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While ample evidence for the so-called empirical parabolic law of the equation of state (EOS) of isospin
asymmetric nuclear matter (ANM) has been obtained in many studies within both nonrelativistic and relativistic
nuclear many-body theories using various interactions, it has been unclear if there is any fundamental physics
reason for the small quartic symmetry energy compared to the quadratic one even as the ANM approaches pure
neutron matter. Within both relativistic and nonrelativistic free Fermi gas (FFG) models in coordinate spaces
of arbitrary dimension d with and without considering short-range correlations (SRCs) as well as nonlinear
relativistic mean field models, we study effects of relativistic kinematics, dimensionality, interactions, and SRC
on the ratio �(ρ ) of quartic over quadratic symmetry energies in ANM EOSs. We found that the ratio �(ρ ) in the
FFG model depends strongly on the dimension d . While it is very small already in the normal three-dimensional
space, it could be even smaller in spaces with reduced dimensions for subsystems of particles in heavy-ion
reactions and/or whole neutron stars due to constraints, collectivities, and/or symmetries. We also found that the
ratio �(ρ ) could theoretically become very large only at the ultrarelativistic limit far above the density reachable
in neutron stars. However, nuclear interaction directly and/or indirectly through SRC-induced high-momentum
nucleons affects significantly the density dependence of �(ρ ) compared to the relativistic FFG model prediction.
The SRCs affect significantly not only the kinetic energy of symmetric nuclear matter but also the ratio �(ρ )
while the relativistic corrections are found negligible. Although we found no fundamental physics reason for
the �(ρ ) to be very small especially at high densities, the results may help better understand the EOS of dense
neutron-rich matter.
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I. INTRODUCTION AND CONCLUSIONS

The energy per nucleon E (ρ, δ) in cold neutron-rich nu-
cleonic matter at density ρ and isospin asymmetry δ = (ρn −
ρp)/ρ with ρn and ρp being the neutron and proton densities,
respectively, is a basic input for calculating the equation of
state (EOS) for various applications in both nuclear physics
and astrophysics. It is usually expanded in even powers of δ

as

E (ρ, δ) ≈ E0(ρ) + Esym(ρ)δ2 + Esym,4(ρ)δ4 + O(δ6) (1)

in terms of the energy per nucleon E0(ρ) ≡ E (ρ, 0)
in symmetric nuclear matter (SNM), the symmetry en-
ergy (quadratic term) Esym(ρ) ≡ 2−1∂2E (ρ, δ)/∂δ2|δ=0, the
fourth-order symmetry energy (quartic term) Esym,4(ρ) ≡
24−1∂4E (ρ, δ)/∂δ4|δ=0, etc. The first three terms at the nu-
clear saturation density ρ0 ≈ 0.16 fm−3, namely, E0(ρ0),
Esym(ρ0), and Esym,4(ρ0), are empirically constrained to be
about E0(ρ0) ≈ −16 MeV, Esym(ρ0) ≈ 32 MeV [1–3], and
Esym,4(ρ0) � 2 MeV [4–9], indicating that the small-quantity
expansion in terms of δ2 for the E (ρ, δ) in asymmetric
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nuclear matter (ANM) is very effective and sufficient for
many physics purposes. The small ratio of the quartic over
the quadratic symmetry energy terms was confirmed us-
ing both the relativistic and nonrelativistic phenomenological
models as well as several more microscopic many-body the-
ories [4–9]. Thus, there is much empirical evidence for the
so-called empirical parabolic law of the EOS of neutron-rich
matter [4], i.e, safely truncating the expansion of Eq. (1) at
δ2. Interestingly, however, certain quantities and processes in
neutron stars and astrophysics were found to be significantly
affected by even a very small quartic and/or even higher-
order terms in the expanded E (ρ, δ) (see, e.g., Ref. [7] and
references therein).

Considering the aforementioned findings and empirical
evidence, some interesting questions emerge naturally. For
instance, why is the isospin quartic term so small compared
with its preceding term? Does there exist any deep physics
reason for the seemingly quick convergence in expanding the
E (ρ, δ) while the δ may be not small (in fact, it may approach
1 not only theoretically but also actually in some regions of
neutron stars)? Within most of the energy density functional
formalisms in the literature, the kinetic and potential contri-
butions to the E (ρ, δ) are clearly separated. Generally, the
E (ρ, δ) is written as the sum of nucleon kinetic energies in a
free Fermi gas (FFG) and their interaction energies evaluated
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using various nuclear many-body theories. The first indication
that the (kinetic) quartic symmetry energy may be comparable
with the (kinetic) quadratic symmetry energy is from studying
the effects of the strong isospin dependence of nucleon-
nucleon short-range correlations (SRCs) [10]. The latter leads
to a higher fraction of protons compared to neutrons in the
high momentum tail (HMT) in the single-nucleon momentum
distribution functions in neutron-rich matter as evidenced by
findings of several recent SRC experiments [11–14]. Incor-
porating approximately experimental findings regarding the
SRC-induced HMTs in a nonrelativistic Fermi gas model,
the (kinetic) quadratic symmetry energy was found to de-
crease [15–17] while the quartic one increases significantly
compared to the FFG model predictions without considering
the SRC effects [10]. More quantitatively, the kinetic quartic
symmetry energy at ρ0 was found to be as large as about
7 MeV [10]. For a recent review, see, e.g., Ref. [18]. It is
well known that two-body SRCs in cold nuclear matter push
nucleons from below to above the Fermi surface up to about
two times the nucleon Fermi momentum. Since the latter is
proportional to ρ1/3, at high densities relativistic effects nat-
urally become important. Thus, both the SRC and relativistic
kinematics are expected to be important for nucleons in the
HMT. However, it is still unclear how the relativistic kine-
matics and SRC effects may be intertwined in determining
the quartic relative to the quadratic symmetry energy, i.e.,
�(ρ) ≡ Esym,4(ρ)/Esym(ρ) (this ratio naturally becomes the
ratio of the respective kinetic energies in FFG models). More-
over, nuclear interactions are naturally expected to affect the
ratio �(ρ). It is thus also interesting to know the relative
kinetic and potential contributions to the various high-order
symmetry energies.

In this work, to help shed some new light on the issues
mentioned above, we investigate the following topics:

(1) We investigate the ratio � in a nonrelativistic FFG
model in coordinate spaces of general dimension d =
1-4. We also discuss briefly some possible situations
where a subsystem of particles during heavy-ion re-
actions or all particles in whole neutron stars can be
considered approximately as moving in one or two
dimensions due to constraints, collectivities, and/or
symmetries.

(2) We investigate the ratio � in a three-dimensional (3D)
(d = 3) relativistic FFG model.

(3) We investigate nuclear interaction effects on the ratio
� within a nonlinear relativistic mean field (RMF)
model with respect to the relativistic FFG model pre-
dictions.

(4) We investigate relativistic corrections to the first four
terms in the kinetic EOS of neutron-rich nucleonic
matter and the ratio � in the presence of SRC-induced
HMT in the single-nucleon momentum distribution.

Our main findings can be summarized as follows:

(1) The ratio � in the FFG model depends strongly on the
dimension d of the coordinate space in which nucleons
move around. While in the normal 3D space the ratio
� is very small, it can be even smaller or much larger

in spaces with reduced or extended dimensions. The
smallness of � in the conventional 3D space is thus
nothing special. Moreover, relativistic corrections to
the kinetic energy of SNM as well as the quadratic and
quartic symmetry energies all depend strongly on the
dimensionality of the system considered.

(2) The ratio � could become very large if either the
density is large enough (in the ultrarelativistic limit)
or nucleon-nucleon interactions are taken into account
(either indirectly via the SRC-induced HMT or di-
rectly through the effective nuclear interactions).

(3) In the presence of the SRC-induced HMT, relativistic
corrections to both the quadratic and quartic kinetic
symmetry energies are small mainly due to the small
kF/M ratio with kF and M being the Fermi momentum
and nucleon mass, respectively.

II. Ekin
sym,4(ρ)/Ekin

sym(ρ) IN FREE FERMI GAS MODELS

A. Nonrelativistic FFG model predictions in three dimensions

As a useful reminder of the basic formalisms and notations
used in the present work, we briefly recall here predictions of
the nonrelativistic FFG model in a 3D coordinate space. For
nucleons in ANM, the FFG single-nucleon momentum distri-
butions are step functions, i.e., nJ

k(ρ, δ) = �(kJ
F − |k|) where

J = n and p. The nucleon density ρJ and the correspond-
ing Fermi momentum kJ

F are related by kJ
F = kF(1 + τ J

3 δ)1/3,
where τ n

3 = +1 and τ
p
3 = −1 are the third components of

the isospin vector of neutrons and protons, respectively. The
average kinetic energy per nucleon in ANM is then straight-
forwardly obtained as

Ekin(ρ, δ) =
[∫ kn

F

0

k2

2M
dk +

∫ kp
F

0

k2

2M
dk

]/
2

∫ kF

0
dk

= 3

5

k2
F

2M

1

2

[
(1 + δ)5/3 + (1 − δ)5/3

]
≈ 3k2

F

10M
+ k2

F

6M
δ2 + k2

F

162M
δ4 + 7k2

F

4374M
δ6. (2)

One can then find that Ekin
0 (ρ) = 3k2

F/10M, Ekin
sym(ρ) =

k2
F/6M, Ekin

sym,4(ρ) = k2
F/162M, and Ekin

sym,6(ρ) = 7k2
F/4374M.

The ratio � ≡ Ekin
sym,4(ρ)/Ekin

sym(ρ) is 1/27. By using the Fermi
momentum kF = (3π2ρ/2)1/3 ≈ 263 MeV corresponding to
the saturation density ρ0 ≈ 0.16 fm−3, we obtain Ekin

0 (ρ0) ≈
22.2 MeV, Ekin

sym(ρ0) ≈ 12.3 MeV, Ekin
sym,4(ρ0) ≈ 0.45 MeV,

and Ekin
sym,6(ρ) ≈ 0.12 MeV, respectively.

The above well-known predictions by the nonrelativistic
FFG model serve as useful references in evaluating effects of
the relativistic kinematics and SRC as well as nuclear inter-
actions missing in this model. For example, since Ekin

0 (ρ0) ≈
22.2 MeV, to reproduce the empirical binding energy of about
−16 MeV at ρ0, an interaction contribution of about −38.2
MeV is required. Similarly, since the kinetic symmetry energy
is about 12.3 MeV, an interaction contribution of about 20
MeV would be needed to reproduce the total empirical nuclear
symmetry energy of about 32 MeV at ρ0 [1]. While this model
predicts a fourth-order kinetic symmetry energy of about
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0.45 MeV and several microscopic theories and phenomeno-
logical models predict a total Esym,4(ρ0) less than about 2
MeV [4–9], there is currently no community consensus on the
empirical value of Esym,4(ρ0). Needless to say, the situation
is worse for the sixth-order symmetry Ekin

sym,6(ρ0) (both the
kinetic term and the total). We thus cannot judge whether the
relative kinetic contribution to the total symmetry energy is
decreasing or not going from the δ2 to higher-order terms.

B. FFG model predictions for 〈kσ〉 with σ � 2 and
Ekin

sym,4(ρ)/Ekin
sym(ρ) in d dimensions

As shown above, the FFG model predicts that the ratio
Ekin

sym,4(ρ)/Ekin
sym(ρ) = 1/27. To put this result in appropri-

ate perspective, noticing that the relativistic kinetic energy
T (k) = √

k2 + M2 − M of a nucleon can be expanded as

T (k) ≈ k2

2M

(
1 − k2

4M2
+ k4

8M4
− 5k6

64M6
+ 7k8

128M8

)
, (3)

to order k10, here we first consider mathematically ANM in
a coordinate space of arbitrary dimension d and calculate the
average 〈kσ 〉 of kσ with σ � 2 being an integer. The 〈kσ 〉 is a
function of density and isospin asymmetry, i.e.,

〈kσ (ρ, δ)〉 ≡
[∫ kn

F

0
kσ dd k +

∫ kp
F

0
kσ dd k

]/
2

∫ kF

0
dd k

=ϒ
[
(1 + δ)1+σ/d + (1 − δ)1+σ/d

]
, (4)

where σ ∈ Z and ϒ is a coefficient independent of δ. We
emphasize that the power σ and dimension d appear in the
combination of σ/d . We also notice that the case σ = 2
corresponds to the conventional nonrelativistic kinetic en-
ergy, and σ = 4 (with the energy scales as k4/M3) induces
the first relativistic correction and σ = 6 induces the second
relativistic correction, etc., as indicated by the expansion in
Eq. (3). In addition, kJ

F = kF(1 + τ J
3 δ)1/d is the nucleon Fermi

momentum with the Fermi momentum in symmetric matter
given by kF(ρ) = [ρ2d−2πd/2�(d/2 + 1)]1/d ∼ ρ1/d .

The quantity 〈kσ (ρ, δ)〉 can be expanded around δ = 0 as

〈kσ (ρ, δ)〉 =
∑
j=0

kσ
sym,2 j (ρ)δ2 j

≈ kσ
0 (ρ) + kσ

sym(ρ)δ2 + kσ
sym,4(ρ)δ4

+O(δ6) + · · · , (5)

where kσ
0 (ρ) ≡ kσ

sym,0(ρ) and kσ
sym(ρ) ≡ kσ

sym,2(ρ). Then from
Eq. (4), it is straightforward to obtain the ratio

�σ
d ( j = 2) ≡ kσ

sym,4(ρ)
/

kσ
sym(ρ) = 1

12

(σ

d
− 2

)(σ

d
− 1

)
.

(6)

Depending on the value of σ/d , this ratio is not necessarily
as small as the Ekin

sym,4(ρ)/Ekin
sym(ρ) = 1/27 in the FFG model.

For example, if one takes σ = 4 and d = 1, i.e., the aver-
age of the momentum to the fourth power (corresponding to
the first relativistic correction) in dimension 1, one obtains

FIG. 1. The ratio �σ
d ( j) = kσ

sym,2 j+2/kσ
sym,2 j as a function of j

with different d by fixing σ = 2 [first line from (a) to (d)], σ = 4
[second line from (e) to (h)], and σ = 6 [third line from (i) to (l)].
The vertical dashed black line corresponds to j = 1.

�4
1 ( j = 2) = 1/2. Moreover, from the above relation, one has

lim
d→∞

kσ
sym,4(ρ)

kσ
sym(ρ)

= 1

6
, (7)

i.e., in an imagined space of infinite dimensions the ratio �

takes the value of 1/6 ≈ 16.7%, which is independent of the
power σ and is about five times the FFG model prediction
in three dimensions. As d → ∞ (while fixing σ ), the isospin
dependence of 〈kσ (ρ, δ)〉 is weak (approaching zero) as
shown in Eq. (4). However, these isospin-expansion terms are
not strictly zero. In particular, we have kσ

sym,4(ρ) = ϒ(g/6 −
g2/12 − g3/6 + g4/12) and kσ

sym(ρ) = ϒ(g + g2) and both ap-
proach zero as g = σ/d → 0 in the infinite-d limit, leading
to a finite ratio of 1/6 between kσ

sym,4(ρ) and kσ
sym,4(ρ) as

demonstrated in Eq. (7). Thus, the special relation (7) and the
general expression (4) are consistent with each other.

More generally, one can obtain the ratio between any two
adjacent terms in expanding the 〈kσ (ρ, δ)〉 as a function of
δ2 j . Specifically, the ratio of the coefficient of the (2 j + 2)
term and the 2 j term, i.e., kσ

sym,2 j+2/kσ
sym,2 j ≡ �σ

d ( j) [thus the
�σ

d ( j = 2) defined in Eq. (6) is a special case], is

�σ
d ( j) = 1

(2 j + 1)(2 j + 2)

(σ

d
− 2 j + 1

)(σ

d
− 2 j

)
. (8)

In Fig. 1 the ratio �σ
d ( j) as a function of j with different

d (from 1 to 4) is shown by fixing σ = 2 [Figs. 1(a)–1(d),
conventional kinetic energy], σ = 4 [Figs. 1(e)–1(h), first
relativistic correction], and σ = 6 [Figs. 1(i)–1(l), second
relativistic correction]. From Figs. 1(a)–1(d), one can see
that the ratio of the kinetic quartic over quadratic symmetry
energies (characterized by j = 1) is a very “special” point
(at the bottom of the curves) irrespective of the dimension
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d . In particular, for the special case of σ = 2 and d = 3
(kinetic energy or the square of the momentum in three di-
mensions), the ratio �2

3 ( j) takes the form kσ
sym,2 j+2/kσ

sym,2 j =
(18 j2 − 21 j + 5)/(18 j2 + 27 j + 9), while if σ = d = 2
(i.e., the square of the momentum in two dimensions), then
kσ

sym,2 j+2/kσ
sym,2 j = (2 j2 − 3 j + 1)/(2 j2 + 3 j + 1).

Similarly, the corresponding ratio from the first relativistic
correction to the kinetic EOS (the average of k4) is shown in
the second row of Fig. 1 with different d by fixing σ = 4.
Except the case (σ, d ) = (4, 1) [Fig. 1(e)], all the other three
sets [Figs. 1(f)–1(h)] predict that the minimum of �4

d occurs
at j = 1. The second relativistic correction effect is shown
in the third row of Fig. 1, where for d � 2 the minimum of
�6

d occurs at j �= 1. From these graphs, one finds that j = 1
is in fact a special point with respect to the variation of the
dimension d (around 3) and power σ (around 2). Since the σ

and dimension d appear in the combination of σ/d in �σ
d ( j),

Figs. 1(a), 1(f), and 1(k) are identical.
Generally, we have from Eq. (8) that

lim
j→∞

kσ
sym,2 j+2/kσ

sym,2 j = 1. (9)

It indicates that the radius of convergence of the expansion of
the kinetic EOS in terms of δ is simply Rδ = 1 [19], irrespec-
tive of the integer σ . For σ = 0, expression (8) gives a nonzero
value, i.e., limσ→0 �σ

d ( j) = (2 j − 1)(2 j)/(2 j + 1)(2 j + 2),
although in this case both the kσ

sym,2 j+2 and kσ
sym,2 j are ap-

proaching zero (but their ratio is not necessarily zero).
To this end, it is worth noting that all calculations to date of

ANM EOS are performed in three dimensions. Then, why is it
physically meaningful and possibly useful practically besides
mathematically doable as we have shown above to consider
the kinetic EOS in spaces with dimensions other than three?
First of all, we notice that constraints, symmetries, and/or
collectivities can all reduce the minimum number of degrees
of freedom or the dimensions of the coordinate space neces-
sary to fully describe a many-particle system. In fact, many
exciting novel features r breakthroughs have been established
in systems with reduced dimensions (see, e.g., Refs. [20–22]
for reviews). New experimental techniques have been de-
veloped to generate not only pure one-dimensional (1D)
or two-dimensional (2D) systems but also two-component
many-particle systems with mixed dimensions. For instance,
the dimensionality of space for cold atoms can be changed
by means of strong optical lattices [23–26]. Interesting new
physics has been revealed from studying 1D and 2D systems
[27–34], such as a two-species Fermi gas with mixed dimen-
sions (one component in one or two dimensions while the
other one is in three dimensions) [35], a three-dimensional
resonant Bose-Fermi mixture at zero temperature [36], as
well as the two-dimensional Fermi-Bose dimers with a stable
p-wave resonant interaction [37]. Moreover, new physics in-
sights regarding the relationship between the two-body energy
spectrum and the scattering phase shifts can be obtained by
studying two-particle scatterings in a d-dimensional space
[38]. It was also shown that a multiple-body problem could
be mapped to a two-body problem in a higher dimension [39].
Thus, explorations of many-body systems in spaces with dif-

ferent dimensions may provide important insights into some
physics problems.

While we are not aware of any study about the EOS
in spaces other than 3D in nuclear physics and/or astro-
physics, we notice that the production of particle jets or their
squeeze-out from the participant region in a specific direc-
tion may effectively create an approximately 1D subsystem
while the collective flow in the reaction plane may create
approximately a 2D subsystem in intermediate-relativistic en-
ergy heavy-ion reactions. Moreover, neutron star mergers may
create bursts of γ rays and/or other particles and/or waves
preferentially in certain directions similar to the collective
phenomena in relativistic heavy-ion collisions. It is also well
known that the dimensionality plays an important role in
simulating supernova explosions. As indicated by Eq. (6), the
ratio Ekin

sym,4(ρ)/Ekin
sym(ρ) is zero in both one and two dimen-

sions (in fact the quartic terms in one and two dimensions
are identically zero), while it is 1/27 in three dimensions as
normally used in preparing the EOS for modeling neutron
stars and various studies of heavy-ion reactions. Future studies
of nuclear EOSs in one and two dimensions and their observa-
tional effects in collectively moving subsystems in heavy-ion
reactions and/or neutron stars might be interesting.

C. Relativistic FFG model predictions in three dimensions

The relativistic kinetic energy per nucleon in ANM (in
three dimensions) is obtained straightforwardly from

Ekin(ρ, δ) =
[ ∑

J=n,p

∫ kJ
F

0
dk

[√
k2 + M2 − M

]]/
2

∫ kF

0
dk

(10)

by generalizing the nucleon’s dispersion relation from k2/2M
to

√
k2 + M2 − M. We recall that for small δx, one has math-

ematically∑
=±1

arcsinh (x + δx)

≈ 2arcsinh x − x

(x2 + 1)3/2
δx2 − 1

4

x(2x2 − 3)

(x2 + 1)7/2
δx4

− 1

24

x(8x4 − 40x2 + 15)

(x2 + 1)11/2
δx6, (11)

and
√

1 + δx ≈ 1 + 2−1δx − 8−1δx2 + 16−1δx3 −
(5/128)δx4 + (7/256)δx5 − (21/1024)δx6. Using these
approximations, one can obtain the following analytical
expressions for the components of the Ekin(ρ, δ) when it is
expanded as an even-power series of δ:

Ekin
0 (ρ) = 3M

8ν2

[(
1 + 2ν2

)(
1 + ν2

)1/2 − arcsinh ν

ν

]
− M,

(12)

Ekin
sym(ρ) =M

6

ν2

√
1 + ν2

, (13)

Ekin
sym,4(ρ) = M

648

ν2(10ν4 + 11ν2 + 4)

(1 + ν2)5/2
, (14)
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Ekin
sym,6(ρ) = M

34992

ν2

(1 + ν2)9/2

× (
176ν8 + 428ν6 + 477ν4 + 260ν2 + 56

)
,

(15)

where the dimensionless quantity ν is defined as ν = kF/M.

At the nonrelativistic limit with ν � 1, the above expres-
sions are reduced to

Ekin
0 (ρ) ≈ 3k2

F

10M

(
1 − 5

28
ν2 + 5

72
ν4 − 25

704
ν6

)
, (16)

Ekin
sym(ρ) ≈ k2

F

6M

(
1 − 1

2
ν2 + 3

8
ν4 − 5

16
ν6

)
, (17)

Ekin
sym,4(ρ) ≈ k2

F

162M

(
1 + 1

4
ν2 − 25

32
ν6

)
, (18)

Ekin
sym,6(ρ) ≈ 7k2

F

4374M

(
1 + 1

7
ν2 − 5

112
ν6

)
, (19)

where the in-front coefficient of each expression is the non-
relativistic correspondence. It is necessary to point out that
the first-order relativistic correction to the kinetic symmetry
energy, i.e., −2−1ν2(k2

F/6M ) = −12−1k4
F/M3, was first given

in Ref. [40], and its value at ρ ≈ 0.16 fm−3 is found to be
about −0.48 MeV.

However, at the ultrarelativistic limit with ν  1, we can
similarly obtain (μ = ν−1) the following:

Ekin
0 (ρ) ≈3kF

4

(
1 − 4μ

3
+ μ2 + 1 − 4 ln(2/μ)

8
μ4

)
, (20)

Ekin
sym(ρ) ≈kF

6

(
1 − 1

2
μ2 + 3

8
μ4

)
, (21)

Ekin
sym,4(ρ) ≈ 5kF

324

(
1 − 7

5
μ2 + 81

40
μ4

)
, (22)

Ekin
sym,6(ρ) ≈ 11kF

2187

(
1 − 91

44
μ2 + 729

176
μ4

)
, (23)

where each in-front coefficient is the corresponding expres-
sion in the ultrarelativistic case.

The density dependence of the above quantities, i.e.,
Eqs. (16)–(23), is rather different for small and large densities.
Taking the symmetry energy as an example, we find in the
nonrelativistic limit that Ekin

sym(ρ) ≈ k2
F/6M ∼ kFν ∼ ρ2/3 �

kF since ν � 1, while in the ultrarelativistic limit, Ekin
sym(ρ) ≈

kF/6 ∼ Mν ∼ ρ1/3  M since now ν  1. All these quan-
tities can take any positive values, while their ratios are
bounded.

Now considering the ratio between the fourth-order and
second-order terms, we immediately obtain

� = Ekin
sym,4(ρ)

Ekin
sym(ρ)

= 1

108

4 + 11ν2 + 10ν4

1 + 2ν2 + ν4
. (24)

In the nonrelativistic limit, the above expression is
reduced to � ≈ 1/27 + ν2/36 − ν6/36 + O(ν8) ≈ �NR =
1/27 ≈ 3.7%, which is the familiar result obtained earlier
(in Sec. II A). However, we have in the ultrarelativis-
tic limit that � → �UR = 5/54 ≈ 9.3% by taking ν →
∞ in Eq. (24), since now � ≈ 5/54 − 1/12ν2 + 1/9ν4 −

FIG. 2. (a) The ν (equivalently ρ) dependence of the ratio � in
the relativistic FFG model (red) in comparison with the nonlinear
RMF model prediction (blue lines). (b) Results with a general RMF
construction different from the FSUGold set (see detailed descrip-
tions in the text).

5/36ν6 + O(ν−8). Thus, between the two limits we have
1/27 � � � 5/54. The enhancement from �NR = 1/27 to
�UR = 5/54 is 5/54 − 1/27 = 1/18 which is 150% (1.5
times) of the nonrelativistic value �NR = 1/27, although the
enhancement itself (i.e., 1/18) is still a small quantity. It is
also interesting to point out that the Fermi momentum kF is the
only scale in the ultrarelativistic situation, since here the static
mass M � kF, and thus could be neglected safely. In particu-
lar, we have Ekin

sym(ρ) ≈ kF/6 and Ekin
sym,4(ρ) ≈ 5kF/324. In this

sense, the relativistic effects enhance the quartic contribution
(compared with the conventional quadratic kinetic symmetry
energy). Moreover, if one takes ν = kF/M ≈ 1 roughly as
the boundary between the nonrelativistic and the relativistic
regions, then ρ ≈ 45ρ0 is found. It indicates that for con-
ventional nuclear physics, even for neutron stars (ρ � 10ρ0),
the smallness of the quartic kinetic symmetry energy could
be partially explained as due to the fact that the problems
encountered in these studies are effectively nonrelativistic.

III. Esym,4(ρ)/Esym(ρ) IN NONLINEAR RELATIVISTIC
MEAN FIELD MODELS: EFFECTS OF

NUCLEAR INTERACTIONS

To investigate effects of nuclear effective interactions on
the ratio �, we give an example in this section adopting the
nonlinear relativistic mean field (RMF) model. In particular,
the � obtained from the RMF using the FSUGold param-
eter set [41] is shown in Fig. 2(a) with the blue solid line,
while the dashed magenta line is the relativistic FFG model
prediction according to Eq. (24). It is clearly shown that the
interaction changes significantly the FFG model prediction
for � [indicated by the red arrows in Fig. 2(a)], at both low
and high densities. The total quadratic and quartic symmetry
energies in the nonlinear RMF model at very high densities
(ultrarelativistic limit) are

Esym(ρ) ≈kF

6
+ c2/3

ω ρ1/3

2�V
, (25)

Esym,4(ρ) ≈ 5kF

324
+ c5/3

ω ρ1/3

6�2
V

, (26)
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respectively, and they both scale as ρ1/3 [7]. Here the coupling
parameters cω and �V characterize the self-interaction among
the four ω mesons as well as the coupling between the ω

meson and the ρ meson, respectively. They are introduced
into the nonlinear RMF Lagrangian Lnon-RMF through the
4−1cωg4

ω(ωμωμ)2 and 2−1�Vg2
ρg2

ωωμωμ�ρν · �ρν terms, where
gω and gρ are two coupling constants between nucleons and
the vector mesons [7], respectively. Consequently, we obtain
the ratio of the quartic over the quadratic symmetry energy in
the ultrarelativistic limit as

� = �RMF
UR ≡

(
5a

324
+ c5/3

ω

6�2
V

)/(
a

6
+ c2/3

ω

2�V

)
, (27)

where a = 3
√

3π2/2 (see, e.g., Ref. [7] for more details on
these analytical expressions). In the FSUGold parameter set,
cω = 0.01 and �V = 0.24, and consequently �RMF

UR ≈ 7.8%.
As indicated in Fig. 2(a), this limit is reached quickly as
soon as ν = kF /M becomes larger than about 1. We notice
that in both the numerator and denominator of the above
expression, the first term is the kinetic while the second one
is the potential contribution. The potential/kinetic ratio is
(c2/3

ω /2�V)/(a/6) ≈ 0.24 and (c5/3
ω /6�2

V)/(5a/324) ≈ 0.04,
respectively, indicating that the kinetic part is dominant in the
FSUGold parameter set for both the Esym(ρ) and Esym,4(ρ) at
the ultrarelativistic limit. Moreover, if the coupling constant
cω or 1/�V is very small (near zero), then the high-density
limit of � naturally approaches 5/54 as predicted by the
relativistic FFG model [see expression (24)].

To further explore effects of nuclear interactions on the
ratio �, we now go beyond the FSUGold parameter set and
check purely theoretically what will happen if the potential
term c5/3

ω /6�2
V is far larger than the kinetic term 5a/324 and in

the meanwhile c2/3
ω /2�V is much larger than a/6. Obviously,

according to Eq. (27), the � then approaches another constant
ξ = cω/3�V independent of the density ρ by neglecting the
kinetic contributions. In this case, the fourth-order symmetry
energy is not necessarily smaller than the quadratic one; i.e.,
the Esym,4(ρ) could be comparable or even be (much) larger
than the Esym(ρ) if the density is large enough. In other words,
nucleon-nucleon interaction could change significantly the
relative strength of the quadratic and quartic symmetry en-
ergies at large densities. Numerically, the ratio � could even
approach infinity if the coupling constant �V is selected to be
very small (but not zero). Of course, this may only happen
at extremely high densities where there are no experimen-
tal and/or theoretical constraints and may not be reachable
anywhere. Thus, this exercise may be only for satisfying our
intellectual curiosity.

To check the above expectations, we show in Fig. 2(b) an
example of a relevant RMF construction for � (blue solid
line), the �RMF

UR factor (black dotted line), by setting artificially
the constant ξ = cω/3�V = 4.8. Here the coupling constant
cω is still fixed at 0.01 as in the FSUGold parameter set, but the
coupling constant �V is adjusted according to �V = cω/3ξ ≈
7 × 10−4 (which is much smaller than the one used in the
FSUGold set). Thus, overall, the newly constructed RMF
parameter set is different from the FSUGold one. It is seen
that as the dimensionless quantity ν becomes large, the RMF

prediction naturally approaches �RMF
UR . It also approaches

the constant factor ξ since the interaction parts in both the
quadratic and quartic symmetry energies are dominant over
their kinetic parts. More quantitatively, under these conditions
for cω and �V we have c2/3

ω /2�V ≈ 33.42, which is far larger
than the kinetic term a/6 ≈ 0.41, while similarly c5/3

ω /6�2
V ≈

160.41, which is also far larger than the kinetic contribution
5a/324 ≈ 0.04. It is necessary to point out that a factor ν

about 40 corresponds to a density ρ about 2.9 × 106ρ0, which
is thus only theoretically meaningful. Since the large-ρ limit
is also the relativistic limit, we find that the combination of
the nucleon-nucleon interactions and the relativistic correc-
tions (here come into play in the potential part) essentially
modify the prediction on the ratio �, although the relativistic
corrections alone cannot effectively affect the value of �. In
this sense, the nucleon-nucleon interactions (here through the
effective potentials in the EOS of ANM) are very important
for the ratio � as one generally expects.

On the opposite side, i.e., in the ultralow-density limit,
the kinetic symmetry energy from the nonlinear RMF models
could be expanded as Ekin

sym(ρ) ≈ (k2
F/6M )[1 − 2−1(kF/M )2 +

M−1(gσ /mσ )2ρ] + · · · ∼ bν2 + · · · , while the potential part
is similarly approximated as Epot

sym(ρ) ≈ 2−1(gρ/mρ )2ρ[1 −
�V(gρ/mρ )2(gω/mω )4ρ2] + · · · ∼ b′ν3 + · · · , where b and
b′ are two constants, gσ is the coupling constant between
the nucleon and the σ meson, and mσ , mρ , and mω are
the static masses of the σ , ρ, and ω mesons, respectively.
Thus the ratio Epot

sym(ρ)/Ekin
sym(ρ) ≈ (b′/b)ν approaches zero

as ρ → 0. One can find similarly that at ultralow densities,
the fourth-order symmetry energy is dominated by its kinetic
part, actually according to the nonrelativistic FFG prediction.
More quantitatively, we have Ekin

sym,4(ρ) ≈ k2
F/162M + · · · ∼

cν2 + · · · , and similarly Epot
sym,4(ρ) ≈ −72−1(gσ /mσ )2ρν4 +

· · · ∼ c′ν7 + · · · by carefully considering the exact expres-
sion for the fourth-order symmetry energy [7], where c
and c′ are another two constants. Consequently, the ratio
Epot

sym,4(ρ)/Ekin
sym,4(ρ) ≈ (c′/c)ν5, which is much smaller than

1 since ν � 1 for low densities. From these low-density ex-
pansions, we can conclude that although the nucleon-nucleon
interactions could modify the ratio �, it is still mainly deter-
mined by the kinetic contributions at low densities.

IV. RELATIVISTIC CORRECTIONS TO KINETIC
SYMMETRY ENERGIES IN THE PRESENCE OF

SHORT-RANGE CORRELATIONS

A. Nucleon momentum distribution with SRC-induced
high-momentum nucleons

In this section, we briefly recall the single-nucleon momen-
tum distribution function encapsulating a SRC-induced HMT
and the relevant parameters. Based on predictions of micro-
scopic nuclear many-body theories and relevant experimental
findings [11–14], the single-nucleon momentum distribution
in ANM can be parametrized as [10]

nJ
k(ρ, δ) =

{
J , 0 < |k| < kJ

F

CJ
(
kJ

F/|k|)4
, kJ

F < |k| < φJkJ
F.

(28)
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Here, J is the depletion of the Fermi sphere with respect to
the step function in the FFG model. The three parameters J ,
CJ , and φJ are constrained by the fraction of nucleons in the
HMT,

xHMT
J =

∫ φJ kJ
F

kJ
F

nJ
kdk

/∫ φJ kJ
F

0
nJ

kdk = 3CJ

(
1 − 1

φJ

)
, (29)

and the normalization condition

2

(2π )3

∫ ∞

0
nJ

k(ρ, δ)dk = ρJ = (
kJ

F

)3
/3π2. (30)

Only two of the three parameters J , CJ , and φJ are inde-
pendent. Using the last two as independent parameters and
assuming they have the same isospin dependence, i.e., YJ =
Y0(1 + Y1τ

J
3 δ) [10], the associated parameters were then con-

strained to be about C0 ≈ 0.161 ± 0.015, C1 ≈ −0.25 ± 0.07,
φ0 ≈ 2.38 ± 0.56, and φ1 ≈ −0.56 ± 0.10 using information
from the SRC experiments [11,42] (see, e.g., Ref. [18] for a
recent review).

The isospin dependence of the SRC-induced HMT was
found to affect especially the kinetic part of the nuclear sym-
metry energy [15,16,43–45]. It has also been found to affect
significantly properties of neutron stars, such as the mass-
radius relation, tidal polarizability, cooling rate, and crust-core
transition density [46–49]. Interestingly, the enhanced pres-
sure due to the SRC-induced high-momentum nucleons can
also help balance the reduction of the maximum mass caused
by the possible existence of dark matter particles in neutron
stars [50]. There is also a long history of studying the effects
of SRC on nuclear reactions [51]. More recently, the SRC-
induced HMT was found to affect particularly the dynamics
and emissions of energetic nucleons, hard photons, and/or
the production of deeply subthreshold particles in nuclear
reactions [17,52–55]. Interestingly, a very recent analysis of
the energy spectra of protons emitted in reactions of 47
MeV/nucleon projectiles with Sn and Au targets provided
new evidence for the 1/k4 shape of the HMTs in the intrinsic
momenta spectra of the projectiles [56].

B. First four relativistic corrections to the kinetic EOS of ANM
considering the SRC-induced HMT

As shown in Eq. (3), the first four relativistic corrections to
the nucleon kinetic energy are given by −k2/4M2, k4/8M4,
−5k6/64M6, and 7k8/128M8, respectively. In calculating the
average energy per nucleon in ANM, after integrating over
the momentum k, the dependence of the kinetic energy on
momentum k is transformed into the corresponding depen-
dence on the Fermi momentum, kF ∼ ρ1/3. Specifically, for
a general σ the term kσ /Mσ−1 in the kinetic energy leads
to the 3kσ

F /(σ + 3)Mσ−1 term in the kinetic EOS if the step
function for the momentum distribution nJ

k is adopted. Simi-
larly, the corresponding term for the kinetic symmetry energy
is σkσ

F /6Mσ−1. For example, for the first-order relativistic cor-
rection to the kinetic energy, one has the relevant corrections
for the kinetic EOS of SNM and for the kinetic symmetry
energy as −3k4

F/56M3 and −k4
F/12M3 [40], respectively [see

also expressions (16) and (17)].

However, when the SRC-induced HMT is considered, the
analytical expression for 〈kσ 〉 becomes nontrivial. The 〈kσ 〉
with a general power σ at order δ0 (corresponding to SNM),
δ2 (corresponding to the quadratic symmetry energy), and δ4

(corresponding to the quartic symmetry energy) are given in
the Appendix in detail. For our interest here, terms in the ex-
pansion (3) are investigated numerically below using σ = 2,
4, 6, 8, and 10. In addition, a similar expression for the 〈kσ 〉 at
order δ6, which is relevant for the derivation of the sixth-order
symmetry energy, could also be obtained similarly. While we
do not give its explicit expression in the Appendix due to its
very complicated form, numerical results for the sixth-order
symmetry energy are also presented below.

Using the parameters φ0, φ1, C0, and C1 given in the pre-
ceding section, we can obtain the magnitudes of all terms in
the kinetic EOS as well as their relativistic corrections consid-
ering the SRC effects. In particular, we found that Ekin

0,k2 (ρ0) ≈
40.47 ± 9.23 MeV adopting ρ0 ≈ 0.16 ± 0.01 fm−3; here the
subscript “0, k2” reminds us that this term originates from
the nonrelativistic kinetic energy k2/2M, and thus it is not
a relativistic correction. To the next order in kσ , we then have
Ekin

0,k4 (ρ0) ≈ −1.68 ± 1.11 MeV, which originates from the
first relativistic correction −k4/8M3 [dividing the zero-order
term k2/2M gives −k2/4M2 in Eq. (3)]. Similarly, contribu-
tions from the next three terms of the relativistic corrections,
i.e., k6/16M5, −5k8/128M7, and 7k10/256M9, are found to
be about 0.21 ± 0.25, −0.04 ± 0.07, and 0.01 ± 0.02 MeV,
respectively. It is obvious that the fourth-order relativistic cor-
rection with its value about 0.01 ± 0.02 MeV is much smaller
than the (leading) nonrelativistic contribution, indicating that
considering the first four relativistic corrections is enough for
estimating the overall relativistic effects.

The magnitudes of the kinetic EOS of SNM together with
its first four relativistic corrections are shown in Fig. 3(a),
where the nonrelativistic FFG prediction about 22.10 ± 0.92
MeV is also shown for a comparison (marked as “FFG”).
The enhancement of the kinetic EOS of SNM considering the
SRC-induced HMT has been known for some time (see, e.g.,
Refs. [11,15,46] and references therein). By adding the non-
relativistic kinetic EOS of SNM and its first four relativistic
corrections, one then obtains

Ekin
0 (ρ0) ≈

�=1−5∑
σ=2�

Ekin
0,kσ (ρ0) ≈ 38.98 ± 8.32 MeV. (31)

Compared with 40.47 MeV, a reduction about 1.49 MeV on
the (nonrelativistic) Ekin

0 (ρ0) is generated due to the relativis-
tic effects, and the relative correction is about 4%.

Similarly, we can obtain the first four relativistic correc-
tions to the quadratic kinetic symmetry energy as 2.11 ±
1.87, −0.46 ± 0.58, 0.12 ± 0.20, and −0.03 ± 0.07 MeV,
respectively. The quadratic kinetic symmetry energy itself
considering the SRC-induced HMT is found to be about
−13.80 ± 9.57 MeV. Based on these results, we have

Ekin
sym(ρ0) ≈

�=1−5∑
σ=2�

Ekin
sym,kσ (ρ0) ≈ −12.01 ± 8.23 MeV. (32)
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FIG. 3. Kinetic parts of the EOS of ANM with its relativistic corrections for E kin
0 (ρ0), E kin

sym(ρ0), E kin
sym,4(ρ0), and E kin

sym,6(ρ0). Here the
saturation density ρ0 ≈ 0.16 ± 0.01 fm−3, σ = 2 is the nonrelativistic term, while σ = 4, 6, 8, and 10 correspond to the first four relativistic
corrections to the kinetic parts of the EOS originated from Eq. (3).

Compared with the original quadratic kinetic symmetry en-
ergy encapsulating the HMT but no relativistic correction,
i.e., −13.80 ± 9.57 MeV, the relativistic corrections generate
an enhancement about 1.79 MeV, corresponding to a relative
correction about 13% [see Fig. 3(b)]. The value either −13.80
MeV (without) or −12.01 MeV (with) relativistic corrections
for Ekin

sym(ρ0) is consistent with the value of −16.94 MeV
obtained directly from a nonlinear RMF model including the
HMT [46].

It is important to emphasize that the SRC-induced reduc-
tion of the quadratic kinetic symmetry energy with respect
to the FFG prediction of about 12.28 ± 0.51 MeV at satu-
ration density has also been known for some time when the
SRC effects are considered in microscopic nuclear many-
body theories or simple phenomenological models (see,
e.g., Refs. [18,57] for reviews). These studies include the
Brueckner-Hartree-Fock (BHF) approach using the Av18
potential plus the Urbana IX three-body force [43], the
self-consistent Green’s function (SCGF) theories adopting
different microscopic interactions (N3LO, Av18, Nij1, and
CD Bonn) [44], the Fermi hypernetted chain (FHNC) method
[45], and phenomenological models [15,16]. See Fig. 41 in
Ref. [18] for a summary of the results from some of these
studies in comparison with the values extracted from analyz-
ing the SRC data within a neutron-proton dominance model
[16]. We also note that the quadratic kinetic symmetry energy
was obtained approximately in some of the earlier studies by
using the difference between the EOSs of pure neutron matter
(PNM) and SNM adopting the parabolic approximation of the
ANM EOS.

Moreover, the kinetic fourth- and sixth-order symmetry
energies considering the first four relativistic corrections in
the presence of SRC are about 6.06 ± 1.77 and 1.07 ± 0.54
MeV, respectively, i.e.,

Ekin
sym,4(ρ0) ≈

�=1−5∑
σ=2�

Ekin
sym,4,kσ (ρ0) ≈ 6.06 ± 1.77 MeV, (33)

Ekin
sym,6(ρ0) ≈

�=1−5∑
σ=2�

Ekin
sym,6,kσ (ρ0) ≈ 1.07 ± 0.54 MeV. (34)

More specifically, the contributing terms for the fourth-order
symmetry energy Ekin

sym,4(ρ0) are 7.12 ± 2.30 (nonrelativistic

contribution), −1.36 ± 0.99, 0.37 ± 0.44, −0.10 ± 0.17, and
0.03 ± 0.06 MeV, respectively. Similarly, those for the sixth-
order symmetry energy Ekin

sym,6(ρ0) are 1.01 ± 0.51 (nonrela-
tivistic contribution), 0.09 ± 0.08, −0.06 ± 0.07, −0.007 ±
0.05, and 0.01 ± 0.05 MeV, respectively. See Figs. 3(c) and
3(d), respectively, for illustrations. From these results, one
finds that the relativistic corrections on the kinetic fourth- and
sixth-order symmetry energies are about −1.06 and 0.06 MeV,
with the relative effects about 15% and 6%, respectively. It
is thus obvious that the absolute change on the sixth-order
symmetry energy due to the relativistic corrections could be
safely neglected compared with its nonrelativistic value.

Finally, it is interesting to compare the ratio � between
the kinetic quartic and quadratic symmetry energies with
and without the relativistic corrections in the presence of
SRC-induced high-momentum nucleons. Based on the results
presented above, the � changes from � ≈ −7.12/13.80 ≈
−51.6% (without) to � ≈ −6.06/12.01 ≈ −50.4% (with)
the relativistic corrections. Moreover, considering the ex-
treme case of PNM, the overall relativistic corrections can
be evaluated by adding Ekin

0 (ρ0), Ekin
sym(ρ0), Ekin

sym,4(ρ0), and
Ekin

sym,6(ρ0) together. This sum is 34.8 MeV for the nonrela-
tivistic FFG model and 34.1 MeV by including the (first four)
relativistic corrections; both are close to the nonrelativistic
FFG model prediction about 3k2

n/10M ≈ 35.1 MeV where
kn = (3π2ρ)1/3 = 21/3kF is the neutron Fermi momentum in
the PNM. Thus, although the relativistic corrections to each
kinetic energy term may be large or small, the overall effects
are rather small (the relative effect is about 2%), since some
changes are positive while others are negative. Particularly, for
the four kinetic energies, only the (quadratic) symmetry en-
ergy is reduced considering the SRC-induced HMT, while the
other three higher-order symmetry energies are all enhanced,
compared with their FFG predictions (i.e., without HMT) (see
Fig. 3). These results indicate clearly that the SRC-induced
HMT is more fundamental and has much larger impacts on the
ANM EOS than the relativistic corrections. Although the SRC
effects are introduced through the HMT in the single-nucleon
momentum distribution function nJ

k and affect apparently only
the kinetic parts of the ANM EOS in the models considered
here, the SRC is fundamentally due to the tensor force in the
neutron-proton isosinglet interaction channel [11,42]. Thus, in
this sense, the finding of this section is consistent with that in
Sec. III; i.e., the nucleon-nucleon interactions could change
the value of � significantly.
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V. SUMMARY

In summary, to pin down the EOS of dense neutron-
rich matter has long been a major science driver in both
astrophysics and nuclear physics. Most studies within both
nonrelativistic and relativistic nuclear many-body theories and
phenomenological models with and/or without considering
the isospin dependence of SRC indicate that the E (ρ, δ) con-
verges quickly when it is expanded in terms of even powers
of δ. Thus, the so-called empirical parabolic law of the ANM
EOS seems to be valid even as δ → 1. While there is many
empirical evidence available in the literature using various
many-body approaches and interactions, it has been unclear
why the isospin quartic symmetry energy is so small com-
pared with the quadratic one and if there is any deep physics
reason for the seemingly quick convergence in expanding the
E (ρ, δ).

In this work, we tried to decipher the effects of relativis-
tic kinematics, dimensionality, interactions, and SRC on the
ratio � of isospin quartic over quadratic symmetry ener-
gies as transparently as possible. Within both relativistic and
nonrelativistic FFG models in coordinate spaces of arbitrary
dimension d with and without considering SRC effects as well
as the 3D RMF models at both low- and high-density limits,
we learned a few things that might be useful for the com-
munity to further understand the EOS of dense neutron-rich
nuclear matter. In particular, we found that the ratio � in the
FFG model depends strongly on the dimension d . While the
ratio � is very small already in the normal 3D space, it could

be even smaller in spaces with reduced dimensions. Based
on this finding and stimulated by the many interesting new
physics found in two-component cold atoms moving in either
the same or mixed 1D or 2D spaces, we pointed out a few
situations where the EOS in spaces with reduced dimensions
may be useful for heavy-ion reactions and/or neutron stars.
We also found that the ratio � could theoretically become
very large only at the ultrarelativistic limit far above the den-
sity reachable in neutron stars. However, the nonlinear RMF
mode using the FSUGold parameter set predicts a � value
around 2–8 % and it has significantly different density de-
pendence compared to the relativistic FFG model prediction.
In the relativistic FFG model incorporating the SRC-induced
HMT, the SRC affects significantly not only the kinetic en-
ergy of SNM but also the ratio � while the relativistic
corrections are negligible. In conclusion, while the relativis-
tic kinematics and dimensionality may affect appreciably the
ratio �, it is the nuclear interactions and the associated SRC
that dominate the ratio �. We also found no fundamental
physics reason for the � to be very small especially at high
densities.
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APPENDIX: ANALYTICAL EXPRESSIONS FOR 〈kσ〉 IN THE PRESENCE OF SRC-INDUCED HMT

According to the definition of the average of kσ , namely,

〈|k|σ 〉 = 〈kσ 〉 = 〈kσ (ρ, δ)〉 =
∑

J=n,p

∫ φJ kJ
F

0
kσ nJ

k(ρ, δ)dk

/
2

∫ kF

0
dk, (A1)

one obtains, by noticing that 2
∫ kF

0 dk = ρ[2/(2π )3]−1,

〈kσ 〉(at order δ0) ≡
(

1

ρ

2

(2π )3

∑
J=n,p

∫ φJ kJ
F

0
kσ nJ

k(ρ, δ)dk

)(
at order δ0) = 2[(1 − 3C0)φ0 + 3C0]kσ+1

F

(σ + 1)φ0
+ 2C0kσ+1

F (φσ−3
0 − 1)

σ − 3
,

(A2)

and similarly the quadratic and the quartic contributions for kσ ,

〈kσ 〉(at order δ2) ≡
(

1

ρ

2

(2π )3

∑
J=n,p

∫ φJ kJ
F

0
kσ nJ

k(ρ, δ)dk

)(
at order δ2

)

= 3kσ
F

σ + 3

[
3C0φ1

φ0
(φ1 − C1) + (σ + 3)C0C1φ1e(σ−1) ln φ0

+ 1

2

σ + 3

σ − 1
C0φ

2
1 (σ − 1)(σ − 2)e(σ−1) ln φ0 + (σ + 3)C0C1φ1e(σ−1) ln φ0

−
(

1 + σ

3

)[
3C0φ1

φ0
+ 3C0C1

(
1 − 1

φ0

)
− (σ + 3)C0φ1e(σ−1) ln φ0 − σ + 3

σ − 1
C0C1

[
e(σ−1) ln φ0 − 1

]]

+ σ (σ + 3)

18

[
1 − 3C0

(
1 − 1

φ0

)
+ σ + 3

σ − 1
C0

[
e(σ−1) ln φ0 − 1

]]]
, (A3)
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〈kσ 〉(at order δ4
) ≡

(
1

ρ

2

(2π )3

∑
J=n,p

∫ φJ kJ
F

0
kσ nJ

k(ρ, δ)dk

)(
at order δ4

)

= 3kσ
F

σ + 3

[
3C0φ

3
1

φ0
(φ1 − C1) + σ + 3

24
C0φ

4
1 (σ − 2)(σ − 3)(σ − 4)e(σ−1) ln φ0

+ σ + 3

6
C0C1φ

3
1 (σ − 2)(σ − 3)e(σ−1) ln φ0

+
(

1 + σ

3

)[
3C0φ

2
1

φ0
(C1 − φ1) + σ + 3

6
C0φ

3
1 (σ − 2)(σ − 3)e(σ−1) ln φ0 + σ + 3

2
C0C1φ

2
1 (σ − 2)e(σ−1) ln φ0

]

+ σ (σ + 3)

18

[
3C0φ1

φ0
(φ1 − C1) + σ + 3

2
C0φ

2
1 (σ − 2)e(σ−1) ln φ0 + (σ + 3)C0C1φ1e(σ−1) ln φ0

]

+
(

σ

18
− σ 3
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)[
3C0

[
φ1

φ0
+ C1

(
1 − 1

φ0

)]
− (σ + 3)C0φ1e(σ−1) ln φ0 − σ + 3

σ − 1
C0C1

[
e(σ−1) ln φ0 − 1

]]

+ 1

1944
σ (σ − 6)(σ − 3)(σ + 3)

[
1 − 3C0

(
1 − 1

φ0

)
+ σ + 3

σ − 1
C0

[
e(σ−1) ln φ0 − 1

]]]
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