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Elastic α- 12C scattering at low energies with the resonant 2+
2 and 2+

3 states of 16O
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The elastic α- 12C scattering for l = 2 at low energies is studied in an effective Lagrangian approach. I
explicitly include two resonant 2+

2 and 2+
3 states of 16O in the scattering amplitudes and construct an S matrix

assuming that three amplitudes, nonresonant part of the amplitude which has the subthreshold 2+
1 state of 16O

and those of the two resonant states, are represented by the summation of corresponding parts of the phase shift.
Then, I fit the parameters in the S matrix to the phase shift data by imposing three conditions at the very low
energies where the phase shift data are not available. By using the fitted parameters, the asymptotic normalization
coefficients (ANC) of the 2+

1 state of 16O are calculated, and I find that the previously reported small and large
values of the ANC can be reproduced depending on the imposed conditions. While large error bars for the large
ANC values which are reported from the α transfer reactions are also obtained.

DOI: 10.1103/PhysRevC.105.064603

I. INTRODUCTION

Radiative α capture on carbon-12, 12C(α, γ ) 16O, is an
essential reaction in nuclear astrophysics, which determines
the 12C / 16O ratio in stars [1]. Over the last half-century, many
experimental and theoretical studies for the reaction have been
carried out. See, e.g., Refs. [2–7] for review.

Direct measurement of the reaction at the Gamow-peak en-
ergy, EG = 0.3 MeV, in stars, where E is the kinetic energy of
α- 12C system in the center of mass frame, is not easy because
the Gamow penetration factor becomes vanishingly small; one
needs to extrapolate the reaction rate to EG by employing a
theoretical formula and the experimental data measured at a
few MeV or larger. The radiative capture reaction at EG is
known to be E1 and E2 transitions dominant because of the
subthreshold 1−

1 and 2+
1 (Jπ

ith) states of 16O, whose binding en-
ergies are E (1−

1 ) = −0.045 MeV and E (2+
1 ) = −0.245 MeV,

respectively, from the α- 12C breakup threshold energy. In
the previous works, I have studied elastic α- 12C scattering
with and without subthreshold states of 16O for l = 0, 1, 2, 3
[8,9] and the inclusion of ground 0+

1 state and resonant 0+
3

state of 16O for l = 0 [10,11] along with the E1 transition
of 12C(α, γ ) 16O and β delayed α emission from 16N [7,12] in
effective field theory (EFT). In this work, I study the inclusion
of resonant 2+

2 and 2+
3 states of 16O in the calculation of elastic

α- 12C scattering for l = 2.1

A problem of the calculation of elastic α- 12C scattering
for l = 2 at low energies in EFT [8,9,14], and also in the other
calculations in which the effective range expansion is adopted
[15], is small values of asymptotic normalization coefficient
(ANC) of the 2+

1 state of 16O. A typical value of the ANC
using the effective range expansion is |Cb| � 2 × 104 fm−1/2.

*sando@sunmoon.ac.kr
1A preliminary result of this work was reported in Ref. [13].

It is significantly smaller than those obtained from the α-
transfer reactions, |Cb| = (1.14–1.82) × 105 fm−1/2 [16–19],
and those from other theoretical calculations; e.g., Sparenberg
obtained |Cb| = 1.445 × 105 fm−1/2 from phase-equivalent
supersymmetric potentials [20], and Dufour and Descou-
vemont did |Cb| = 1.26 × 105 fm−1/2 from the generator
coordinate method [21]. The difference in the ANC values
will be consequential in the estimate of the E2 transition of
12C(α, γ ) 16O at EG. The ANC values of the 2+

1 state of 16O
for other approaches are well summarized in Table XIII in
Ref. [5] and Table VI in Ref. [21].

In this work, I investigate the elastic α- 12C scattering for
l = 2 at low energies including the resonant 2+

2 and 2+
3 states

of 16O in the study so that I can use the whole phase shift data
for l = 2 at 2.6 � Eα � 6.62 MeV reported in Ref. [22] for
the parameter fit, where Eα is the α energy in the laboratory
frame. The phase shift is separated into three parts: those for
the nonresonant part including the subthreshold 2+

1 state and
for the two resonant parts of the 2+

2 and 2+
3 states of 16O. I

also study the inclusion of a contribution from the resonant 2+
4

state of 16O as a background contribution from high energy, in
order to fit a tail of the phase shift data at the high energy
side. An aim of the present work is how one can reproduce
the large ANC values reported in the α transfer reactions by
using the phase shift data. For this aim, I introduce three
conditions (I), (II), (III) (they will be mentioned in detail
in Sec. IV) to be applied to the inverse of the non-resonant
part of 16O propagator, D2(p), at 0 � Eα � 2.6 MeV, where
the experimental data are not available. Then, the parameters
are fitted to the data and the ANC of the 2+

1 state of 16O is
calculated. I find that the parameters are fitted very well to the
experimental phase shift data for all the conditions (I), (II),
(III), where the χ2/N values for the parameter fit are less than
one or almost one for all cases. In addition, the both small and
large ANC values, depending on the choice of the conditions,
are reproduced by using the fitted parameters. Thus, it is not
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clear how one can pin down the value of ANC of the 2+
1 state

of 16O from the phase shift data of elastic α- 12C scattering.
As already discussed in the literature, additional experimental
input may be necessary to determine the value of ANC of the
2+

1 state of 16O.
The present work is organized as follows. In Sec. II, an

expression for the S matrix is introduced and an effective
Lagrangian is presented, and the elastic scattering amplitudes
for l = 2 are derived from the Lagrangian in Sec. III. In
Sec. IV, I discuss that three conditions are imposed in low
energy regions where the experimental data do not exist and
numerical results are obtained, and results and discussion of
this work are presented in Sec. V. In Appendix, a modification
of the counting rules of the effective range parameters for the
d-wave elastic scattering is discussed.

II. S MATRIX AND EFFECTIVE LAGRANGIAN

The S matrix of elastic α- 12C scattering for d-wave chan-
nel is given as

S2 = e2iδ2 , (1)

where δ2 is the phase shift for the d-wave elastic scattering
whose experimental values at 2.6 � Eα � 6.62 MeV are re-
ported in Ref. [22]. The scattering amplitude Ã2 is related to
the S matrix as2

S2 = 1 + 2ipÃ2 . (2)

Because two resonant 2+
2 and 2+

3 states of 16O appear in the
data at Eα (2+

2 ) = 3.58 MeV and Eα (2+
3 ) = 5.81 MeV, respec-

tively, one may decompose the phase shift δ2 as [23]

δ2 = δ
(nr)
2 + δ

(rs1)
2 + δ

(rs2)
2 , (3)

where δ
(nr)
2 is the phase shift for the background-like, nonres-

onant part and δ
(rs1)
2 and δ

(rs2)
2 are those for the resonant 2+

2
and 2+

3 states of 16O, respectively. I assume that each of those
phase shifts may have a relation to a corresponding scattering
amplitude as

e2iδ(ch)
2 = 1 + 2ipÃ(ch)

2 , (4)

where ch(annel ) = nr, rs1, rs2, and Ã(nr)
2 , Ã(rs1)

2 , and Ã(rs2)
2 ,

are the amplitudes for the nonresonant part, the first resonant
part, and the second resonant part of the amplitudes, which
will be constructed from the effective Lagrangian in the fol-
lowing. Thus, the total amplitude Ã2 for the nuclear reaction
part in terms of the three amplitudes, Ã(nr)

2 , Ã(rs1)
2 , Ã(rs2)

2 , is

Ã2 = Ã(nr)
2 + e2iδ(nr)

2 Ã(rs1)
2 + e2i(δ(nr)

2 +δ
(rs1)
2 )Ã(rs2)

2 . (5)

An effective Lagrangian to derive the scattering amplitude
for the d-wave elastic α- 12C scattering at low energies includ-
ing the subthreshold 2+

1 state of 16O and the resonant 2+
2 and

2There is a common factor difference between the expression of
the amplitude Ã2 and the standard form of the amplitude A2; A2 =
10π

μ
e2iσ2 Ã2 where σ2 is the Coulomb phase shift for l = 2, e2iσ2 =

	(3 + iη)/	(3 − iη) with η = κ/p.

= + + + ...

FIG. 1. Diagrams for dressed 16O propagator. A thick (thin)
dashed line represents a propagator of 12C (α), and a thick and thin
double dashed line with and without a filled circle represent a dressed
and bare 16O propagator, respectively. A shaded blob represents a set
of diagrams consisting of all possible one-potential-photon-exchange
diagrams up to infinite order and no potential-photon-exchange one.

2+
3 states of 16O may be written as [8–10,24]

L = φ†
α

(
iD0 + �D2

2mα

)
φα + φ

†
C

(
iD0 + �D2

2mC

)
φC

+
3∑

k=0

C(nr)
k d†

(nr)i j

[
iD0 + �D2

2(mα + mC )

]k

d(nr)i j

− y(nr)[d
†
(nr)i j (φαO2,i jφC ) + (φαO2,i jφC )†d(nr)i j]

+
2∑

N=1

3∑
k=0

C(rsN )
k d†

(rsN )i j

[
iD0 + �D2

2(mα + mC )

]k

d(rsN )i j

−
2∑

N=1

y(rsN )[d
†
(rsN )i j (φαO2,i jφC )+(φαO2,i jφC )†d(rsN )i j] ,

(6)

where φα (mα) and φC (mC) are scalar fields (masses) of
α and 12C, respectively. Dμ is a covariant derivative, Dμ =
∂μ + iQAμ, where Q is the charge operator and Aμ is the
photon field. d(nr)i j and d(rsN )i j with N = 1, 2 are the com-
posite fields of 16O consisting of α and 12C fields for l = 2
for the non-resonant part (nr) representing the subthreshold
2+

1 state of 16O, and the two resonant parts (rs1) and (rs2)
representing the first and second resonant 2+

2 and 2+
3 states

of 16O, respectively, which are introduced for perturbative
expansion around the unitary limit [25–28]. The coupling
constants of the nonresonant part of the amplitude, C(nr)

k with
k = 0, 1, 2, 3, correspond to the effective range parameters of
elastic α- 12C scattering while the first coupling constant C(nr)

0
is fixed by using the binding energy of the subthreshold 2+

1
state of 16O and the other parameters are fitted to the experi-
mental phase shift data with other parameters appearing in the
S matrix. The coupling constants of the resonant parts, C(rs1)

k ,
and C(rs2)

k with k = 0, 1, 2, 3, are rewritten in terms of the first
two terms, C(rs1)

0 and C(rs1)
1 as well as C(rs2)

0 and C(rs2)
1 , by

using the resonant energies and widths for the resonant 2+
2 and

2+
3 states of 16O, respectively. The third and fourth parameters

for the resonant 2+
3 state, C(rs2)

2 and C(rs2)
3 are fitted to the phase

shift data while I set C(rs1)
2 = C(rs1)

3 = 0 for the first resonant
2+

2 state of 16O. The coupling constants y(nr) and y(rsN ) with
N = 1, 2 are uniquely defined but convention-dependent [29].
I take the convenient choice; y(nr) = y(rs1) = y(rs2) = √

2π/μ,
where μ is the reduced mass of α and 12C, as a trade-off for a
complicated redefinition of the respective composite fields.

The scattering amplitudes, Ã(nr)
2 and Ã(rsN )

2 with N = 1, 2,
are calculated from the diagrams depicted in Figs. 1 and 2.
Here, the bubble diagrams are summed up to the infinite
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FIG. 2. Diagram of the scattering amplitude. See the caption of
Fig. 1 as well.

order in Fig. 1. For the nonresonant part of the amplitude, I
treat it nonperturbatively because of the study for the ANC
of 2+

1 state of 16O at its binding energy. For the resonant
parts of the amplitude (for this case, they are classified as
narrow resonances because of 	r � Er [30]), the counting
rules of resonant states are carefully studied by Gelman [23]
and Habashi et al. [30]. The energy range of phase shift data
covers the two resonant states, and at the vicinities of the
resonant energies one should have the amplitudes for which
the bubble diagrams are summed up to the infinite order.
While at the off-resonant energy regions, one can expand the
resonant amplitudes perturbatively and the d(nr)i j and d(rsN )i j

with N = 1, 2 fields may start mixing through the bubble
diagram for corrections at higher orders. I keep the summed
amplitudes for the resonant states as leading contributions and
ignore the field mixing in the present study.

III. SCATTERING AMPLITUDES

For the nonresonant amplitude Ã(nr)
2 , I have [8,9]

Ã(nr)
2 = C2

ηW2(p)

K2(p) − 2κH2(p)
, (7)

where the function C2
ηW2(p) in the numerator of the amplitude

is calculated from the initial and final state Coulomb interac-
tions in Fig. 2; p is the magnitude of relative momentum of the
α- 12C system in the center of mass frame, p = √

2μE . Thus,
one has

C2
η = 2πη

exp(2πη) − 1
, (8)

W2(p) = 1

4
(κ2 + p2)(κ2 + 4p2) , (9)

where η = κ/p: κ is the inverse of the Bohr radius, κ =
Z2Z6αEμ, where Zn are the number of protons of the nuclei,
Z2 = 2 and Z6 = 6, and αE is the fine structure constant. The
function −2κH2(p) in the denominator of the amplitude is the
Coulomb self-energy term which is calculated from the loop
diagram in Fig. 1, and one has

H2(p) = W2(p)H (η) , H (η) = ψ (iη) + 1

2iη
− log(iη) ,

(10)

where ψ (z) is the digamma function. The nuclear interaction
is represented in terms of the effective range parameters in the
function K2(p) in the denominator of the amplitude in Eq. (7).
As discussed in Ref. [8], large and significant contributions
to the series of effective range expansion, compared to that
evaluated from the phase shift data at the lowest energy of the

data, Eα = 2.6 MeV, appear from the Coulomb self-energy
term, −2κH2(p). To subtract those contributions, I include the
effective range terms up to p6 order as counterterms. For more
detail, see the Appendix. Thus, I have

K2(p) = − 1

a2
+ 1

2
r2 p2 − 1

4
P2 p4 + Q2 p6 , (11)

where a2, r2, P2, Q2 are effective range parameters.
Now I fix a parameter among the four effective range

parameters, a2, r2, P2, and Q2, by using the condition that
the inverse of the scattering amplitude Ã(nr)

2 vanishes at the
binding energy of the sub-threshold 2+

1 state of 16O. Thus, the
denominator of the scattering amplitude,

D2(p) = K2(p) − 2κH2(p) , (12)

vanishes at p = iγ , where γ is the binding momentum of the
2+

1 state of 16O; γ = √
2μB2 where B2 is the binding energy of

the 2+
1 state of 16O from the α- 12C breakup threshold. Using

the condition, D2(iγ ) = 0, I fix the effective range parameter
a2 as

− 1

a2
= 1

2
γ 2r2 + 1

4
γ 4P2 + γ 6Q2 + 2κH2(iγ ) . (13)

Using the relation in Eq. (13), the denominator of the ampli-
tude D2(p) is rewritten as

D2(p) = 1
2 r2(γ 2 + p2) + 1

4 P2(γ 4 − p4)

+ Q2(γ 6 + p6) + 2κ[H2(iγ ) − H2(p)] , (14)

where I have three constants, r2, P2, Q2, in the function D2(p)
for the nonresonant amplitude Ã(nr)

2 , which are fitted to the
phase shift data.

For the elastic scattering amplitudes for the resonant 2+
2

and 2+
3 states of 16O, I may first have those amplitudes as the

same expression of the nonresonant amplitude in Eq. (7) in
terms of the effective range expansion as

Ã(rsN )
2 = C2

ηW2(p)

K (rsN )
2 (p) − 2κH2(p)

(15)

with N = 1, 2, which correspond to the first and second reso-
nant 2+

2 and 2+
3 states of 16O, respectively, and

K (rsN )
2 (p) = − 1

a(rsN )
2

+ 1

2
r (rsN )

2 p2 − 1

4
P(rsN )

2 p4 + Q(rsN )
2 p6 .

(16)

I now introduce the expansion around the resonant energies
in the denominator of the scattering amplitudes [31]. Thus, the
amplitudes are rewritten as

Ã(rsN )
2 = −1

p

1
2	(rsN )(E )

E − E (rsN )
r + R(rsN )(E ) + i 1

2	(rsN )(E )
(17)

with

	(rsN )(E ) = 	(rsN )
r

pW2(p)C2
η

prW2(pr )C2
ηr

, (18)

R(rs2)(E ) = a
(
E − E (rs2)

r

)2 + b
(
E − E (rs2)

r

)3
, (19)
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and R(rs1)(E ) = 0, where

a = 1

2
Zr

(
2P(rs2)

2 μ2 − 48Q(rs2)
2 μ3E (rs2)

r + 2κRe
∂2H2

∂E2

∣∣∣∣
E=E (rs2)

r

)
, (20)

b = 1

6
Zr

(
−48Q(rs2)

2 μ3 + 2κ Re
∂3H2

∂E3

∣∣∣∣
E=E (rs2)

r

)
, (21)

Z−1
r = Re

∂

∂E
D(rs2)

2 (E )

∣∣∣∣
E=E (rs2)

r

, Zr = 	(rs2)
r

2prW2(pr )C2
ηr

. (22)

In the above equations, E (rsN )
r and 	(rsN )

r with N = 1, 2 are the energies and the widths of the resonant states of 16O, and pr are

the resonant momenta, pr =
√

2μE (rsN )
r , which also appear in ηr as ηr = κ/pr .

Using the expression of the amplitudes in Eqs. (7) and (17), I have the S matrix as

e2iδ2 = K2(p) − 2κReH2(p) + ipC2
ηW2(p)

K2(p) − 2κReH2(p) − ipC2
ηW2(p)

E − E (rs1)
r − i 1

2	(rs1)(E )

E − E (rs1)
r + i 1

2	(rs1)(E )

E − E (rs2)
r + R(rs2)(E ) − i 1

2	(rs2)(E )

E − E (rs2)
r + R(rs2)(E ) + i 1

2	(rs2)(E )
. (23)

I will fit the parameters in the S matrix to the phase shift data
by using the sine function of the phase shift, f = sin(δ2), in
the next section; the scattering cross section is proportional to
sin2(δ2). For the study of the ANC, at the small energy region,
the exponential factors in Eq. (5) almost become one due to
the Gamow factor in C2

η , and the amplitude becomes

Ã2 = Ã(nr)
2 + Ã(rs1)

2 + Ã(rs2)
2 + O(C4

η ) , (24)

where the pole at the 2+
1 state of 16O exists in Ã(nr)

2 , the
ANC |Cb| for the 2+

1 state of 16O is calculated by using a
formula [32]

|Cb| = 1

2
γ 2	(3 + κ/γ )

[
−∂D2(p)

∂ p2

∣∣∣∣
p2=−γ 2

]−1/2

, (25)

where 	(z) is the gamma function.

IV. NUMERICAL RESULTS

Nine parameters, θ = {r2, P2, Q2, E (rs1)
r , 	(rs1)

r , E (rs2)
r ,

	(rs2)
r , a, b}, appear in the S matrix, where r2, P2, and Q2 are

the effective range parameters, which reproduce the binding
energy of the subthreshold 2+

1 state of 16O in Ã(nr)
2 , E (rs1)

r , and
	(rs1)

r are the resonant energy and width of the 2+
2 state of 16O

in Ã(rs1)
2 , and E (rs2)

r and 	(rs2)
r are those of the 2+

3 state of 16O
in Ã(rs2)

2 . While a and b are the coefficients of higher order
terms (E − E (rs2)

r )n with n = 2, 3 in the R(rs2)(E ) function,
respectively, obtained expanding the denominator of Ã(rs2)

2
around the resonant energy, E = E (rs2)

r . I treat the parameters
a and b as independent parameters for the sake of simplicity
though they are functions of P(rs2)

2 , Q(rs2)
2 and E (rs2)

r . As
mentioned in the introduction, I also study the inclusion
of 2+

4 state of 16O; this can be done straightforwardly. The
expression for the 2+

4 state of 16O in the S matrix is the
same as that for the 2+

2 state of 16O in Eq. (23), but I use
the fixed experimental values of the energy and width, E (rs3)

r
and 	(rs3)

r . Thus, I employ two expressions of the S matrix
for the parameter fit; one is the S matrix given in Eq. (23),
and the other is that including the contribution from the
2+

4 state of 16O. The nine parameters in the S matrices [by

using the fitting function f = sin(δ2), as mentioned above]
are fitted to the phase shift data δ2 of the elastic α- 12C
scattering for d-wave channel reported by Tischhauser et al.
[22], by employing a Markov chain Monte Carlo (MCMC)
program [33].

In addition, to investigate the difference between the large
ANC values obtained from the α transfer reactions and the
small ANC values from the effective range expansion, I
impose three different conditions to the inverse of the 16O
propagator, D2(p), of the non-resonant amplitude at the very
low α energy region, 0 < Eα < 2.6 MeV, where the experi-
mental data are not available. One may note that the function
D2(p) should be negative at 0 < Eα < 2.6 MeV. Those three
conditions are

(I) D2(p) < 0,
(II) D2(pi+1) < D2(pi ),

(III) dD2
d p2 |p=pi+1 <

dD2(p)
d p2 |p=pi ,

where pi+1 > pi and p = √
2μE = √

1.5μEα . The first con-
dition (I) is always required because there should be no zeros
for no resonant states of 16O at the very low energy region.
The second condition (II) is modest and the condition (III) can
reproduce the large ANC values reported from the α transfer
reactions as I will show below. I note that those conditions are
easily included as conditions in the prior distribution with the
MCMC method.

For the parameter fit, the parameters, θ =
{r2, P2, Q2, E (rs1)

r , 	(rs1)
r , E (rs2)

r , 	(rs2)
r , a, b} are treated

as free parameters while the values of r2, P2, Q2 are
constrained due to the conditions (I), (II), (III) in the
inverse of the 16O propagator, D2(p). For the initial values
of the parameters, r2, P2, Q2, I employ the values reported
by Sparenberg, Capel, and Baye [34]; r2 = 0.1580 fm−3,
P2 = −1.041 fm−1, Q2 = 0.1411 fm, which lead to a
large ANC value, |Cb| = 13.8 × 104 fm−1/2. I also choose
the initial values of a and b as a = 0.1(0.5) MeV−1 and
b = 1.1(0.5) MeV−2 for the S matrix without (with) the 2+

4
state of 16O. While I use the center values of the experimental
resonant energies and widths of the 2+

2 and 2+
3 states of

064603-4



ELASTIC α- 12C SCATTERING AT LOW … PHYSICAL REVIEW C 105, 064603 (2022)

TABLE I. Values and errors of nine parameters
{r2, P2, Q2, E (rs1)

r , 	(rs1)
r , E (rs2)

r , 	(rs2)
r , a, b} in the S matrix in

Eq. (23) fitted to the experimental phase shift δ2 of elastic α- 12C
scattering for l = 2 using the conditions (I), (II), (III) at the low
energy region. The ANC, |Cb|, for the 2+

1 states of 16O are calculated
by using the fitted values of the parameters, and values of χ2/N ,
where N is the number of data, for the fit are presented in the last
row of the table.

(I) (II) (III)

r2 (fm−3) 0.137(4) 0.150(4) 0.159(4)
P2 (fm−1) −1.36(5) −1.18(4) −1.07(4)
Q2 (fm) 0.013(16) 0.075(12) 0.112(11)
E (rs1)

r (MeV) 2.68308(5) 2.68309(5) 2.68309(5)
	(rs1)

r (keV) 0.75(2) 0.74(2) 0.74(2)
E (rs2)

r (MeV) 4.3549(1) 4.3545(1) 4.3544(1)
	(rs2)

r (keV) 74.66(3) 74.60(3) 74.57(3)
a (MeV−1) 0.20(6) 0.47(6) 0.59(5)
b (MeV−2) 0.94(5) 1.13(8) 1.39(10)
|Cb| (fm−1/2) 2.0(2)×104 3.2(6)×104 11(26)×104

χ 2/N 0.74 0.86 1.13

16O; E (rs1)
r = 2.6826(5) MeV, 	(rs1)

r = 0.625(100) keV,
E (rs2)

r = 4.358(4) MeV, 	(rs2)
r = 71(3) keV [35], as initial

values for the parameter fit. I use the fixed experimental
values for the energy and width of the 2+

4 state of 16O as
E (rs3)

r = 5.858 MeV and 	(rs3)
r = 150 keV [35]. Details for

the parameter fit and the calculation of the error bars can be
found in Ref. [36].

I am now in a position to discuss the numerical results of
the present work. In Tables I and II, I present the values and
errors of the parameters in the S matrices without and with
the contribution from the 2+

4 state of 16O, respectively, fitted
to the phase shift data imposing the three conditions (I), (II),
(III). I also include in the tables the values and errors of the
ANC, |Cb|, of the 2+

1 state of 16O and the χ2/N values where
N is the number of data, N = 354.

TABLE II. Values and errors of nine parameters
{r2, P2, Q2, E (rs1)

r , 	(rs1)
r , E (rs2)

r , 	(rs2)
r , a, b} in the S matrix, which

contains the contribution from the 2+
4 state of 16O, fitted to the

experimental phase shift δ2 of elastic α- 12C scattering for l = 2
using the conditions (I), (II), (III) at the low energy region. See the
caption of Table I as well.

(I) (II) (III)

r2 (fm−3) 0.149(4) 0.152(4) 0.159(3)
P2 (fm−1) −1.19(5) −1.16(4) −1.07(3)
Q2 (fm) 0.081(16) 0.090(14) 0.121(9)
E (rs1)

r (MeV) 2.68308(5) 2.68308(5) 2.68309(5)
	(rs1)

r (keV) 0.75(2) 0.75(2) 0.75(2)
E (rs2)

r (MeV) 4.3545(2) 4.3545(1) 4.3542(1)
	(rs2)

r (keV) 74.61(3) 74.59(3) 74.55(3)
a (MeV−1) 0.46(12) 0.51(10) 0.71(6)
b (MeV−2) 0.47(9) 0.53(10) 0.81(11)
|Cb| (fm−1/2) 3.1(6)×104 3.6(9)×104 13(30)×104

χ 2/N 0.66 0.69 0.73
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FIG. 3. Phase shift δ2 of elastic α- 12C scattering for d-wave
channel as a function of Eα calculated by using the fitted values of
the parameters in the (I) column in Table I. Experimental data are
included in the figure as well.

In the tables, one can see that the values of χ2/N increase
as the conditions (I), (II), (III) are orderly changed. This is
caused by tighter restrictions being applied to the effective
range parameters, r2, P2, Q2, as altering the conditions (I),
(II), (III) in order. Nevertheless, all values of the parameters
may be regarded to be fitted very well to the phase shift data
because the values of χ2/N are smaller than one or almost one
whereas the inclusion of the 2+

4 state of 16O makes the χ2/N
values in Table II smaller than those in Table I.

The fitted parameters in the tables can be parted into two
groups depending on sensitivities to the conditions (I), (II),
(III). One can easily see that the energies and widths of the res-
onant states of 16O are insensitive to the conditions; they are
determined by the significant resonant peaks. One may find
that the fitted values of E (rs1)

r , 	(rs1)
r , E (rs2)

r , 	(rs2)
r , basically

agree with the experimental values [35]. The fitted values of
r2, P2, Q2, a, b are sensitive to the conditions (I), (II), (III);
they are fitted to the nonresonant part of the phase shift data at
the energy regions below the first resonant state and between
the two resonant states. One may notice that the values of
b in Table II are remarkably smaller than those in Table I,
apparently due to the effect of the 2+

4 state of 16O. The small
and large values of the ANC, |Cb|, of the 2+

1 state of 16O are
reproduced by using the fitted values of the effective range
parameters, r2, P2, Q2 for the conditions (I), (II), (III), where
the effective range parameters for the condition (III) reason-
ably agree well with those reported by Sparenberg, Capel, and
Baye for the large ANC value. In addition, a very large error
bar appears in the large ANC value, so the small and large
values of the ANC in fact agree with each other within the
error bars. In the present study, therefore, it is not easy to pin
down which of the ANC values is correct because of the error
bars of the ANC values and the χ2/N values discussed above.

In Fig. 3, the phase shift δ2 of elastic α- 12C scattering
for d-wave channel calculated is plotted by using the fitted
values of the parameters in the (I) column in Table I as a
function of the α energy, Eα , and the phase shift data are also
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FIG. 4. Phase shift δ2 of elastic α- 12C scattering for d-wave
channel at the small phase shift region as functions of Eα calculated
by using the fitted values of the parameters in Table I. Experimental
data are included in the figure as well.

included in the figure. This is a typical figure for almost all of
the cases; two peaks of the resonant 2+

2 and 2+
3 states of 16O

are well reproduced. The differences due to the values of the
fitted parameters are hardly seen at the low energy tail and the
energies between the two resonant states.

In Figs. 4 and 5, I display the curves of the phase shift δ2

for the small δ2 values, −5◦ � δ2 � 5◦, which are calculated
by using the values of the parameters in the S matrices without
and with the 2+

4 state of 16O, respectively, fitted to the phase
shift data for the low energy tail and the energies between the
two resonant states. The phase shift data are included in the
figures as well. One can see that the calculated curves agree
very well within the error bars of the data as discussed above
that the χ2/N values are less than one or almost one for all the
cases.

In Fig. 6, I display the real part of D2(p) calculated by
using the values of the parameters in Table I (as curves) and
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FIG. 5. Phase shift δ2 of elastic α- 12C scattering for d-wave
channel at the small phase shift region as functions of Eα calculated
by using the fitted values of the parameters in Table II. Experimental
data are included in the figure as well.
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FIG. 6. Real part of inverse of dressed 16O propagator for l =
2, D2(p), calculated by using the values of the parameters with the
conditions (I), (II), (III) in Tables I (curves) and II (dashed curves) as
functions of Eα at the energies where the experimental data are not
available. A dotted vertical line at Eα = 0.4 MeV is also drawn in the
figure.

in Table II (as dashed curves) for the conditions (I), (II), (III)
as functions of Eα at 0 � Eα � 2.6 MeV, where the phase
shift data are not available. One can see that those curves
satisfy the conditions (I), (II), (III) and go through the quite
different values of ReD2(p) at an energy range, 0 � Eα �
1.5 MeV whereas the inclusion of the 2+

4 state of 16O makes
the curve of (I) less deviated from the other curves. When
one calculates the E2 transition rate of 12C(α, γ ) 16O at EG,
i.e., Eα = 4

3 EG = 0.4 MeV, the center value of ReD2(p) for
the condition (III) becomes extremely tiny, much smaller than
the errors of ReD2(p). This will lead to a large uncertainty in
an estimate of the E2 transition rate of 12C(α, γ ) 16O with the
large ANC values.

V. RESULTS AND DISCUSSION

In this work, I studied the elastic α- 12C scattering for the
d-wave channel at the low energy region including the first
and second d-wave resonant states, the 2+

2 and 2+
3 states of

16O, in an effective Lagrangian approach. The phase shift
δ2 is separated into three; one is for the non-resonant part
which contains the sub-threshold 2+

1 state of 16O, and the
other two parts are for the two resonant 2+

2 and 2+
3 states of

16O. I include four effective range parameters, a2, r2, P2, Q2,
in each of the three amplitudes (thus 12 parameters in total)
due to the modification of the counting rules discussed in the
Appendix as well as in Ref. [8], while I employed the nine pa-
rameters {r2, P2, Q2, E (rs1)

r , 	(rs1)
r , E (rs2)

r , 	(rs2)
r , a, b} as free

parameters because a2 is fixed by using the binding energy of
the 2+

1 state of 16O and two of them (a and b for Ã(rs1)
2 ) turned

out to be insensitive to the parameter fit. I also introduce a
contribution from the 2+

4 state of 16O as a background from
high energy using the fixed experimental energy and width,
E (rs3)

r and 	(rs3)
r . To study the issue of the scattered, large and

small values of the ANC, I introduce the three conditions (I),
(II), (III) at the very low energy region where the phase shift
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data are not available. The nine parameters in the S matrices
with and without the 2+

4 state of 16O are fitted to the phase
shift data applying one of the three conditions.

For all the six cases of the parameter fit, the parameters are
fitted very well to the data where the χ2/N values are less than
one or almost one. The fitted values of the energies and widths
of the two resonant states do not depend on the choice of the
conditions, and the fitted values of the energies and widths
basically agree with the experimental values. Those of the
effective range parameters, r2, P2, Q2, and the parameters a
and b turned out to be sensitive to the choice of the conditions
(and b is the most sensitive to the contribution from the 2+

4
state of 16O); they are fitted to the phase shift data at the
non-resonance region, at the energies below the first resonant
state and between the two resonant states. By using the fitted
values of the effective range parameters, I reproduce the both
small and large values of the ANC, |Cb|, depending on the
choice of the conditions. I also find the large error bars for
the large ANC values. Therefore, it is not easy to clearly pin
down the value of the ANC from the phase shift data due to
the large error bars of the ANC values and the χ2/N values
for the parameter fit mentioned above.

The problem with fitting the parameters to the phase shift
data for d-wave channel is that though the two resonant peaks
are well reproduced as seen in Fig. 3, it is essential to fit
the parameters to the tiny data at the low energy tail and the
energy region between the two resonant states for the study
of the ANC of the 2+

1 state of 16O. Because the size of those
data is so small compared to the distance between the binding
energy of the sub-threshold 2+

1 state of 16O and the lowest
energy of the phase shift data, Eα = 2.6 MeV, it is not easy
to clarify how much the fitting procedures work well when a
number of parameters of a polynomial function are fitted to
the data. This may be seen as an ambiguity of the curves of
ReD2(p) displayed in Fig. 6.

Apart from the ambiguity mentioned above, I reproduced
the center values for the small and large ANC values using
the conditions (I) and (III), respectively, in Tables I and II.
Because the error bar of the large ANC turns out to be very
large, it is not so sure that I could reproduce the large ANC
value from the phase shift data of α- 12C scattering for d-wave
channel. Thus, as discussed in the literature, the value of ANC
of the subthreshold 2+

1 state of 16O may need to be fixed by
using other experimental data, such as the α transfer reac-
tions, e.g., 12C(6Li, d ) 16O∗(2+

1 ) and 12C(7Li, t ) 16O∗(2+
1 ), a

cascade transition, 12C(α, γ ) 16O∗(2+
1 ), and a radiative decay

of the excited state, 16O∗(2+
1 ) → 16Og.s. +γ , for the present

approach. Those data may determine the value of ANC and
provide a consistency check for a theoretical framework to
estimate the E2 transition of 12C(α, γ ) 16O at EG.

ACKNOWLEDGMENTS

This work was supported by the Basic Research Pro-
gram through the National Research Foundation of Korea
funded by the Ministry of Education of Korea (NRF-
2019R1F1A1040362 and 2022R1F1A1070060).

APPENDIX

In this Appendix, I discuss a renormalization procedure for
the effective range terms due to large and significant contri-
butions from the Coulomb self-energy term, −2κH2(p), for
the d-wave scattering. It has been discussed for the s-wave
scattering in Ref. [8].

At the energy region below the resonant energies, where
one may assume that the resonant parts of the amplitudes are
negligible, one can make a relation between the phase shift δ2

and the non-resonant part of the amplitude as

C2
ηW2(p)p cot δ2 = K2(p) − 2κReH2(p) , (A1)

where the function K2(p) is represented as an effective range
expansion, and the Coulomb self-energy term, −2κH2(p), can
be expanded in powers of p2/κ2 too. Thus, one has

−2κReH2(p) = 1

24
κ3 p2 + 51

240
κ p4 + 191

1008

p6

κ

− 289

10080

p8

κ3
+ · · · . (A2)

At the smallest energy of the experimental data, Eα =
2.6 MeV, where p = √

2μE = √
1.5μEα = 104 MeV, one

can check the series of the terms in Eq. (A2) converge; those
terms numerically become

−2κReH2(p = 104MeV) = 0.022 + 0.021 + 0.003

− 0.0009 + · · · fm−5. (A3)

While the phase shift δ2 at Eα = 2.6 MeV is δ2 = −0.0116◦
[22], and the left-hand side of Eq. (A1) becomes

C2
ηW2(p)p cot δ2

∣∣
p=104 MeV

= −0.019 fm−5 . (A4)

Because the first and second terms in the right-hand side of
Eq. (A3) obtained from the Coulomb self-energy term are in
the same order of magnitude as that calculated from the ex-
perimental phase shift data in Eq. (A4), one needs to subtract
them by including the corresponding effective range terms at
p2 and p4 orders in K2(p) as counterterms. In addition, to
control sub-leading corrections I include the effective range
term at p6 order in K2(p) as well.
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