�a(x−, x⊥) =
∫

d2y⊥ G(x⊥ − y⊥)ρa(x−, y⊥), (18)

where the Green’s function satisfies the equation
∇2

x⊥G(x⊥ − y⊥) = −δ(2)(x⊥ − y⊥) and can be written in
momentum and coordinate space as

G̃(k⊥) = 1

k2
⊥ + m2

, G(x⊥) = 1

2π
K0(m|x⊥|), (19)

where K0 is the modified Bessel function of the second type.
In Eq. (19), the parameter m is an infrared regulator, which
is identified with �QCD, so that m ≈ �QCD ≈ 200 MeV. This
choice naturally encodes the behavior of confinement, since it
ensures that the color charges in a nucleon are neutralized at
the length scale which coincides with �−1

QCD. We note that the
need for this regulator is a consequence of the fact that con-
finement does not emerge naturally from the CGC effective
theory.

The precollision potentials are connected to the glasma
potentials through boundary conditions, which are given at
the end of this section. The form of the ansatz for the glasma
potentials (14) dictates that these boundary conditions involve
precollision potentials in light-cone gauge. We must therefore
transform the precollision potentials we have just found in
covariant gauge, into light-cone gauge. To find the appropriate
gauge transformation, we solve β+(x−, x⊥) = 0 with

β+(x−, x⊥) = i

g
U †(x−, x⊥)∂+U (x−, x⊥)

+U †(x−, x⊥)β+
cov(x−, x⊥)U (x−, x⊥). (20)

The solution is

U (x−, x⊥) = Pexp

[
ig

∫ x−

−∞
dz−�(z−, x⊥)

]
, (21)

where the lower limit on the integral is chosen to give re-
tarded boundary conditions and the notation P indicates path
ordering with the “left-later” convention. The transverse com-
ponents in light-cone gauge therefore satisfy

β i(x−, x⊥) = i

g
U †(x−, x⊥)∂ iU (x−, x⊥) . (22)

Equations (18), (19), (21), and (22) determine the light-
cone gauge precollision potential β i(x−, x⊥) in terms of the
source function ρ(x−, x⊥) of the right moving ion. The poten-
tial for the left moving ion is obtained in the same way using
an ansatz that is independent of x−. The two potentials will
henceforth be written β i

1(x−, x⊥) and β i
2(x+, x⊥).

The precollision solutions provide the initial glasma fields
α(0, x⊥) and αi

⊥(0, x) through the boundary conditions

αi
⊥(0, x⊥) ≡ α

i(0)
⊥ (x⊥) = lim

w→0

[
β i

1(x−, x⊥) + β i
2(x+, x⊥)

]
,

(23)

α(0, x⊥) ≡ α(0)(x⊥) = − ig

2
lim
w→0

[
β i

1(x−, x⊥), β i
2(x+, x⊥)

]
,

(24)

where the letter w denotes the longitudinal extent of each
nucleus across the light cone. This finite width is introduced
for technical reasons and is taken to zero at the end of the
calculation, so that the precollision potentials depend only on
the transverse coordinates. These boundary conditions can be
found by matching the YM equations in the precollision and
postcollision regions [42], and were originally obtained for
infinitely thin nuclei in Refs. [45,46].

B. Glasma fields in the proper time expansion

The YM equations that describe the gluonic matter pro-
duced in a heavy-ion collision were solved numerically for the
first time in a series of papers [48–51] and later on by several
groups. Our calculations are analytic and therefore necessarily
involve some simplifying assumptions that are not needed
in a numerical approach. However, analytic methods always
provide a valuable complement to numerical calculations. One
advantage is that they allow for better control over various
approximations and sources of errors than typical numerical
simulations.

The glasma potentials at finite proper time can be obtained
from the initial glasma potentials using a proper time ex-
pansion, which is also called a “near field expansion.” This
method is based on the idea that since the lifetime of the
glasma phase is very short, τ � 1 fm, one can treat the proper
time τ as a small parameter to power expand the glasma
fields [40,41,52]. The first serious attempt to study the radius
of convergence of the expansion, in the specific case of a
calculation of the energy-momentum tensor, can be found in
Refs. [42,43]. Within this approach the glasma potentials are
expanded as

αi
⊥(τ, x⊥) =

∞∑
n=0

τ nα
i(n)
⊥ (x⊥), α(τ, x⊥) =

∞∑
n=0

τ nα(n)(x⊥).

(25)
The YM equations for the expanded glasma potentials can be
solved recursively so that higher order expansion coefficients
are given in terms of the zeroth order coefficients, which are
written in terms of the precollision potentials in Sec. III A, and
their derivatives.
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Using similar notation for the coefficients of the expanded
electric and magnetic fields we write

E(τ, x⊥) = E(0)(x⊥) + τE(1)(x⊥) + τ 2E(2)(x⊥) + O(τ 3),

(26)

B(τ, x⊥) = B(0)(x⊥) + τB(1)(x⊥) + τ 2B(2)(x⊥) + O(τ 3).

(27)

At zeroth order the transverse components of both fields are
zero and

Ez(0)(x⊥) = −2α(0)(x⊥), (28)

Bz(0)(x⊥) = ∂yα
x(0)
⊥ (x⊥) − ∂xα

y(0)
⊥ (x⊥)

− ig[αy(0)
⊥ (x⊥), αx(0)

⊥ (x⊥)]. (29)

The explicit forms of the fields in terms of the initial glasma
potentials, up to fourth order in τ , can be found in Appendix B
of Ref. [42].

C. Correlators of initial gauge potentials

The color structure of each ion enters through the area
charge density of the source μ(x⊥), which is defined through
the equations

〈ρa(x−, x⊥)ρb(y−, y⊥)〉 = δabλ(x−, x⊥)δ(x− − y−)

× δ(2)(x⊥ − y⊥), (30)∫
dx− λ(x−, x⊥) ≡ μ(x⊥), (31)

where λ(x−, x⊥) is a volume charge density. The angle brack-
ets 〈. . . 〉 mean averaging over an ensemble of sources, and
Eq. (30) is a consequence of the assumption that these sources
can be treated as Gaussian distributed random variables.

In general we need to calculate correlators not of the
sources, but of precollision potentials, of the form

〈
β i

a1β
j
b1 . . . βk

c2β
l
d2 . . .

〉
. (32)

We use the glasma graph approximation [53], which means
that Wick’s theorem, which properly speaking should only
be applied to a product of sources, is used on a product
of precollision potentials. Correlators of an odd number of
potentials vanish. Correlators of an even number of potentials
can be expressed as products of pairs of precollision correla-
tors. One also assumes that potentials from different nuclei are
uncorrelated, so that we only need to calculate the two-point
correlator

δabBi j
n (x⊥, y⊥) = lim

w→0

〈
β i

na(x∓, x⊥)β j
nb(y∓, y⊥)

〉
, (33)

where n ∈ {1, 2} enumerates the two (right and left moving)
ions and the upper/lower sign on the light-cone variables
corresponds always to the first/second ion. This two-point
correlator was derived for the first time in Ref. [54]. Its de-
tailed derivation can be also found in Appendix D of our

previous paper [42]. The result is

Bi j
n (x⊥, y⊥) = 2

g2Nc�̃n(x⊥, y⊥)

×
[

exp

(
g4Nc

2
�̃n(x⊥, y⊥)

)
− 1

]

× ∂ i
x∂

j
y γ̃n(x⊥, y⊥), (34)

where the functions γ̃ (x⊥ − y⊥) and �̃(x⊥ − y⊥) are

�̃n(x⊥, y⊥) = 2γ̃n(x⊥, y⊥) − γ̃n(x⊥, x⊥) − γ̃n(y⊥, y⊥) (35)

and

γ̃n(x⊥, y⊥) =
∫

d2z⊥ μn(z⊥) G(x⊥ − z⊥) G(y⊥ − z⊥).

(36)
Some physical properties of the ions can be specified

through the color charge densities μ1(z⊥) and μ2(z⊥). An im-
pact parameter can be introduced by shifting the centers of the
distributions μ1(z⊥) and μ1(z⊥) in opposite directions. In this
paper we assume that the charge distributions of both ions are
equal to each other and constant, μ ≡ μ1(z⊥) = μ2(z⊥), so
that the system is translation invariant in the transverse plane.
The area density μ is proportional to the square of the satu-
ration momentum scale Qs (see, for example, Refs. [55,56]),
but the determination of the proportionality factor requires
methods beyond CGC. We use

μ = g−4Q2
s . (37)

The correlator (34) takes the form

Bi j (r) = δi jC1(r) − r̂i r̂ jC2(r), (38)

where r ≡ |x⊥ − y⊥| and r̂i ≡ ri/r. The functions C1(r) and
C2(r) are

C1(r) ≡ m2K0(mr)

g2Nc[mrK1(mr) − 1]

×
{

exp

[
g4Ncμ[mrK1(mr) − 1]

4πm2

]
− 1

}
, (39)

C2(r) ≡ m3r K1(mr)

g2Nc[mrK1(mr) − 1]

×
{

exp

[
g4Ncμ[mrK1(mr) − 1]

4πm2

]
− 1

}
. (40)

The function C1(r) diverges logarithmically as r → 0 and
hence the correlator (38) has to be regularized. This will be
discussed in detail in Sec. IV, where we present our results.

D. Field correlators

Using the techniques of the previous sections, we can
now calculate all of the field correlators that enter the tensor
X αβ (v) in Eq. (13). In Sec. III B we described how to obtain
the glasma electric and magnetic fields to arbitrary order in τ

in terms of the initial glasma potentials α(0)(x⊥) and α
i(0)
⊥ (x⊥),

and their derivatives. In Sec. III A we gave the boundary
conditions Eqs. (23) and (24) that connect the initial glasma
potentials to the precollision potentials, and the solutions for
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the precollision potentials in terms of the ion sources [see
Eqs. (18), (19), (21) and (22)]. In Sec III C we explained
how to calculate correlation functions of precollision poten-
tials. Combining all of these steps we can calculate the field
correlators in terms of the functions C1(r) and C2(r) defined
in Eqs. (39) and (40). At lowest order, the correlators of the
electric and magnetic fields are given by〈

Ez(0)
a (x⊥) Ez(0)

b (y⊥)
〉 = g2Ncδ

ab

× [
2C2

1 (r) − 2C1(r)C2(r) + C2
2 (r)

]
, (41)〈

Bz(0)
a (x⊥) Bz(0)

b (y⊥)
〉 = g2Ncδ

ab
[
2C2

1 (r) − 2C1(r)C2(r)
]
,

(42)〈
Ez(0)

a (x⊥) Bz(0)
b (y⊥)

〉 = 0. (43)

All higher order correlators are given by similar expressions
involving the functions C1(r) and C2(r) and their derivatives.
The tensor X αβ (v) also involves correlators of fields at the
same point, and we treat these as two-point correlators. We
have obtained an analytic expression for the tensor X αβ (v) up
to order τ 5 using MATHEMATICA.

IV. RESULTS: TRANSPORT COEFFICIENTS OF HARD
PROBES IN GLASMA

In this section we present our results. The collisional en-
ergy loss dE/dx and the momentum broadening coefficient
q̂ of a hard probe traversing a glasma are obtained from the
tensor X αβ (v) using Eqs. (11) and (12). The tensor X αβ (v),
defined in Eq. (13), is given by correlators of chromodynamic
glasma fields which are calculated as described in Sec. III.

A. Introductory discussion

Heavy and high pT probes are produced at the very first
moments of the collision and then propagate through the
evolving glasma. When the magnitude of the velocity of
the probe v is close to 1, it is highly relativistic, and could
be a heavy or light quark, or gluon. When v is less than 1,
the probe is necessarily a heavy quark. We will study only the
behavior of quark probes, but the tensor X αβ for a gluon, and
consequently q̂ and dE/dx, could be obtained from Eq. (5) by
multiplying by a factor (N2

c − 1)/2N2
c , which equals 4/9 for

Nc = 3.
Because experiments at RHIC and the LHC focus on hard

probes from the momentum space midrapidity region, y ∈
(−1,+1), we are primarily interested in the transport prop-
erties of probes moving mostly perpendicularly to the beam
axis. The momentum-space rapidity y is related to the longitu-
dinal component of the probe’s velocity by y = 1

2 ln 1+v‖
1−v‖

, and
therefore the values y = ±1 correspond to v‖ = ±0.76, and
the midrapidity value y = 0 corresponds to strict transverse
motion, v‖ = 0. In this paper we use the parameter v‖ instead
of y to quantify deflection from transverse motion, and we
consider quarks with 0 � v‖ < 0.76.

An idealized picture of a probe emerging from the glasma
at very early proper times is shown in Fig. 1, where the
glasma fields at zeroth order in the proper time expansion are
represented by colored flux tubes. At this order the electric

FIG. 1. Cartoon of the zeroth order glasma fields and a probe
moving mostly transverse to the collision axis.

and magnetic fields are purely longitudinal and static. There
are two qualitatively different correlation lengths, which we
will denote λ‖ and λ⊥. The longitudinal correlation length λ‖
is proportional to the distance between the nuclei and can be
identified with the proper time τ . The transverse correlation
length λ⊥ can be inferred from the correlators (41) and (42).
Qualitatively the transverse correlation length obeys Q−1

s �
λ⊥ � �−1

QCD.
The collisional energy loss and the momentum broadening

parameter are both built up during the time that the probe
spends within the domain of correlated fields. At zeroth order,
this time is determined by the transverse correlation length
and the orientation and magnitude of the probe’s velocity. The
transport coefficients will saturate when the probe leaves the
region of correlated fields.6 These simple arguments indicate
that the Fokker-Planck methodology we are using might be
well suited to describe the problem of a hard probe moving
through a glasma, at least at very early times.

The simple picture presented in Fig. 1 is valid at zeroth
order, but at later times it does not accurately describe the
glasma. As τ increases, transverse electric and magnetic fields
develop, and the glasma fields can grow or decrease rapidly.
Higher and higher orders in the τ expansion are needed to
describe the glasma fields, as τ increases. Our method will
work if saturation is reached before the τ expansion that is
used to calculate the field correlators breaks down.

In addition to determining how long a probe spends in the
region of correlated fields, the probe’s velocity affects the
transport coefficients in another way. To see this we look at
Eqs. (5), (11), and (12), and use the form of the Lorentz force.
At zeroth order the integrand that gives collisional energy loss
is proportional to

vαvβFα(0)Fβ(0) = g2v2
‖Ez(0)(x⊥)Ez(0)(x′

⊥), (44)

6We note that we consider only the glasma phase, where coherent
fields are present and correlation lengths are sizable. We do not con-
sider later kinetic or hydrodynamic stages where further broadening
of the momenta of hard probes occurs due to scattering on plasma
constituents.
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FIG. 2. Transport coefficients of an ultrarelativistic quark, with v = v⊥ = 1. Left panel: Time evolution of the momentum broadening
coefficient. Right panel: Time evolution of the collisional energy loss. The results are shown at cumulative orders of τ (see text for discussion).

and the integrand for momentum broadening is proportional
to(

δαβ − vαvβ

v2

)
Fα(0)Fβ(0) = g2 v2

⊥
v2

[Ez(0)(x⊥)Ez(0)(x′
⊥)

+ v2Bz(0)(x⊥)Bz(0)(x′
⊥)]. (45)

We see that at zeroth order the collisional energy loss is caused
by the electric field and vanishes when the probe moves in
the transverse direction. In contrast, zeroth order momentum
broadening is caused by both electric and magnetic fields,
and is maximal when the probe moves transversely. We will
show that at higher orders the same behavior is observed:
for fixed v, when v⊥ increases and v‖ decreases, one finds
that the collisional energy loss decreases and the momentum
broadening increases.

We emphasize that the arguments presented in this sec-
tion give a good qualitative description of the behavior of the
glasma at very early times, corresponding to the lowest orders
of the τ expansion. Collisional energy loss and momentum
broadening at higher orders in the τ expansion require calcu-
lations to understand the full picture.

In Sec. III we explained that the correlators of chromo-
dynamic fields that enter the tensor X αβ (v) are restricted to
the forward light-cone region, where the glasma description is
valid. To take this condition into account in our calculation of
the transport coefficients, the integrands of the tensor X αβ (v)
in Eq. (13) should be multiplied by

�(t2 − z2)�[(t − t ′)2 − (z − v‖t ′)2]. (46)

If we use v‖ = 0 and look at z = 0, both step functions can
be ignored as they are always unity. When v‖ is nonzero the
second step function in Eq. (46) has the effect of reducing q̂
and dE/dx. In almost all calculations, we will choose z = 0
so that the first step function plays no role. The exception is
Sec. IV C where we study the dependence of our results on
spatial rapidity.

As discussed in Sec. II, in order to calculate dE/dx
we need the temperature T of an equilibrated quark-gluon
plasma, the energy density of which is the same as the energy
density of the glasma. The energy density of an equilibrium
free quark-gluon plasma of Nf flavors equals

εQGP = π2

60

[
4
(
N2

c − 1
) + 7Nf Nc

]
T 4, (47)

where only quarks with masses much smaller than the temper-
ature are included. The effective temperature of the glasma
can therefore be estimated from the glasma energy density
which was calculated in our previous paper [42]. We have
shown that to sixth order in the proper time expansion the
energy density has the form

εQGP = 130.17(15.9773 − 29.6759 τ̃ 2 + 42.6822 τ̃ 4

− 49.2686 τ̃ 6), (48)

where τ̃ ≡ Qsτ and the energy density is expressed in
GeV/fm3. The magnitudes of the coefficients in this result
increase, which indicates that the expansion will break down
as τ increases. The fact that the signs of the coefficients
alternate is typical in perturbative calculations, and delays
the breakdown of the expansion. The sixth order result in
Eq. (48) is reliable to approximately τ = 0.05 fm (see Fig. 1
in Ref. [42]). We will argue below that our calculation of the
momentum broadening coefficient q̂ is valid to τ ∼ 0.07 fm,
which appears to be inconsistent, but since the temperature
depends on the 1/4 power of the energy density it is very
insensitive to higher order contributions from the proper time
expansion.

All our results are calculated for Nc = 3 and g = 1. In
Secs. IV B, IV C, and IV E we use Qs = 2 GeV and m =
0.2 GeV. In Sec. IV D we consider different values of Qs and
m. In Sec. IV C we study the η dependence of q̂. In all other
calculations we work at midspatial rapidity, or η = z = 0.

B. Time dependence of q̂ and dE/dx

The momentum broadening coefficient q̂ and the colli-
sional energy loss dE/dx, both for an ultrarelativistic hard
probe moving perpendicularly to the beam axis, with v =
v⊥ = 1, are presented as a function of τ in Fig. 2. The left
panel shows the momentum broadening coefficient and the
right panel shows the collisional energy loss. The dependence
of both transport coefficients on the order of the τ expansion
is presented to illustrate the convergence of the expansion. For
example, the dashed (purple) line in both panels represents the
zeroth order contribution and the solid (red) line shows the τ 5

cumulative results (all terms up to order τ 5 are summed).
Taking into account higher order contributions in the τ ex-

pansion extends the range of validity of the result, which can
be estimated from the largest value of τ for which the result at
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FIG. 3. Time evolution of dE/dx for v = 1 and v‖ = v⊥ = 1/
√

2.

a given order agrees fairly well with the result at the previous
order. At very early times, all orders of the τ expansion agree
well. When all terms up to order τ 5 are included, the time evo-
lution of q̂ shows initial growth, and then flattening, followed
by more rapid growth (which appears after τ ∼ 0.09 fm). The
region where q̂ flattens shows saturation. The rapid increase of
q̂ at later times is not physical, but reflects the breakdown of
the proper time expansion. At order τ 5, the highest value of q̂
that is obtained before the proper time expansion breaks down
is about 6 GeV2/fm. The coefficient q̂ was also calculated in
Ref. [33] using real time QCD simulations. The time evolution
of q̂ found in this work is qualitatively similar to our finding.
Our result is smaller, but still of comparable size.

The behavior of the collisional energy loss dE/dx (de-
picted in the right panel of Fig. 2) is very different from what
is seen from q̂. Only the terms at τ 2 and τ 4 order contribute
to the final result. All other orders vanish because they are
proportional to some power of v‖, which is zero in the case
shown in Fig. 2. The collisional energy loss increases up to
around τ = 0.05 fm, where it reaches a maximal value of ap-
proximately 0.4 GeV/fm, and for larger times the expansion
rapidly breaks down. From the discussion in Sec. IV A we
know that the collisional energy loss is much more sensitive
to the value of the longitudinal component of the velocity than
q̂ is, because the leading order contributions are proportional
to v‖. In this sense the case of purely transverse motion in
Fig. 2 might not represent typical behavior. We therefore show
dE/dx in Fig. 3, also for v = 1, but now with v⊥ = v‖ =
1/

√
2. The shape of dE/dx is not significantly different from

the one shown in Fig. 2, but all orders in the τ expansion
contribute to the final result. The collisional energy loss is
noticeably bigger and equals approximately 0.9 GeV/fm at
its maximum, at around τ = 0.05 fm. The τ expansion breaks
down soon after this point. The absence of clear evidence of
saturation indicates that our results for collisional energy loss
should be considered order of magnitude estimates only.

We comment that even for the momentum broadening co-
efficient the effect of saturation should be studied carefully.
In Ref. [30] we calculated q̂ and dE/dx at order τ 1, and
both transport coefficients appeared to saturate in a striking
manner. However, the higher order calculations presented in
this paper show that the effect was seen at times that are far
beyond the region of validity of the proper time expansion.
When higher orders in the τ expansion are included, we see

v�v��0.9

v�v��1.0

0.00 0.02 0.04 0.06 0.08
t [fm]0

2
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8

q� [GeV2/ fm]

FIG. 4. The time evolution of q̂ at order τ 5 for different values of
v = v⊥ is presented. Two cases are studied: v = v⊥ = 1 denoted by
the solid red line and v = v⊥ = 0.9 denoted by the dashed blue line.
The dotted and dash-dotted lines represent the corresponding results
at order τ 4.

that the saturation observed at the first two orders in Ref. [30]
was an artifact of the approximation.

C. Dependence of q̂ on velocity and space-time rapidity

In the first part of this section we explore the dependence of
q̂ on the probe’s velocity. We want to understand the relative
importance of the two velocity dependent effects discussed in
Sec. IV A: the amount of time the probe spends in the region
of correlated fields, and the dependence of the Lorentz force
on the direction of the probe’s velocity. Next, we study the η

dependence of q̂.
In Fig. 4 we show the dependence of q̂ on the speed of a

hard probe when the probe moves in the transverse direction.
The solid (red) line represents the momentum broadening
coefficient for a probe with v = v⊥ = 1 and the dashed (blue)
line is v = v⊥ = 0.9. The thin dotted and dash-dotted lines
correspond to the results calculated at order τ 4, which are
shown to indicate the region of τ where the expansion con-
verges. We observe that at very early times the momentum
broadening coefficient is largely independent of v = v⊥, but
differences appear at longer times. The value of q̂ for slower
quarks flattens and then starts rapidly growing again, whereas
q̂ for ultrarelativistic quarks slightly decreases. This shows
that when the transverse velocity of the probe increases at
fixed v‖ = 0, even though the Lorentz force contribution
to q̂ increases [see Eq. (45)], the dominant effect is the
reduction of the amount of time the probe spends in the
domain of correlated fields, which results in a reduction in
momentum broadening. This result agrees with the findings
of Ref. [33], where the momentum broadening parameter of
massless quarks is consistently smaller than for larger mass
quarks, throughout the whole time evolution.

The radius of convergence of the τ expansion in our calcu-
lation can be estimated by comparing q̂ at different orders in
τ for each velocity. For both values of v = v⊥ that we consid-
ered, the result for q̂ can be trusted to τ around 0.07–0.08 fm.
In Figs. 5 and 6 we show the momentum broadening param-
eter for several cases with nonzero v‖. In all cases we show
the result at order τ 5 (thick lines) and τ 4 (thin lines). We
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FIG. 5. The time evolution of q̂ with the nonzero longitudinal component of the velocity. The left and right panels show q̂ with v⊥ = 0.9
and 0.8, respectively.

consider two different values of the speed v. For each value
of v we consider the case of purely transverse motion, and
several different nonzero values of the longitudinal velocity.

The results for q̂ with the same v⊥ and different v are
shown in Fig. 5: in the left panel the results are calculated
with v⊥ = 0.9 and in the right panel with v⊥ = 0.8. In the left
panel of Fig. 6 we show q̂ for v = 1 and transverse velocity
components: v⊥ = 1 (red line), v⊥ = 0.9 (orange line), and
v⊥ = 0.8 (black line); these correspond to v‖ = 0, v‖ = 0.44,
and v‖ = 0.6, respectively. In the right panel, q̂ is shown
for v = 0.9 and transverse components: v⊥ = 0.9 (blue line),
v⊥ = 0.8 (green line), and v⊥ = 0.7 (purple line), which cor-
respond to v‖ = 0, 0.41, and 0.57, respectively. (Lines with
the same color in Figs. 5 and 6 denote the same values of v
and v⊥.)

In all of the cases considered in Figs. 5 and 6, the results
calculated at orders τ 4 and τ 5 agree quite well up to about τ ∼
0.07–0.08 fm. The perpendicular component of the velocity
v⊥ is fixed in both panels of Fig. 5, and therefore the curves
show q̂ for two probes that spend the same amount of time
in the region of correlated fields. The difference in the curves
shows the effect of the velocity dependence of the Lorentz
force. From Eq. (45) one sees that the magnetic contribution
is proportional to v2

⊥ and the electric one is proportional to
v2

⊥/v2, meaning that the role of electric contribution decreases
when v‖ increases at fixed v⊥. In Fig. 6 we fix v and vary v⊥,
which means we now also include the effect of changing the

amount of time the probe spends in the region of correlation.
In this case we see that at small times the probe with larger v⊥
has larger q̂, due to the larger Lorentz force, but as τ increases
the curves with large and small v⊥ cross each other. This
happens because probes with larger v⊥ escape from the region
of correlated fields before the glasma fields become very large,
but probes with smaller v⊥ (and larger v‖) remain in the
domain of correlated fields for a longer time and eventually
interact with very large fields. We also note that when v⊥ = v
the τ expansion breaks down at approximately the same point
that the saturation regime disappears, but when v⊥ ≈ 0.9v, or
smaller, the τ expansion converges fairly well even though no
significant saturation regime is observed. This suggests that
including higher orders in the τ expansion could extend the
region of saturation when v⊥ = v.

In Fig. 7 we show the dependence of q̂ on the spatial
rapidity η, which is related to the initial position of the probe
on the z axis. In the left panel, q̂ is displayed as a function of
τ for three values of η. In the right panel the results for q̂ with
η = 0.2 are depicted at order τ 4 and order τ 5 to indicate that
this result can be trusted to τ ∼ 0.06 fm.

We consider only small values of η because our approach
is expected to work best in the midspatial-rapidity region,
where the CGC approach that we use is most reliable. The
momentum broadening parameter depends only weakly on η

in the region where the curves flatten. The figure shows that at
least until the region of approximate saturation ends the result
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FIG. 6. The time evolution of q̂ with the nonzero longitudinal component of the velocity. The left and right panels show q̂ with v = 1 and
0.9, respectively.
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FIG. 7. Dependence of q̂ on the spatial rapidity η calculated for the velocity v = v⊥ = 1.

for q̂ is largely independent of spatial rapidity. This result
verifies that there is a range of proper times for which the
boost invariant ansatz that was used to calculate the glasma
correlators in Sec. III is compatible with the approximations
that were used to derive the Fokker-Planck equation in Sec. II.

D. Dependence on IR and UV energy scales

The UV scale Qs and the IR regulator m enter our cal-
culation as parameters that are related to the saturation and
confinement scales. We remind the reader of the physical pic-
ture: we must stay below Qs, or the assumption that the glasma
is composed of classical gluon fields breaks down, and above
m, so that we do not enter the regime where nonperturbative
effects become dominant. The CGC approach is valid only
within this relatively narrow window. The numerical values
of these scales cannot be precisely determined within the
formalism we are using. It is therefore important to see how
varying these parameters influences the time evolution of q̂.

The momentum broadening coefficients for different val-
ues of Qs and m are depicted in Fig. 8 where, as previously,
orders τ 4 and τ 5 are shown. Throughout this paper we have
been using Qs = 2 GeV and m = 0.2 GeV, which is shown
as the solid (red) lines in both panels. We observe that by
decreasing Qs or increasing m one can get smaller values
of q̂, and the τ expansion is reliable to longer times. From
the left panel one finds that the results are reliable to about
τ ∼ 0.13 fm for Qs = 1.5 GeV and m = 0.2 GeV, and from

the right panel this time is approximately τ ∼ 0.11 fm for
Qs = 2 GeV and m = 0.3 GeV.

To interpret these results we note that physically it makes
sense to treat the saturation scale as a scaling parameter
for the collision energy. In collisions at RHIC, saturation is
achieved at a scale Qs ∼ 1–2 GeV, as compared to higher
energy collisions at the LHC, for which Qs ∼ 2–3 GeV [57].
Our calculation thus predicts the dependence of q̂ on the
collision energy. The effect has in fact been seen in measure-
ments of q̂ produced during the later hydrodynamic phase.
A reduction in q̂ at RHIC energies when compared to LHC
energies was found by the JET Collaboration in Ref. [58] (see
also Ref. [59]).

We comment that the sensitivity of q̂ to the scales Qs and
m is not unexpected, because the narrowness of the allowed
momentum range makes it inevitable that shifting its upper
and lower limits will affect results. In Fig. 9 we show the
dependence of q̂ on Qs with the ratio Qs/m held fixed. The
figure shows that when the ratio of the two scales is constant
the dependence of the momentum broadening parameter is
fairly weak.

E. Regularization dependence

All results presented in this paper have been obtained by
introducing a regularization procedure. This regularization is
needed because the function C1(r) defined by Eq. (39) is
divergent in the limit r → 0. The correlators that enter the
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FIG. 8. Left panel: The time evolution of q̂ for two different values of Qs with m = 0.2 GeV. Right panel: The time evolution of q̂ for three
different values of the infrared regulator m with Qs = 2 GeV.
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FIG. 9. The momentum broadening coefficient q̂ vs τ for dif-
ferent values of Qs with Qs/m = 10. The curves are labeled with
different colors and patterns from Qs = 1.9 GeV (magenta solid line)
to Qs = 2.1 GeV (gray dotted line).

tensor X αβ (v) in Eq. (13) are determined by the functions
C1(r) and C2(r), and their derivatives, and the lower limit of
the integral over t ′ corresponds to the point where r = 0. We
note that this divergence is a natural consequence of the fact
that the CGC approach breaks down at small distances.

To check that our results are largely independent of the
regularization, we use two different methods to regularize
the divergence, and compare the results. To explain this, we
write the integrand for either momentum broadening or col-
lisional energy loss as a function of the form f (t ′, r, z), so
that the transport coefficient is obtained from the integral∫ t

0 dt ′ f (t ′, r, z) [see Eqs. (11)–(13)]. The first regularization
method we use is to cut off the singular part of the integrand
at a distance rs = Q−1

s by defining the regularized function

f reg.1(t ′, r, z) ≡ �(rs − r) f (t ′, rs, z) + �(r − rs) f (t ′, r, z).
(49)

We then obtain the transport coefficient from the integral∫ t
0 dt ′ f reg.1(t ′, v⊥t ′, v‖t ′). This method of regularization was

used in all results presented above, as well as in our pre-
vious computations in Ref. [30]. The second regularization
method is to subtract the leading order O(1/r) divergences
before multiplying by the step function. We can repre-
sent this by defining f̃ (t ′, r, z) = f (t ′, r, z) − a/r with a =

reg. 1

reg. 2
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FIG. 11. The time evolution of q̂ at order τ 5 for v = v⊥ = 1
regularized in two different ways [see Eqs. (49) and (50)].

limr→0 r f (t ′, r, z) and writing

f reg.2(t ′, r, z) ≡ �(rs − r) f̃ (t ′, rs, z) + �(r − rs) f (t ′, r, z).
(50)

The transport coefficient is obtained from the integral∫ t
0 dt ′ f reg.2(t ′, v⊥t ′, v‖t ′).

The results of the two different regularization methods are
depicted in the left and right panels of Fig. 10, and comparison
shows that the dependence on the regularization is fairly weak.
In Fig. 11 we show the fifth order results on the same graph.

F. Limitations of the formulation

Our results, for either transport coefficient, can be trusted if
two conditions are satisfied: if there is evidence of saturation,
which means that the Fokker-Planck approach we are using
is valid, and if the τ expansion converges, which means that
our τ expanded glasma correlators are reliable. In some cases,
as in the left panel of Fig. 2, both of these approximations
break down at approximately the same value of τ . This indi-
cates that the regime where our calculation works could be
extended by working at higher order in the τ expansion. If the
saturation region does not appear before the τ expansion fails,
as in Fig. 6, the result cannot be trusted. It is also possible
to encounter the opposite situation, where saturation occurs
in a regime where the proper time expansion is not valid. In
the calculations presented in our previous paper [30], where
we worked to first order in τ , saturation was observed for
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FIG. 10. Cumulative results for q̂ when higher and higher terms in the τ expansion are included using v = v⊥ = 1.
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both transport coefficients at τ ≈ 0.7 fm. However, the order
τ 5 results presented in this paper reveal that the proper time
expansion breaks down at much earlier times. We emphasize
that both saturation and the convergence of the proper time
expansion are required.

In Sec. IV C we explained why our approach works most
efficiently for probes that move mostly transversely. Our
method is therefore best suited to study the momentum broad-
ening of a probe with v⊥ close or equal to v, and works less
well when v‖ is large. We remind the reader that, for the most
part, only small values of v‖ are experimentally interesting,
and collisional energy loss is always small in this region.

Our results show that the transport coefficients that we
calculated at order τ 5 can be trusted to approximately τ ∼
0.05–0.13 fm, depending on the choice of several parameters:
the velocity of the probe, the saturation scale, and the value
of the infrared regulator. It is interesting to compare this
radius of convergence with the results we obtained in our
previous papers, where we also used a proper time expansion.
In Refs. [42,43] we calculated the energy-momentum tensor,
and obtained from it many physical quantities, including the
energy density, transverse and longitudinal pressures, radial
flow, several different measures of glasma anisotropy, Fourier
coefficients of the azimuthal flow, and the angular momentum
of the glasma. These quantities were calculated at order τ 5

or τ 6 (in most of these calculations only odd or even powers
of τ contributed), and we consistently used Qs = 2 GeV and
m = 200 MeV. One significant difference is that although the
energy momentum tensor is constructed from the same two-
point correlator as in this paper [see Eq. (34)] the calculation
requires that r is taken to zero. Therefore, the regularization
was performed by imposing a cutoff on all momentum inte-
grals at the saturation scale Qs and taking the limit that the
spatial coordinate r goes strictly to zero. The behavior of the
τ expansion was not exactly the same for all of the quantities
calculated in Ref. [43], as expected, but in all cases the radius
of convergence was τ ≈ 0.05 fm. This finding is comparable
with the result found in this paper for the momentum broad-
ening coefficient.

Finally we mention that our method is based on a CGC
approach that is classical, and there is an inherent lower bound
on the proper time below which we can no longer trust a
classical description. This bound can be estimated using the
uncertainty principle. The very large initial energy released in
the collision produces a lower bound for the validity of the
classical description that is orders of magnitude smaller than
the radius of convergence of the τ expansion [42].

V. GLASMA IMPACT ON JET QUENCHING

We have found that in the glasma phase the momentum
broadening parameter q̂ can be as large as q̂ ≈ 6 GeV2/fm.
The value of q̂ in equilibrium quark-gluon plasma for a
hard quark of pT > 40 GeV is 2 < q̂/T 3 < 4 where T is the
plasma temperature, as inferred from experimental data by
the JETSCAPE Collaboration [2]. In the discussion below we
take q̂ = 3T 3. Since the temperature of the plasma produced
at the LHC evolves from roughly 450 to 150 MeV [11],
the momentum broadening coefficient varies from q̂ ≈ 1.0

FIG. 12. Schematic representation of the temporal evolution of
q̂(t ).

to 0.05 GeV2/fm, which is much smaller than the value q̂ ≈
6 GeV2/fm for the glasma that we have obtained in this paper.
However, since the preequilibrium phase exists for less than 1
fm, it is not clear if the glasma contributes significantly to the
total momentum broadening that the probe experiences when
it moves through the system.

The radiative energy loss per unit length of a high-energy
parton traversing a medium of length L is proportional to the
total accumulated transverse momentum broadening, denoted
�p2

T . In case of a static medium, where q̂ is constant, we
have �p2

T = q̂L. When the plasma is not static and q̂ is time
dependent, the transverse momentum broadening is

�p2
T =

∫ L

0
dt q̂(t ), (51)

where the probe is assumed to move with the speed of light.
Figure 12 is a schematic representation of the time depen-

dence of the momentum broadening coefficient throughout the
whole history of the probe’s journey across the deconfined
matter produced in a relativistic heavy-ion collision. The first
part of the figure shows the rapid growth of q̂(t ) to a maximal
value q̂max ≈ 6 GeV2/fm at tmax ≈ 0.06 fm. This is a rough
description of the evolution of q̂ in the glasma phase that
we have found by working at order τ 5. The value of q̂(t )
subsequently decreases. At t0 ≈ 0.6 fm it has the value q̂0 ≈
1.4 GeV2/fm (these numbers are estimates inferred from ex-
perimental data and are discussed in more detail below). We
comment that the saturation region observed clearly in the left
panel of Fig. 2 is not seen in Fig. 12 because different time
scales are used in the two figures. The time interval between
tmax and t0 is beyond the region of validity of the proper
time expansion and the rapid decrease of q̂ in this domain is
not captured by our calculation, but it is reproduced by the
simulations in Ref. [33]. Using linear interpolation between
the points q̂(0) = 0, q̂(tmax) = q̂max, and q̂(t0) = q̂0, one finds
the following nonequilibrium contribution to the accumulated
transverse momentum broadening:

�p2
T

∣∣non-eq =
∫ t0

0
dt q̂(t ) = 1

2
q̂maxt0 + 1

2
q̂0(t0 − tmax).

(52)
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At t > t0 we have equilibrated quark-gluon plasma which
expands hydrodynamically. Using ideal one-dimensional
boost invariant hydrodynamics the temperature decreases as

T = T0

(
t0
t

)1/3

. (53)

Consequently, the momentum broadening coefficient depends
on time as

q̂(t ) = 3T 3
0

t0
t

= q̂0
t0
t

(54)

and the equilibrium contribution to �p2
T is

�p2
T

∣∣eq =
∫ L

t0

dt q̂(t ) = 3T 3
0 t0 ln

L

t0
. (55)

To estimate the role of the glasma in jet quenching we
need, in addition to q̂max and tmax which come from our
calculation, the following parameters: T0, t0, q̂0, and L. The
time t0, which marks the beginning of the hydrodynamic
evolution, and the initial temperature T0, which determines
the system’s initial energy density, are obtained by compar-
ing hydrodynamic models with experimental data on particle
spectra and collective flows. The initial time cannot be too
small as the system should reach, at least approximately, local
thermodynamic equilibrium for a hydrodynamic approach to
be applicable. On the other hand the initial time cannot be too
big, because in that case the initial shape of the system would
be washed out and hydrodynamics would not be able to re-
produce the Fourier coefficients of the collective flow. We use
T0 = 0.45 GeV and t0 = 0.6 fm taken from Refs. [11] and [2],
respectively. The momentum broadening parameter is inferred
from experimental data on jet quenching through complex
modeling of the process of hard probe propagation through the
evolving plasma. Using again the results of the JETSCAPE
Collaboration [2], we take q̂0 ≈ 3T 3

0 ≈ 1.4 GeV2/fm. Finally,
keeping in mind that the radius of a heavy nucleus (for ex-
ample, Au or Pb) is about 7 fm, we assume that the typical
path length of a hard probe in the quark-gluon plasma is L =
10 fm. The length scale L is chosen to be slightly bigger than
a typical nuclear radius, because the effect of jet quenching
is particularly evident when the point of the jet production
is close to the system’s surface. In this case, one jet easily es-
capes into vacuum while the jet going in the opposite direction
propagates through the plasma and, in central collisions, its
path can be as long as the diameter of the nucleus. Substituting
these values into Eqs. (52) and (55), we find

�p2
T

∣∣non-eq

�p2
T

∣∣eq = 0.93. (56)

We note that this result is not very sensitive to the parameters
T0, t0, q̂0, and L, or the precise shape of the peak in Fig. 12.
Equation (56) shows that the nonequilibrium phase gives a
contribution to the radiative energy loss which is comparable
to that of the equilibrium phase. The conclusion is that the
glasma plays an important role in jet quenching, which con-
tradicts the commonly made assumption that the contribution
of the glasma phase to momentum broadening is negligible.

VI. SUMMARY, DISCUSSION, AND CONCLUSIONS

In this paper we have calculated the collisional energy loss
and momentum broadening of hard probes moving through
the strongly interacting matter from the earliest phase of a
heavy-ion collision. We have combined two approaches. The
medium that the hard probe interacts with is a glasma de-
scribed in terms of a CGC effective theory with a proper
time expansion. This description applies only at very early
times. We use a Fokker-Planck equation to describe the in-
teractions of the hard probe with the chromodynamic fields
populating the glasma. A Fokker-Planck description is valid
only at sufficiently long times that saturation of the collision
terms occurs. Therefore, there is an inherent conflict between
the assumptions that set the time scales for the two parts
of our calculational method. In addition, a Fokker-Planck
description requires gradient expansion type approximations,
and the CGC approach that we use assumes boost invariance
(see Secs. II and III for details). It is not a priori clear that all
of these different conditions can be satisfied simultaneously.

Our calculation allows us to directly verify the validity
of our method by comparing the range of proper times for
which the Fokker-Planck collision integrals saturate, and the
proper time expansion converges. In the region of space-time
between the two ions, postcollision, the glasma fields extend
widely across the transverse plane, but the regions over which
these fields are correlated are much smaller (see Fig. 1). This
structure provides a mechanism for the saturation of the time
dependence of q̂ and dE/dx, which occurs when a probe
leaves the region of the glasma where highly correlated fields
exist. The extent of the region of correlated fields is deter-
mined by the form of the τ expanded CGC correlators. If the
velocity of the probe allows it to escape from the region of
correlation before the τ expansion breaks down, the transport
coefficients determined from the Fokker-Planck equation can
saturate. When this behavior is observed, it indicates that the
approximations introduced in the two different components of
our method are simultaneously satisfied.

We have shown that in many cases saturation occurs within
the radius of convergence of the proper time expansion.
The key variable is the orientation of the probe’s velocity.
Saturation occurs earlier when a probe moves mostly per-
pendicularly to the beam axis. This means that the domain
where our approach works best coincides with the momentum
space midrapidity region y ≈ 0 where jet quenching is studied
experimentally. Our method can be used to obtain a reliable
estimate of q̂ with v⊥ close to v. Collisional energy loss is
much more difficult to calculate using our method. Saturation
is not really observed, and our calculations can give at best
order of magnitude estimates. However, collisional energy
loss is also less important because it is small in the kinematic
region of small or vanishing v‖.

The momentum broadening coefficient q̂ saturates at τ ≈
0.07 fm for v = v⊥ = 1. Its value depends somewhat on the
values of the saturation momentum Qs and infrared regulator
m: it grows with increasing Qs at fixed m, and decreases with
increasing m at fixed Qs. Using the typical values Qs = 2 GeV
and m = 0.2 GeV we find that q̂ obtains a maximal value of
approximately 6 GeV2/fm. The value of q̂ is only weakly
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dependent on the spatial rapidity η, and the procedure em-
ployed to regulate the Fokker-Planck collision integrals. We
have also calculated the total accumulated momentum broad-
ening and shown that the glasma phase gives a contribution
that is comparable to that of the long lasting equilibrium
phase. This result indicates that the standard practice of ig-
noring the contribution of the glasma phase to momentum
broadening is unjustified.

It is important to consider whether the systems produced
at RHIC and the LHC would be accurately described by
the method we use, which makes use of several simplifying
approximations. We apply the MV model, and a proper time
expansion, which means that we assume that the collision can
be described in terms of two infinitesimally thin nuclei with
infinite extent in the transverse plane, that collide at τ = 0 fm.
The glasma is produced at the moment of the collision, and
then evolves in time. This simplified picture does not take into
account the finite time required for the nuclei to pass through
each other, due to their finite width. This time will have an
effect on the dynamics of the system, and the effect will
be larger at lower collision energies. A theoretical approach
to include these effects has not been developed. At RHIC
energies the time for two nuclei to pass through each other
is of order 0.1 fm. At first glance this appears very troubling,
since the radius of convergence of the expansion we are using
is approximately 0.05–0.07 fm. However, as explained above,
our calculation assumes that the glasma is formed at τ = 0.
In reality, the glasma is not formed when the nuclei initially
make contact, and therefore it presumably does not make
sense to include the full duration of the time required for them
to pass through each other within the interval where the proper
time expansion is valid. In other words, the initial time in our
calculation might reasonably be taken to correspond to a time
somewhere between the point of initial contact, and the time
the nuclei have passed through each other. In any case, at LHC
energies the time required for two nuclei to pass through each
other is an order of magnitude smaller, and thus well within

the radius of convergence of the proper time expansion. We
also point out that in this paper we are primarily interested in
hard probes that propagate mostly in the transverse direction,
which are most relevant experimentally. The physics of high
pT probes is presumably not strongly affected by longitudinal
dynamics that is not correctly taken into account due to the
assumption of vanishing widths of colliding nuclei.

Let us comment on the possible role of Weibel instabilities
in the evolution of the glasma. Weibel instabilities appear in
an anisotropic system when there is a transmission of energy
from the plasma constituents to fields (see the review [21]).
In the approach we have used, quasiparticles are not present
and there are only soft classical fields, so there is no mech-
anism that could generate plasma instabilities. We note that
in Refs. [60,61] it has been proposed that the role of particles
could be played by the hard modes of the glasma, and unstable
modes are found as solutions to the Yang-Mills equation.
However, these calculations require that boost invariance is
broken, and the effect cannot be seen in our boost invariant
formalism.

Finally, we comment that it would be very interesting to
study the dependence of collisional energy loss and momen-
tum broadening on the impact parameter of the collision. This
calculation would provide verification of the dependence of
jet quenching on the collision centrality. In our previous paper
[43] we have developed a method to use a Woods-Saxon dis-
tribution for the nuclear density, and calculate field correlators
using a gradient expansion of the charge density. The analysis
is technically involved and is left for future work.
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