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Impact of fragment formation on shear viscosity in the nuclear liquid-gas phase transition region
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Within the improved quantum molecular dynamics (ImQMD) model we follow the evolution of nuclear matter
for planar Couette flow in a periodic box. We focus on the region of liquid-gas phase transition and extract the
shear viscosity coefficient from the local stress tensor, directly following the viscosity definition. By switching
on and off the mean field and thus inducing the phase transition, we are able to observe the impact of clumping
in the phase transition region on the viscosity.
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I. INTRODUCTION

Shear viscosity is not only one of the crucial bulk proper-
ties of the liquids and gases in our surroundings, but also it
is important for the study of strongly interacting matter, such
as quark gluon plasma (QGP) in the early Universe and matter
inside neutron stars [1–8]. Strongly interacting matter can also
undergo liquid-gas (LG) phase transitions in lower energy
heavy-ion collisions [9–21]. Compilation of data for different
substances [3] demonstrates a drop of the shear viscosity in
the region of a phase transition, when the entropy density is
employed as a universal reference. One reason for the drop
could be long-range correlations developing in the transition
region. When scaled with entropy density, the reduced shear
viscosity of strongly interacting matter appears particularly
low in the dense stage of ultrarelativistic collisions [3,4,6,22–
24], which is often tied to the proximity of the system to the
QGP phase transition.

In the hadronic regime, the shear viscosity of nuclear
matter around normal density was recently inferred from γ

decay of the isovector giant dipole resonance populated in
a fusion-evaporation reaction [25,26]. In intermediate en-
ergy heavy-ion collisions, shear viscosity for nuclear matter
was assessed [27] by interpreting stopping data in terms of
the Boltzmann-Uhlenbeck-Uehling (BUU) equation [28,29],
rooted in the Landau theory, with adjustments in the BUU
equation pertaining to supranormal densities and moderate
temperatures. Viscosity in the LG region was addressed with
a combination of Maxwell construction and relaxation time
approximation in [30]. Quantum molecular dynamics (QMD)
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models have also been used [31–33] to provide background
circumstances of intermediate-energy collisions, in corre-
lating entropy density and shear viscosity there, with the
viscosity estimated either in terms of the mean free path or
in kinetic theory [28].

In the previous investigations, the peculiar impact of the
LG phase transition, of growing long-range correlations, on
the shear viscosity, was never explored. In the BUU approach,
uniform density is imposed and momentum is transported
by movement of nucleons independently [28,29,34,35]. In
the Maxwell construction, the shear viscosity coefficient in
the phase coexistence region is a linear combination of the
coefficients for the two uniform phases [30], higher at a given
density and temperature, than without the transition. In this
work, we set out to the determine the shear viscosity in the
LG phase transition region, while accounting for correlations
that underlie the fragment formation in low-density matter.
We employ the so-called an improved QMD (ImQMD) model
[36,37], which provides a natural framework for the study of
correlations. We enclose a neutron-proton symmetric system
in a periodic box, establish a planar Couette flow inside, and
determine the shear viscosity coefficient from the momentum
flux across the box, following the definition of the coefficient.
This approach is then similar to that in experiments, and it
works without equilibrium assumptions. Nonetheless, QMD-
type models struggle, more than the BUU-type, in enforcing
the Pauli principle for nucleon-nucleon (N-N) collisions [38].
This can lead to undesirable effects in long-term stationary
calculations of transport coefficients, as the latter are quite
sensitive to Pauli blocking. Benefiting from the proximity of
the system to equilibrium, however, we know the blocking
factors better than they can be estimated in a QMD model,
and we exploit that knowledge to circumvent the difficulty in
the ImQMD model.
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The present article is organized as follows: In Sec. II, we
introduce our simulation model and the analysis framework
for extracting the viscosity. In Sec. III A, we present results
for the shear viscosity coefficient of nuclear matter, obtained
with and without the mean field interactions turned on, and
extracted using the SLLOD algorithm which will be explained
in next section. Without the mean field interactions, the LG
phase transition disappears. Section III B supplements the
results of Sec. III A with more discussion of the LG phase
transition and with analysis of the correlations giving rise to
the fragments. Section IV is dedicated to conclusions.

II. NUCLEAR SYSTEM AND ANALYSIS METHOD

A. ImQMD model

Two types of models are employed in practice to simulate
heavy-ion collisions and to extrapolate conclusions to the limit
of infinite nuclear matter. One, BUU type [39], solves directly
the BUU equation. Another, QMD type [37,40,41], follows
molecular dynamics that incorporates elements of the BUU
equation. The BUU models follow nucleon single-particle
distributions only, while the QMD models include some mult-
inucleon correlations and are thus better suited for the goals
of the present work. From the latter type, we choose the im-
proved quantum molecular dynamic (ImQMD) model [36,37]
for our calculations.

In the ImQMD, we employ a potential energy density
[36,37], with the spin-orbit term dropped; specifically,

Vloc = α

2

ρ2

ρ0
+ β

γ + 1
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ρ
γ

0

+ gsur

2ρ0
(∇ρ)2

+ gτ
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[∇(ρn − ρp)]2 + Cs

2ρ0
ρ2 δ2, (1)

where ρ = ρn + ρp is the net nucleon density, ρn and ρp are
the proton and neutron densities, respectively, and δ = (ρn −
ρp)/ρ is the normalized asymmetry of neutron and proton.
The normal density is ρ0 = 0.16 fm−3.

The Skyrme density functional with interactions such as
Eq. (1), as well as other approaches to nuclear systems that
aim at a level of realism, yield the aforementioned liquid-gas
phase transition at subnormal densities for near-symmetric
nuclear matter. In the model of the nuclear-matter system, the
Coulomb interactions are switched off and the near-symmetric
matter has comparable numbers of neutrons and protons. But
in this work, we also check the effect of Coulomb inter-
actions. When uniform fermionic liquid and gas phases are
assumed, they may coexist in equilibrium with each other.
At the ground state (T = 0), the two phases are nuclear
matter at normal density and vacuum. The difference in the
densities of the model phases in equilibrium shrinks as the
temperature increases and the difference disappears as both
phases reach critical density and temperature, ρc ≈ 0.4ρ0 and
Tc ≈ 18 MeV [10,11], respectively. Since fluctuations exist in
a nonequilibrium nuclear system, the phase transition picture
becomes more complex, with fragments forming at lower
temperatures in the phase transition region and the fragment
formation probability presenting a U shape as a function of
fragment mass; e.g., see Ref. [42]. The light-mass arm of the

U shape represents the gas phase and the heavy-mass arm
represents the liquid phase.

With our focus on the shear viscosity of infinite symmetric
nuclear matter, we set up a periodic cubic box as in Ref. [38].
In our simulations, we use a fixed number of nucleons A =
600. The box size is adjusted to yield a desired average den-
sity. The width of the Gaussian wave packets that represent
the nucleons, which has some impacts on the fragments that
are formed in dilute matter, is set at σ = 2 fm. For simplicity,
the N-N cross section is fixed at 40 mb in this paper. Even
though the value of shear viscosity increases with the decrease
of N-N cross section as shown in our previous work [32] as
well as our check in this work, the choice of 40 mb for the N-N
cross section does not change our conclusion of the present
work. In QMD models, the Pauli blocking for N-N collisions
is normally calculated according to the wave packets, with the
blocking fluctuating at low temperatures and the momentum
distributions gradually evolving towards Boltzmann, rather
than Fermi-Dirac form [38]. Benefiting from the proximity of
our systems to a local equilibrium, we circumvent the problem
using the local equilibrium Fermi-Dirac distributions, corre-
sponding to the local nucleon and kinetic energy density from
which collective motion is deducted, in the blocking for the
collisions. A similar procedure was employed in the transport-
code comparison [38]. And in the following, the temperature
is an input parameter of the ImQMD model, and initial mo-
mentum distributions of the nucleon are determined by the
Fermi-Dirac distribution at finite temperature as performed in
our earlier thermal IQMD (ThIQMD) model [31,43].

In this work, we consider cases both without and with
mean field. In the case without mean field and in the cascade
mode, the temperature of the system did not change during
the process of simulation. However, when one turns on the
mean field, the nucleon potential and kinetic energy changed
due to the fragment formation. Then the system heated up,
and we needed to adjust this transient state temperature to the
initial temperature by introducing the factor h which can be
nominally positive and less than 1. Here the transient state
temperature is determined by fitting the momentum distribu-
tion with a Fermi-Dirac function at certain times. If one can
find that the transient state temperature increases as time, we
need a friction factor h to cool the system. Also the h is only
used for a period of time (the length of time depends on the
initial density and temperature). One needs to adjust it to an
appropriate value, e.g., h = 0.999 for density of 0.1ρ0 and
T = 6 MeV. In practice, the h is applied when the box system
is close to equilibrium, and then the box system cools down to
initial temperature and reaches equilibrium again after some
time evolution. One problem for our calculations is that the
term can lead to phase space occupations inconsistent with the
Pauli principle for fermions. We resolve that by employing the
term only at high momenta and/or low spatial densities, under
the conditions of low phase-space density.

B. Gaussian thermostated SLLOD algorithm

The SLLOD algorithm belongs to common methodologies
of nonquilibrium molecular dynamics (NEMD) calculations.
It was named by Evans and Morriss [44] and is related to
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the dynamics with the (artificial) strain rate algorithm for
nonequilibrium molecular dynamics calculation, and has been
extensively applied to predict the rheological properties of real
fluids [44,45].

In the SLLOD algorithm, a planar Couette flow field is
applied to the system, with a shear rate γ̇ = ∂vx/∂y. When
the shear is presented, the periodic boundary conditions are
modified to those of Lees and Edwards [46], consistent with
constant shear throughout space. The shear viscosity coeffi-
cient is computed from [45]

η = −〈Pxy〉
γ̇

, (2)

where 〈· · · 〉 denotes ensemble average and the stress tensor is
given by [47]

Pαβ = Pcont
αβ + Pcoll

αβ . (3)

There are two contributions to the stress tensor, the continuous
one and the collision impulse one. The continuous contribu-
tion to the stress tensor is given by

Pcont
αβ (t ) = 1

V

∫
d3r Pαβ (�r, t ) (α, β = x, y, z). (4)

Here, V is the volume of the simulation box and Pαβ (�r, t ) orig-
inates from summing over the wave packets and is formally
defined as [48]
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+ 1
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Here, �F are two- and three-body forces that are continuous
as a function of time. The Latin indices pertain to the particles
and the first index in the force represents the particle on which
the force acts, and the remaining particle indices indicate the
particles that give rise to that force. The relative positions of
two particles are �Ri j = �ri − �r j . In QMD-type models, contri-
bution to the density associated with particle i can be written
in terms of a wave packet as

ρi(�r) = 1

(2πσ 2)3/2
exp

[
− (�r − �ri )2

2σ 2

]
. (6)

During collisions between nucleons, momentum is trans-
ported through action of impulse forces. All collisions within
time interval �t yield a time-averaged contribution to the
stress tensor equal to [47]

Pcoll
αβ (t ) = 1

V

Ncoll∑
i

�pi1α

�t
(ri1β − ri2β ). (7)

Here, the summation is over nucleon-nucleon collisions, with
the two nucleons in the collision labeled as 1 and 2. The factor
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FIG. 1. The xy element of the stress tensor, as a function of time
at the density of 0.1ρ0, for different temperatures in the simulations.

�pi1α is the α component of the impulse on nucleon 1 in the
collision. The factor (ri1β − ri2β ) is the β component of the
displacement vector over which the momentum is moved in
the collision.

Figure 1 shows the evolution of the off-diagonal element
of the stress tensor for the system, first allowing the system
to equilibrate during the first 400 fm/c and then applying the
shear of the Couette flow within the box, still to be discussed.
Without shear, the element fluctuates around zero. After the
shear is switched on, the element quickly rises and stabilizes
after about 100 fm/c. The collision contribution to the element
is very small, as illustrated for different densities in Fig. 2. The
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FIG. 2. Collision contribution to the off-diagonal stress tensor
element, as a function of time at the densities of 0.1ρ0 (a) and 0.8ρ0

(b), for different temperatures in the simulations.
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FIG. 3. Deduced shear viscosity as function of the shear rate γ̇

applied within the SLLOD algorithm, in the system at the density
of 0.2ρ0 and temperature T = 10 MeV, when no mean field is
employed.

fluctuations are stronger at the higher density, but still very
much near zero.

With the applied planar Couette flow field, the centroids of
nucleonic wave-packets satisfy the SLLOD equations [45]:

d�ri

dt
= �pi

mi
+ γ̇ yix̂, (8)

d �pi

dt
= �Fi − γ̇ pyix̂. (9)

The construction is that of introducing a local velocity with
the component in the x direction changing linearly in the y di-
rection. The γ̇ factor regulates the pace of the velocity change
in the y direction. This, together with the Lees-Edwards pe-
riodic boundary condition, allows one to combine a uniform
shear with periodicity.

One should notice that the shear rate γ̇ can neither be too
weak, nor too strong [49,50]. If it is too weak, the induced
off-diagonal stress tensor elements will have a hard time com-
peting with numerical inaccuracies. If it is too strong, the
response of the system will cease to be linear in the shear.
In either case, the extraction of the shear viscosity is likely to
fail. In Fig. 3 we show the extracted viscosity as a function
of the shear rate in an exemplary system at the density of
0.2ρ0 and temperature T = 10 MeV, when no mean field is
applied. In most of the calculations, we employ the rate of γ̇ =
0.002 c/fm when the system reaches equilibrium.

III. RESULTS AND DISCUSSION

A. Impact of fragment formation on shear viscosity

For a viscoelastic system, relaxation time is required for
the establishment of the stationary state. For our simulations,
shear rate γ̇ is implemented in the system at 400 fm/c as
shown in Fig. 1. Stress tensor Pxy responds to the shear rate
and −〈Pxy〉 increases with time and reaches a constant for
some times. To respond to shear rate γ̇ (t ), which actually is
set to be constant, stress tensor Pxy(t ) can be expressed as [45]

Pxy(t ) = −
∫ t

t0

ηM (t − s)γ̇ (s)ds, (10)
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FIG. 4. Relaxation time as function of temperature at different
densities in the calculations without (a) and with (b) mean field.

where ηM (t ) is a memory function and t0 is the time for
implementation of shear rate. For the Maxwell model of vis-
coelasticity, the memory function is identified as [45,51,52]

ηM (t ) = G exp(−t/τ ), (11)

where G is the infinite frequency shear modulus and τ is
relaxation time. With Eqs. (10) and (11), one can get simple
expression for the stress tensor:

Pxy(t ) = A + B exp(−t/τ ). (12)

By fitting the curves as in Fig. 1 with Eq. (12), one can get
the relaxation time, which is shown in Fig. 4. Figures 4(a)
and 4(b) display a decreasing relaxation time with increasing
temperature. In Fig. 4(b), it is found that at low T and density
of the low energy nuclear LG phase transition domain the re-
laxation time is reduced. For a hadron gas or hadron mixture,
as shown in Refs. [53–55], the relaxation time has the same
order of magnitude but lies within a different temperature
region.

In Fig. 5 we show our major results, i.e., the shear viscosity
coefficient calculated for symmetric nuclear matter at differ-
ent densities, using the SLLOD algorithm, with and without
mean field. Our treatment of the Pauli principle allows us to
push the calculations down to relatively low temperatures,
but it does not eliminate completely the problems around
the immediate vicinity of zero temperature, and we restrict
ourselves to T � 4 MeV.

Without the mean field, the viscosity is that of a gas of
nucleons. Comparing with the results elsewhere, ours include
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FIG. 5. Same as Fig. 4 but for shear viscosity.

collisional contributions, but these are small in the density
region we consider, cf. Fig. 2. Because of this, our results
in Fig. 5(a), obtained without MF, are similar to those else-
where, such as in Ref. [28]. In the low temperature region, the
nucleonic gas becomes degenerate, the Pauli blocking begins
to play a role for collisions, and the shear viscosity begins
to increase with the decreasing temperature in the degener-
ate gas. The latter is due to the increase in the mean free
path because collisions become increasingly blocked as tem-
perature decreases. And in the high temperature region, the
purely nucleonic shear viscosity coefficient slowly increases
with temperature due to the increase in nucleon velocities
with temperature. With MF included, our results for shear
viscosity in Fig. 5(b) are similar to those without MF at higher
temperatures and densities. To facilitate the comparison, we
show in Fig. 6 the ratio of the shear viscosity obtained with
mean field over that obtained without, as a function of tem-
perature at given average densities. The ratio is close to unity
at temperatures in excess of ≈12 MeV and at densities closer
to the normal density ρ0. At low densities, below 0.4ρ0 and
temperatures less than 10 MeV, we observe a strong reduction
in the shear viscosity when the mean field is included. In our
system, a strong reduction in the shear viscosity occurs in
the region of the phase transition and can be understood in
terms of formation of separated fragments that move slowly,
absorb most of the mass in the system, and stall the transport
of momentum. By moving slowly, the fragments play only a
passive role in transporting the momentum. The latter gets pri-
marily transported by the nucleons in the gas phase, but these
rather collide with the fragments than with each other, which
shortens their mean free path. In addition, with most mass
in the fragments, the role of the Pauli principle in the gas is
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FIG. 6. The ratio of the shear viscosity with mean field to that
without as a function of temperature at different average densities.

reduced, additionally reducing the path. At higher densi-
ties, the fragments connect and the low density gas phase
is contained in voids in the liquid, so momentum transport
can progress. Any role of the Pauli principle is restored.
Moreover, while the fragments form, the long-range Coulomb
interaction may have effect on shear viscosity. To check,
in Fig. 7 the Coulomb interaction is taken into account.
It is found that, in the region of low temperature, shear
viscosity is reduced by the Coulomb interaction. Imag-
ining two fluid layers passing from one to another, the
Coulomb interaction of among protons, which is repulsive,
will reduce momentum transformation or momentum flux
between two layers, which will decrease shear viscosity. In
the low temperature region, the Coulomb interaction could
be important in comparison with thermal motion. With in-
creasing temperature, the Coulomb interaction effect becomes
smaller since nuclear matter at higher temperature is more
uniform and the weight of Coulomb interaction becomes
negligible. Based on the above arguments, we can explain
the temperature dependent Coulomb correction to shear
viscosity.

It is interesting to note that for the quark gluon plasma, by
taking into account interaction, shear viscosity faces a strong
suppression in the low temperature region of the quark hadron
phase transition domain going from T = 0.300 to 0.120 GeV
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FIG. 7. Shear viscosity as function of temperature in the calcula-
tions without and with the Coulomb interaction.
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TABLE I. η/s of different atomic and molecular systems: he-
lium, nitrogen and H2O in certain ranges of temperature and
pressure [3].

System T (K) Pressure (MPa) η/s (h̄/4π )

Helium [3] 2–20 0.1–1 8.8–126
Nitrogen [3] 50–600 0.1–10 11.9–7000
H2O [3] 300–1200 10–100 25.5–377

in contrast with the noninteracting QGP case [56]. Our results
for the reduction of shear viscosity are quite similar to this
QGP phase transition even though our system is for the LG
system.

For a simplified picture, by utilizing the relation [57]

s = g

(2π h̄)3V

∫
[ f ln f + (1 − f ) ln(1 − f )]d3 p d3r, (13)

one can get the entropy density (s), where g = 4 is spin-
isospin degeneracy and f is the distribution function, which
can be given as

f (ε) = 1

exp
(

ε(�r)−μ(�r)
T

) + 1
, (14)

where μ is chemical potential, and the particle energy ε =
p2/(2m) + U (ρ(�r)) in which U (ρ(�r)) represents the single-
particle potential. Here, by taking into account fragment
effects in Eq. (14), we can obtain local entropy densities with
the local chemical potentials. After integrating local entropy
densities over the whole space, the total entropy density can
be obtained.

With shear viscosity we have, as in Fig. 5, the ratio of
shear viscosity over entropy density (η/s)—which is a current
topic and relates to a bound value of h̄/4π , known as the
Kovtun-Son-Starinets (KSS) bound [58]—can be obtained as
shown in Fig. 8. The hot quark gluon plasma (QGP) has a
very low η/s which is very close to h̄/4π and behaves as a
nearly perfect fluid [59]. When the QGP cools down, in the
phase of a relativistic hadron gas, η/s increases and becomes
significantly higher than the KSS bound [60,61]. For the finite
colder nuclear matter around the saturation density, it is 2.5–
6.5 times h̄/4π within the temperature range 0.8–2.1 MeV

TABLE II. η/s of different quark matter (QGP) and finite nuclear
matter (FNM) as well as infinite nuclear matter (INM) in certain
ranges of temperature and density. Here Tc ≈ 170 MeV is the transi-
tion temperature from the hadronic phase to the QGP phase [56].

System T (MeV) ρ/ρ0 η/s (h̄/4π )

QGP1 [56,63–65] � Tc 3.77–25.1
QGP2 [56,63–66] > Tc 1.00–6.91

FNM1 [25,26] 0.8–2.1 ≈1.0 2.5–6.5
FNM2 [33] 3.5–16 0.9–1.25 3.0–70.0
FNM3 [31] 1–30 0.3–1.0 7.0–60.0
FNM4 [32] 6–16 0.2–0.3 9.5–20.0
INM1 [30] 8–14 0.01–0.3 4–30

INM2 [this work] 4–25 0.1–0.8 2–55
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FIG. 8. Same as Fig. 4 but for the ratio of shear viscosity over
entropy density (η/s).

[25,26]. For hot finite nuclear matter, η/s is around 3.0–70
times h̄/4π for the density range (0.2–1.25)ρ0 [31–33], in
which the minimum η/s value corresponds to the liquid-gas
phase transition in previous model calculations. And here
we get > 2 times h̄/4π for infinite nuclear matter, which is
consistent with the results in Refs. [30,32,33,35,62]. To briefly
summarize the values of ratios of shear viscosity over entropy
density for different systems, see Tables I and II. From the
tables, we can see that QGP matter around 170 MeV has
the lowest η/s close, to the KSS bound (1/4π ) however, the
nuclear matter around a few to a few tens MeV, which is in
the liquid-gas phase transition region has also relatively low
η/s, i.e., about several times the KSS bound. The above low
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FIG. 9. Reduced density moments for different powers N vs tem-
perature at the average density of 0.2ρ0 from the calculations with
mean field.
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FIG. 10. Density moment as function of temperature with (the
lines with symbols) and without (the dash lines) mean field for
different densities with N = 2 (a) and N = 6 (b).

η/s may reflect a universal property of strongly interaction
matter regardless of partonic and nucleonic level. In contrast,
atomic and molecular substances of He, Ni and water have
relative large η/s which are dominated by electromagnetic
interaction.

B. Density moments

The LG phase-transition region and fragment formation are
characterized by enhanced density fluctuations [67]. Similar
fluctuations would be there for the anticipated QCD phase
transition in baryon-rich matter [68]. The density fluctuation
can be quantified in terms of average density moment [69],

〈ρN 〉 = 1

A

∫
ρ(�r)Nρ(�r)d3�r. (15)

Here, A is the nucleon number and N is the power for the
moment.

The reduced moments 〈ρN 〉/〈ρ〉N for our simulations are
presented in Figs. 9 and 10. Fig. 9 shows the moments at
the average density of 0.2ρ0, as function of temperature for
different N order. The moments rise when temperature drops
to 10 MeV or lower, with the rise in the moments becoming
more pronounced with the rise in N , reflecting the clump-

ing of the matter. Similar clumping signatures have been
effectively employed in the simulations for the vicinity of the
high-energy QCD phase transition [69,70]. Fig. 10 displays
results for the moments both with and without MF at different
average densities. Without MF, the moments change little with
temperature, no matter what average density, as no clumping
occurs. With MF the enhancement in the moments occurs for
the same temperatures and densities that the relative drop in
shear viscosity occurs in Fig. 6, underscoring the connection
of fragment formation to the change in viscosity.

IV. CONCLUSIONS

In summary, we examined the stress tensor for a system
of nucleons governed by the ImQMD version of the nuclear
molecular dynamics, either employing or not the mean field,
within the thermodynamic region of the liquid-gas phase tran-
sition. The nucleons were enclosed in a periodic box with
boundary conditions representing constant shear throughout
space. Following the SLLOD algorithm, we extracted the
shear viscosity coefficient for the system, after it reached
a stationary equilibrium. We found that the mean field has
little impact on the coefficient outside of the phase transition.
However, for lower average densities and temperatures in the
region of the transition, the shear viscosity coefficient drops
significantly when the mean field is included. The drop can
be attributed to the formation of fragments, or long-range
correlations, of which presence can be revealed, in the box
configuration, with average values of the moments of den-
sity. Also it is found that Coulomb interaction as repulsive
interaction among protons reduces shear viscosity in the low
temperature region.

The shear viscosity can be tested in nuclear collisions
through examinations of momentum transfer between differ-
ent momentum regions [27]. The region of the liquid-gas
phase transition [42] is crossed in nuclear collisions at tens
of MeV/nucleon.
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