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Investigations into the characteristics and influences of nonequilibrium evolution
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In order to estimate qualitatively the influence of nonequilibrium evolution in relativistic heavy ion collisions,
we use the three-dimensional Ising model with Metropolis algorithm to study the evolution from nonequilibrium
to equilibrium on the phase boundary. The evolution of order parameter approaches its equilibrium value
exponentially, the same as that given by the Langevin equation. The average relaxation time is defined which is
demonstrated to well represent the relaxation time in dynamical equations. It is shown that the average relaxation
time at critical temperature diverges as the zth power of system size. The third and the fourth cumulants of
order parameter during the nonequilibrium evolution could be either positive or negative, depending on the
observation time, consistent with dynamical models at T > Tc. It is found that the nonequilibrium evolution
at T > Tc lasts very shortly, and the influence is weaker than that at T < Tc. Those qualitative features are
instructive to determine experimentally the critical point and the phase boundary of quantum chromodynamics.
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I. INTRODUCTION

One goal of current relativistic heavy ion collision experi-
ments is to map the quantum chromodynamics (QCD) phase
diagram as a function of temperature T and baryon chemi-
cal potential μB. QCD phase transition is a nonperturbative
process whose analytical solutions are difficult. Lattice QCD
is restricted to vanishing or small baryon chemical potential,
where the hadron phase smoothly transitions to the QGP
phase [1]. QCD-based models predict the phase transition is
first order at low T and high μB [2]. The first order phase
transition line ends at a critical point [3]. The critical sensitive
observables are high cumulants of conserved charges [4,5].

Currently, at the BNL Relativistic Heavy Ion Collider beam
energy scan, nonmonotonous behavior of the fourth cumu-
lants (kurtosis) of net protons has been observed [6]. While,
the third cumulants (skewness) of net protons are always
negative below the Poisson baseline [6], in contrast to the pos-
itive values obtained by the equilibrium expectations [7–9].
The negative values may be caused by nonequilibrium
effects [10–13].

Usually, equilibrium is assumed in lattice QCD and various
QCD-based models [10,11,14]. However, in reality, nonequi-
librium is inevitable. The fireball formed in a heavy ion
collision only spends a limited time. The initial state of the
fireball may reach, or not reach thermal equilibrium [15,16].

If the collision energy is high enough and the initial state
reaches the temperature needed for the deconfinement phase
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transition, the fireball transforms to a deconfined phase con-
sisting of quarks and gluons. In this case, the QGP phase is
formed and the system reaches equilibrium [16]. It is also pos-
sible that local equilibrium is reached and QGP is formed in
droplets. Another possibility is that some collisions in heavy
ion experiments do not experience the phase transition, and
the system does not reach equilibrium. Therefore, equilib-
rium, local equilibrium, and nonequilibrium are three possible
initial states.

In addition, at the critical region, even if the initial state
reaches equilibrium, the critical slowing down prevents the
system from equilibrium [14].

For the statistics of equilibrium state, phase transition is
due to spontaneous symmetry breaking. Systems sharing the
same symmetry have the same critical exponents, and belong
to a universality class. Critical points of both QCD and three-
dimensional (3D) Ising model belong to the Z(2) symmetry
group [17–21]. So in order to learn the critical phenomena of
QCD, people often refer to the 3D Ising model.

The singular part of the QCD free energy density can
be obtained by means of the scaling function of the Ising
model [10,22]. The mapping of the Ising phase diagram to
that of the QCD is also constructed [8]. The mapping makes
the temperature axis of the Ising model tangent to the first
order phase transition line of the QCD, ensuring the coinci-
dence of critical points and approximate coincidence of first
order phase transition lines [23]. High cumulants of conserved
charges in relativistic heavy ion collisions are approximately
corresponding to those of magnetization of 3D Ising model.

As far as nonequilibrium evolution is concerned, there are
no ready theories at present. The common feature of nonequi-
librium evolution is that relaxation time at the critical point
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diverges by the power of dynamic exponent. The dynamic
exponent is system and algorithm dependent.

Dynamical evolution equations, e.g., Langevin dynam-
ics [12,14] and various relaxational models [10,11], are
usually used to estimate the effects of nonequilibrium in the
QCD critical region. However, the solutions of dynamical
evolution equations are restricted to the region of crossover.

As we know, the numerical simulation of the Ising model
with Metropolis algorithm is suitable for studying nonequi-
librium evolution [24,25]. The relaxation processes can be
easily realized on the whole phase boundary. We find that the
nonequilibrium evolution of the order parameter in the Ising
model indeed approaches exponentially to its steady value, the
same as that of the Langevin equation [26]. The average relax-
ation time at critical temperature diverges as the zth power
of system size, the same as relaxation time in dynamical
equations [27]. Moreover, the third and fourth cumulants of
the order parameter on the crossover side oscillate around
zero, and then converge to their equilibrium values. The sign
of the third cumulants can be negative, consistent with those
obtained from Refs. [10,11].

In this paper, we first demonstrate the characteristics
of nonequilibrium evolution and introduce a time scale of
nonequilibrium evolution. Then the influences of nonequilib-
rium evolution on observables are presented. Section II gives
a short introduction to the Ising model and Metropolis algo-
rithm. In Sec. III, the dependences of the average relaxation
time on temperature, system size, and initial configuration are
investigated. Characteristics of nonequilibrium evolution are
presented. Section IV presents the time evolution of cumu-
lants of the order parameter. Influences of nonequilibrium on
observables are discussed. A summary is given in Sec. V.

II. ISING MODEL AND METROPOLIS ALGORITHM

The 3D Ising model considers a three-dimensional cubic
lattice composed of N = L3 sites, where L is called the system
size. Every site i is occupied by a spin, si. The spins can be
in one of two states, either spin-up, si = +1, or spin-down,
si = −1. The state of the system can be represented by a series
of spins, i.e.,

{s1, s2, . . . , sN }. (1)

A shorthand notation {si} is used in the following.
The spins at positions i and j interact with one another. For

a pair of parallel spins we assign an interaction energy of −J ,
while for a pair of anti-parallel spins we assign an interaction
energy of +J . Only interactions with the nearest neighbors are
considered.

The spins also interact with an external magnetic field H .
The total energy of a system of N spins with constant nearest-
neighbor interactions J placed in a uniform external field H is

E{si} = −J
∑
〈i j〉

sis j − H
N∑

i=1

si, (2)

where the notation 〈i j〉 restricts the sum to run over all the
nearest neighbor spins.

Then the partition function is

Z (T, H ) =
∑
{si}

exp(−E{si}/kBT ), (3)

where kB is Boltzmann’s constant. The free energy is evalu-
ated by

F (T, H ) = −kBT lnZ. (4)

The average total magnetization is

M = −
(

∂F

∂H

)
T

=
〈

N∑
i=1

si

〉
, (5)

and the per-spin magnetization is

m = 1

N

N∑
i=1

si. (6)

We here focus on the behavior of the Ising model as a
function of temperature T , which defines an energy scale
kBT . For temperatures kBT � J , the spin-spin interactions
are relatively strong, so that the spins tend to align with one
another, and |m| is close to unity. This is an ordered phase.
For temperatures kBT � J , the spin-spin interactions are rel-
atively weak, so that the spins are effectively noninteracting
and point up and down randomly, and |m| is close to zero.
This is a disordered phase. A phase transition from a high-
temperature disordered phase to a low-temperature ordered
phase is anticipated which is continuous and called the Curie
point. The Curie point is the critical point on the plane of
variables T and H . The temperature of the critical point is
denoted by Tc.

The value of Tc of the two-dimensional Ising model was
exactly calculated by Onsager in 1944 [28]. Tc of the 3D Ising
model is estimated by the finite size scaling theory and anal-
ysis of magnetization distribution. Kc = J/kBTc = 0.2216544
is obtained [29], which agrees very well with the results ob-
tained from the renormalization group theory [30]. Usually,
J and kB are set to 1, so Tc = 4.51, which is used in the
following.

Metropolis algorithm was introduced by Nicolas Metropo-
lis and his collaborators in their paper in 1953 [31]. The main
steps of Metropolis algorithm in the 3D Ising model are as
follows.

(1) Set the temperature T and the number of sites N .
(2) Generate the initial configuration.

Two kinds of initial configurations are usually used.
One is a random configuration with all spins pointing
randomly up or down, while the other one is a polar-
ized configuration with all spins pointing in the same
direction.

(3) Test a single spin whether it flips or not.
Whether a spin is flipped depends on the acceptance

probability A(u → v), which is given by

A(u → v) =
{

e−(Ev−Eu )/kBT if Ev − Eu > 0,

1 otherwise.
(7)
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FIG. 1. (a)–(d) The evolution of |m| with time at L = 60 for random initial configuration at temperatures T/Tc = 0.93, 0.99, 1.00, and 1.03,
respectively. The blue curve and the red curve represent two evolution processes randomly selected from the sample. (e)–(h) The distribution
of relaxation time τeq for random initial configuration at four temperatures. (i)–(l) The distribution of relaxation time τeq for polarized initial
configuration at four temperatures.

u and v represent the state of the system before and
after flipping this spin.

If A(u → v) = 1, the spin is flipped.
If A(u → v) < 1, a random number r (0 < r < 1)

is generated. If A(u → v) > r, the spin is flipped. Oth-
erwise, the spin keeps its original state.
The testing of one single spin is called a Monte Carlo
step.

(4) When N Monte Carlo steps are completed, every spin
in the lattice has been tested for flipping and we say
one sweep is completed. In this way, the configuration
of the system is updated once a sweep.

(5) After evolving enough sweeps, the magnetization
approaches a steady value and the system reaches
equilibrium. Thermodynamic quantities are usually
measured in the equilibrium state.

(6) Change the temperature or the system size and repeat
the above steps.

Metropolis algorithm flips one single spin at a step to get
a new state. The Wolff algorithm flips one cluster at a step.
While different algorithms give the same equilibrium state, the
ways in which the system comes to equilibrium are different.
In this sense, one algorithm acts as one dynamic, and realizes
one relaxation process from nonequilibrium to equilibrium.

The dynamic exponent z of the Metropolis algorithm and
the Wolff algorithm for 3D Ising model is 2.02 and 0.33,
respectively [32]. Due to the large dynamic exponent, the
Metropolis algorithm is more suitable for studying relaxation
processes [24,25].

By using the Metropolis algorithm, we simulate the evolu-
tion of the 3D Ising model from nonequilibrium to equilibrium
at vanished external field and obtain samples for the next
calculations.

III. CHARACTERISTICS OF NONEQUILIBRIUM
EVOLUTION

Starting from an initial configuration, the Ising system can
evolve to an equilibrium state of a given temperature sponta-
neously. The evolution before reaching equilibrium is called
the relaxation process, or nonequilibrium evolution.

Starting from random configurations, we simulate 5000
evolution processes for each temperature at a system size
L = 60. Figures 1(a)–1(d) shows the time evolution of |m|
(the absolute value of m is used because the sign of the
magnetization is random at H = 0) at four temperatures, i.e.,
T/Tc = 0.93, 0.99, 1.00, and 1.03, respectively. The first two
temperatures are representative values on the first order phase
transition line near the critical point. T/Tc = 1.00 represents
the critical point. T/Tc = 1.03 is a representative value on the
crossover side. The horizontal axis is time which is defined
by the number of sweeps introduced in the fourth step of
Metropolis algorithm in Sec. II. The red curve and the blue
curve are the results of two evolution processes randomly
selected from the sample.

In Fig. 1(a), |m| shows an increasing trend at the beginning,
and then gets close to a steady value. After that, |m| fluctuates
slightly around the steady value. The steady value represents
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an equilibrium state, and the approaching to the steady value
represents the relaxation to equilibrium.

We use μ to denote the steady value, i.e., the equilib-
rium expectation. When the difference with the equilibrium
expectation is considerably larger than the root of the vari-
ance at equilibrium σ = 〈(x − μ)2〉1/2, the system is far from
equilibrium.

The period of time from nonequilibrium to equilibrium is
called the relaxation time [32,33]. In our simulation, relax-
ation time of the ith evolution process τ i

eq is estimated by the
time when the value of |m| enters the interval (μ − σ , μ + σ ),
i.e., the band of thermal fluctuations around the equilibrium
expectation.

Relaxation time of the ith process defined above represents
the number of iterations needed to achieve equilibrium. One
iteration is counted after each of the spins is examined to flip
or not by given dynamics. We count the number of iterations,
which is an integer. The number of iterations presents the
steps, i.e., time, that the system needs to achieve equilibrium.

In Fig. 1(a) the steady values of the red curve and the blue
curve are the same, but relaxation time of the red curve is
much longer than the blue curve. The difference of relaxation
time between the red curve and the blue curve is significant at
low temperature as Fig. 1(a) shows and seems diminishing at
high temperature as Figs. 1(b)–1(d) shows. In order to show
the difference of relaxation time of different evolution pro-
cesses, the distributions of τeq are plotted in Figs. 1(e)–1(h).
For the sake of comparison, the horizontal ordinate of the four
figures are set to the same.

At the temperature T/Tc = 0.93, the distribution of τeq

has a long tail, as shown in Fig. 1(e). The long tail means
there are a fraction of evolution processes whose relaxation
time is very long. When the temperature gets closer to Tc, the
distribution gets narrow, as shown in Fig. 1(f). At the critical
temperature, the distribution gets wide again, as Fig. 1(g)
shows. The number of systems with a long relaxation time
increases at the critical temperature. On the crossover side,
i.e., T/Tc = 1.03, the width of the distribution is the smallest
and the distribution is concentrated at very short relaxation
time, as Fig. 1(h) shows.

To quantify the relaxation time of different evolution pro-
cesses, we define the average relaxation time as

τ̄eq = 1

n

n∑
i=1

τ i
eq, (8)

where n is the total number of evolution processes, τ i
eq is relax-

ation time of the ith evolution process. At τ̄eq, not all systems
are at equilibrium. There is still a proportion of systems in
nonequilibrium state. τ̄eq should represent the relaxation time
τ

dyn
eq in dynamical equations.

Generally, the relaxation time depends on the mechanism
of dynamic process, the system size, temperature, initial con-
figurations, and so on. In Fig. 2 we systematically illustrate
how the average relaxation time varies with temperature, the
system size and the initial configuration.

As Fig. 2(a) shows, in the neighborhood of Tc, the average
relaxation time has a peak which increases with the system

FIG. 2. Average relaxation time τ̄eq as a function of temperature
(a) at system sizes L = 50 (blue circles) and 60 (red squares) starting
from random initial configuration; (b) for random initial configura-
tions (red squares) and polarized initial configurations (blue circles)
at a fixed system size L = 60.

size. Figure 2(b) also shows peaks around the critical temper-
ature no matter what initial configuration is.

Due to a critical slowing down, the relaxation time near Tc

for an infinite system size is expected to diverge as [27]

τ dyn
eq ∝ ξ z ∝ |T − Tc|−zν, (9)

where ν is the critical exponent of correlation length. z is the
dynamic exponent, which governs the dynamic universality
class [34]. For a finite system size, ξ ∼ L, Eq. (9) reads

τ dyn
eq ∝ Lz. (10)

This gives the power-law behavior of the relaxation time at Tc.
In order to test the power-law behavior of τ̄eq, the log-log

plot of τ̄eq versus system size is presented in Fig. 3. Its linear
region is well fitted by a straight line with slope equal to
2.06 ± 0.03, consistent with Refs. [32,35,36]. τ̄eq of critical
temperature indeed diverges as the z-th power of system size,
the same as τ

dyn
eq .

We also examine the dependence of the standard error
and the relative standard error of τ eq on system size. The
standard error increases with system size, and the relative
standard error is almost constant. This indicates a violation of
self-averaging at the critical temperature [37]. The violation of
self-averaging appears to be a common property at criticality.

FIG. 3. The finite size scaling of average relaxation time at criti-
cal temperature. The straight line is a linear fit.
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In Fig. 2(a), for a fixed system size, τ eq shows a decreasing
trend with increasing temperature on both sides of Tc except
the neighborhood of Tc. This trend originates from that the
acceptance probability A(u → v) in Eq. (7) is an increasing
function of temperature T . Higher temperature, higher accep-
tance probability and then shorter relaxation time.

For T > Tc, the average relaxation time is weakly de-
pendent on the system size and the initial configuration, as
demonstrated in both Figs. 2(a) and 2(b). No matter what
the system size is and what the initial configuration is, the
average relaxation time is always short and has a trend towards
zero. This is due to a larger acceptance probability for higher
temperature. With larger acceptance probability, it is easier for
the system to change from one configuration to another and
hence the relaxation time is extremely short.

In contrary, for T < Tc, the average relaxation time has
strong dependences on system size and initial configuration.
First, Fig. 2(a) demonstrates that the larger the system size,
the larger the average relaxation time. It is natural that a larger
system needs more time to get equilibrium. Second, Fig. 2(b)
demonstrates that the average relaxation time of random con-
figurations is much longer than polarized configurations. This
is because the equilibrium state of T < Tc is close to the
ordered phase. Polarized configurations are ordered, and ran-
dom configurations are disordered. So the polarized initial
configuration evolves to an ordered state faster than that of
random initial configuration.

The effect of initial configuration is also demonstrated by
the distribution of τeq in the second row (for random initial
configuration) and the third row (for polarized initial configu-
ration) in Fig. 1, respectively. Wide distributions which extend
to large τeq result in large τ̄eq, while narrow distributions
which are concentrated at small τeq result in small τ̄eq.

It is natural that the further the initial configuration deviates
from the equilibrium state, the longer the relaxation time is.
Therefore, on the left side of Tc, random configuration has
longer average relaxation time, while on the right side of Tc

polarized configuration has longer average relaxation time, as
demonstrated in Fig. 2(b).

In order to observe the maximum influences of nonequilib-
rium, initial configurations that have longer nonequilibrium
evolution are selected, i.e., random initial configuration for
T � Tc and polarized initial configuration for T > Tc are used
in the following.

IV. INFLUENCES OF NONEQUILIBRIUM EVOLUTION

In this section the influences of nonequilibrium evolution
on observables are demonstrated in two ways, i.e., how ob-
servables vary with evolution time and with temperature.

It is shown in the last section that the distribution of
relaxation time varies with temperature. Even for a fixed
temperature and a fixed system size, relaxation time of two
simulations is likely to be different, as the red curve and
the blue curve show in Fig. 1(a). If measurements are made
at a time when not all systems reach thermal equilibrium,
there is a certain proportion of nonequilibrium systems in the
sample, very similar to the initial states of relativistic heavy
ion collisions.

High order cumulants of order parameters are sensitive
observables in the search of a critical point. Letting X = |m|,
δX = |m| − 〈|m|〉, the first four cumulants read

C1 = 〈X 〉, (11)

C2 = 〈(δX )2〉, (12)

C3 = 〈(δX )3〉, (13)

C4 = 〈(δX )4〉 − 3〈(δX )2〉2. (14)

C1 is the mean value of order parameter distribution. C2 is
the variance of the distribution. C3, C4 are related to skew-
ness and kurtosis, which can quantify non-Gaussianity of the
distribution.

Figure 4 demonstrates how cumulants vary with the evo-
lution time at two given temperatures. The evolution starts at
t = 0. At t = 0, Cn=1,2,3,4 in Figs. 4(a)–4(d) are all zero due
to random initial configuration, while C1 is 1 and C2,3,4 are
zero due to polarized initial configuration as Figs. 4(e)–4(h)
shows.

The time evolution of C1 in Figs. 4(a) and 4(e) demon-
strates a similar behavior with Langevin dynamics, i.e.,
exponentially approaching the equilibrium value which is the
solution of a linear differential equation [26]. Therefore, the
single-spin-flip mechanism in the Metropolis algorithm equiv-
alently describes the relaxation in Langevin dynamics.

At the temperature on the first order phase transition line,
i.e., T/Tc = 0.99, C1 varies monotonously with time until it
approaches a steady value, as Fig. 4(a) shows. The steady
value is the equilibrium expectation. In Fig. 4(b), C2 increases
first and decreases later, forming a peak during the evolution.
In Figs. 4(c) and 4(d), both C3 and C4 experience oscillations
before approaching a steady value. The oscillation results in
sign changes during the evolution. The sign of C3 and C4

can be either positive or negative, depending on the evolution
time.

At the temperature on the crossover side, i.e., T/Tc = 1.01,
the trend of the nonequilibrium evolution of cumulants is
similar to that of T/Tc = 0.99, as Figs. 4(e)–4(h) shows. C1

varies monotonously with time. C2 experiences nonmonotonic
changes before approaching a steady value. C3 also shows a
sign change during the evolution, similar to Fig. 4(c). The sign
is negative at first and then becomes positive, in contrary to
Fig. 4(c). C4 in Fig. 4(h) also shows sign change, being nega-
tive first and then positive, in a similar pattern to Fig. 4(d). The
sign of C3 and C4 can be either positive or negative, depending
on the evolution time. The sign-change behavior of C3 and C4

on the crossover side is consistent with Refs. [10,11].
Apart from the trend, the nonequilibrium evolution of cu-

mulants on both sides of Tc has big differences in two aspects.
First, the time needed to approach equilibrium expectations
for C3 is about 4000 at T/Tc = 0.99 and is less than 2000 at
T/Tc = 1.01. The difference is more than double. That is to
say, it is more difficult for systems at T < Tc to achieve equi-
librium in the same amount of time. Second, the magnitude
of the oscillation in C3 and C4 at T < Tc is much larger than
that at T > Tc, differing by about two orders of magnitude.
It means that, when systems on both sides of Tc suffer from
a nonequilibrium effect, systems on the low temperature side
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FIG. 4. The time evolution of cumulants of |m| at a given system size L = 60 at T/Tc = 0.99 (upper row) and 1.01 (lower row). Random
initial configuration is used at T/Tc = 0.99 and polarized initial configuration is used at T/Tc = 1.01.

deviate further from equilibrium expectations than those on
the high temperature side.

Since the sign of C3 and C4 during the nonequilibrium evo-
lution depends on the evolution time, two observation times
are used as examples to demonstrate in Fig. 5 how observables
vary with temperature for a given observation time.

In Fig. 5, cumulants in the upper row are measured at
τ̄eq and those in the lower row are measured at 3τ̄eq. The
equilibrium cumulants denoted by red circles are obtained
after 250 000 Monte Carlo sweeps, which ensures that all the
systems in the sample reach equilibrium. The blue triangles
represent the measured value of cumulants at a given observa-
tion time during the nonequilibrium evolution. We call them
nonequilibrium cumulants.

From the upper row of Fig. 5 we can see that the blue
triangles are nearly coincident with the red circles at T > Tc

for all Cn=1,2,3,4. Near Tc, the blue triangles start to deviate

from the red circles. It is more clearly seen in the insert
map of each figure which focuses on the neighbourhood of
Tc. The deviations become larger at T < Tc. It means that
nonequilibrium cumulants observed at τ̄eq are not much dif-
ferent from equilibrium cumulants on the high temperature
side. The deviations get larger at low temperature. That is to
say, the low temperature system is more largely affected by
the nonequilibrium effect.

By comparing different orders of Cn, we find that the devia-
tion of nonequilibrium cumulants from equilibrium cumulants
is modest at low order, especially the first cumulant C1. Cumu-
lants of higher order have greater deviations from equilibrium
fluctuations.

As time goes by, more systems are expected to reach
equilibrium, and the impact of nonequilibrium should become
smaller. The lower row of Fig. 5 which is measured at a later
time 3τ̄eq indeed shows the expected trend, i.e., more points

FIG. 5. Nonequilibrium cumulants of |m| at a given system size L = 60 measured at τ̄eq (upper row) and 3τ̄eq (lower row), respectively.
Random initial configuration is used for T � Tc and polarized initial configuration is used for T > Tc.
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coincide, including all points at T > Tc and parts of points at
T < Tc. Even in the neighborhood of Tc almost no deviation
is seen as shown in the insert map of each figure. Deviations
only exist for parts of points at T < Tc.

At an observation time of 3τ̄eq, nearly all points of C1

coincide. Deviations of C2 are modest. Deviations increase
drastically in C3 and C4. This proves that relaxation time
varies with observables. Relaxation times for higher order
cumulants are larger, consistent with expectations [10]. When
low order cumulants have reached their equilibrium expecta-
tions, high order cumulants may have not reached equilibrium
expectations yet.

Observation time of 3τ̄eq is enough for most temperatures.
For T � 0.97 Tc blue points still deviate from red points as
shown in Figs. 5(f)–5(h). This may be caused by the long tail
of the τeq distribution at low temperature [see Fig. 1(e)].

V. SUMMARY AND DISCUSSION

In this paper we simulate the nonequilibrium evolution of
the 3D Ising model with Metropolis algorithm at zero external
magnetic field. The simulation well produces the dynamical
features of nonequilibrium evolution on the phase boundary.

The relaxation time of each evolution is defined as the
number of iterations needed to achieve equilibrium. It repre-
sents the steps that the system needs to achieve equilibrium.
First, the trend of the order parameter approaching a steady
value is consistent with Langevin dynamics. It demonstrates
that the number of iterations in the numerical simulation is
equivalent to evolution time in reality. Second, the average
relaxation time at critical temperature indeed diverges as the
theoretical prediction Eq. (10). It indicates that τ̄eq exactly
corresponds to relaxation time τ

dyn
eq in dynamical equations.

It is found that the average relaxation time depends on the
system size and temperature. In average, the average relax-
ation time is short at T > Tc, almost independent of initial
configurations. At T < Tc, the average relaxation time is much

longer than that of T > Tc when the initial configuration is far
from the equilibrium state.

The time evolution of the first four cumulants of order
parameter is presented. For both T < Tc and T > Tc, C3 and
C4 show oscillations and could be either positive or negative,
depending on the observation time, which is consistent with
the results of dynamical models.

Since the relaxation time at T < Tc is much longer than that
at T > Tc, it is easy to approach equilibrium at the crossover
side. While on the line of the first order phase transition,
the system is more difficult to achieve equilibrium and is
more susceptible to nonequilibrium. Moreover, the influence
of nonequilibrium on observables on the crossover side is
much weaker than that on the line of the first order phase
transition.

Those qualitative features mentioned above imply that the
influence of nonequilibrium evolution in QCD system is most
probably negligible at T > Tc, i.e., on the crossover side, even
if there is a fraction of nonequilibrium initial states in rela-
tivistic heavy ion collisions. While, the influence should be
treated with more caution at T < Tc, i.e., on the line of the first
order phase transition. Indeed, the sign of the third cumulant
of order parameter may be negative due to the evolution of
nonequilibrium, consistent with the STAR measurements.

By the way, for the nonequilibrium evolution from one
equilibrium state to another equilibrium state, such as a high
temperature state is cooled to a low temperature state, we will
study in a coming paper.
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