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Pairing dynamics and solitonic excitations in collisions of medium-mass, identical nuclei
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We present results of collisions of 90Zr + 90Zr and 96Zr + 96Zr obtained within time-dependent density
functional theory (TDDFT) extended to superfluid systems, known as the time-dependent superfluid local density
approximation (TDSLDA). We discuss qualitatively new features occurring in collisions of two superfluid nuclei
at energies in the vicinity of the Coulomb barrier. We show that a solitonic excitation—an abrupt pairing phase
distortion—reported previously [P. Magierski et al., Phys. Rev. Lett. 119, 042501 (2017)] increases the barrier
for capture, generating effective repulsion between colliding nuclei. Moreover we demonstrate that pairing field
leads to qualitatively different dynamics at the Coulomb barrier which manifests itself in a slower evolution of
deformation towards a compact shape. Last but not least, we show that magnitude of pairing correlations can be
dynamically enhanced after collision. We interpret it as a dynamically induced U(1) symmetry breaking, which
leads to large-amplitude oscillations of pairing field and bears similarity to the pairing Higgs mechanism.
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I. INTRODUCTION

Pairing correlations in nuclear systems are one of the best
known characteristics of nonmagic atomic nuclei [1–3]. Vari-
ous features related to high spin phenomena [4–6] or to large
amplitude collective motion [7,8], e.g., fission [9–11], indicate
that these correlations are crucial for our understanding of
nuclear structure and dynamics. There is, however, a sub-
tle difference between pairing correlations and a superfluid
phase. In finite systems the distinction between the two is not
easy to make. Pairing in atomic nuclei is usually theoretically
described on a mean-field level, where the concept of a pairing
field plays the key role. It implicitly assumes the existence
of a superfluid phase described by the complex field playing
the role of the order parameter. Although the average magni-
tude of this field is an important ingredient of any theoretical
description of medium or heavy nuclei, the other features
related to this degree of freedom are usually omitted in the
context of nuclear dynamics. These features include spatial
modulations (oscillations) of the order parameter, where both
the magnitude and the phase may vary in space and time. It
is well known that degrees of freedom of the pairing field are
responsible for phenomena that abound in various superfluid
condensed matter systems [12–14]. Still, in atomic nuclei they
are believed to play a minor role and the pairing field is usually
reduced in nuclear physics to a single number defining the
energy gap at the Fermi surface. There are two arguments
that justify such restricted treatment of nuclear superfluidity.
The first one is related to the size of a nuclear Cooper pair,
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which in atomic nuclei is estimated to exceed the size of
a nucleus. Therefore it is believed that there is essentially
no room for spatially inhomogeneous excitations of pairing
modes. The second one is related to the fact that a nucleus has
a finite number of nucleons and consequently its description
requires projecting out (from the BCS wave function) the
component having well defined particle number. However,
once this operation is performed the information about the
phase is lost, at least to some extent. Still these arguments
cannot rule out the existence of observable consequences of
pairing field dynamics and they may only serve as a warning
sign when extracting quantitative predictions based on the
mean-field treatment of pairing correlations.

There have been only a limited number of attempts to in-
vestigate features of nuclear pairing that could serve as a proof
that it can be treated as a superfluid phase. They all focused
on probing the degree of freedom of pairing field related to
the spatial modulation of its phase factor. Some of the first
examples of such studies were triggered by the discovery of
the Josephson effect in condensed matter systems and were
devoted to searching for its analog in atomic nuclei [15–18].
In the case of nuclear systems it was investigated in collisions
of two nuclei, where the relative phase difference was pre-
dicted to induce enhanced transfer of neutrons. These studies,
however, did not lead to conclusive results [19–22]. Recently,
a new light has been shed on the problem, after realizing that
the collision of two nuclei creates rather an AC Josephson
junction which induces oscillations of nucleons and thus may
lead to photons emission of certain energy [23,24]. Surpris-
ingly enough the predicted gamma energies have been found
to be in agreement with experiment [23,25,26]. All these stud-
ies are related to sub-barrier collisions and therefore tunneling
plays a crucial role in their description.

2469-9985/2022/105(6)/064602(9) 064602-1 ©2022 American Physical Society

https://orcid.org/0000-0001-8769-5017
https://orcid.org/0000-0002-0699-2632
https://orcid.org/0000-0001-5800-1995
https://orcid.org/0000-0002-7726-5328
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.105.064602&domain=pdf&date_stamp=2022-06-07
https://doi.org/10.1103/PhysRevLett.119.042501
https://doi.org/10.1103/PhysRevC.105.064602


PIOTR MAGIERSKI et al. PHYSICAL REVIEW C 105, 064602 (2022)

Another type of studies have been performed above the
barrier, where two nuclei merge having two different pairing
phases [27,28]. From a physical point of view the situation
is different. The collision above the barrier requires more
energy and the process is not nearly adiabatic as in the case
of sub-barrier reactions. Consequently it leads to creation of
solitonic excitation, which was described in Ref. [28]. An
analog of such collisions is routinely realized with ultracold
atomic clouds, where the nonadiabatic character of dynamics
is reflected in creation of the solitonic excitation which sub-
sequently decays [29–31]. In nuclear collisions it is predicted
to enhance the effective barrier between colliding nuclei [28].
The extra energy needed to overcome the additional repulsion
depending on phase difference between colliding nuclei re-
sembles extra-push energy (see Refs. [32–35]) although has a
completely different physical origin.

This paper represents the continuation of studies reported
in Ref. [28] and the first case of describing the collision of
superfluid medium-mass nuclei with a realistic nuclear energy

density functional. To allow for comparison to previous re-
sults obtained in Ref. [28] the collisions of 90Zr + 90Zr and
96Zr + 96Zr were chosen. Moreover we have investigated the
influence of pairing dynamics on the evolution of deformation
of composite system. Finally, a qualitatively new effect is
described which leads to dynamically induced U(1) symmetry
breaking leading to the enhancement of pairing correlations
after collision.

II. THEORETICAL FRAMEWORK

The theoretical method is based on TDDFT extended
to superfluid systems with the local density approximation,
TDSLDA (time-dependent superfluid local density approxi-
mation). The approach has been described in Refs. [36–40]
and its particular realization for nuclear dynamics is given in
Ref. [39]. It amounts to solving the equations for both protons
and neutrons:
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where hi j (r, t ) is the mean-field term which is obtained from the Skyrme SkM* functional [41]. The pairing field �↑↓(r, t ) =
−�↓↑(r, t ) = g(r)

∑
n V ∗

↑n(r, t )U↓n(r, t ) will be denoted from now on as �(r, t ). The running coupling constant g(r) depends
on the local momentum cutoff according to the prescription given in Refs. [36,39,40,42]. Its explicit form reads
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Ec = h̄2k2
c (r)

2m
+ U (r) − μ, (2c)

μ = h̄2k2
F (r)

2m
+ U (r), (2d)

where the above equations are defined separately for neu-
trons and protons. The quantity g0 denotes the bare coupling
constant. Equations (2c) and (2d) define local momentum
cutoff h̄kc(r) via energy cutoff Ec and local Fermi momentum
h̄kF (r), respectively. The mean-field potential generated by
nucleons with effective mass m∗(r) is denoted by U (r), and
chemical potential μ is used to control the average particle
number.

Equations (1) are solved on the spatial lattice with 20 ×
20 × 64 grid points in the case of 90Zr + 90Zr collisions
and 24 × 24 × 64 for 96Zr + 96Zr collisions, with 1.25 fm
grid spacing in each direction. Periodic boundary condi-
tions are applied to the box. The numerical evolution is
performed using the fifth-order predictor-modifier-corrector
Adam-Bashforth-Milne method. For calculations we used
LISE package [40].

In order to obtain the initial condition for time evolu-
tion, which consists of two nuclei separated by 40 fm, we
used the conjugate orthogonal conjugate gradient (COCG)
method [43]. An external potential was used to counteract the
Coulomb repulsion and to keep the centers of mass of the two
nuclei at rest. The same technique was used in Refs. [28,44].
The COCG method makes use of Green’s functions to ob-
tain various densities, without diagonalizing the Hamiltonian.
After obtaining convergent self-consistent densities, they are
subsequently inputted into a code which generates the wave
functions by diagonalizing the Hamiltonian.

The momentum cutoff used in these studies corresponds
to Ec = 100 MeV energy cutoff. The energy cutoff defines
the number of U and V components which are evolved and
it has an impact on computational complexity. For static
calculations, it can be shown analytically that the result does

064602-2



PAIRING DYNAMICS AND SOLITONIC EXCITATIONS IN … PHYSICAL REVIEW C 105, 064602 (2022)

not depend on the energy cutoff, if it is set to a sufficiently
large value [36,42]. On the other hand, there is a relation be-
tween the value of the cutoff and the length of the numerically
accurate (stable) time evolution which can be traced back
to the properties of the Bogoliubov transformation [39,45].
The larger cutoff allows for longer trajectories. For collisions
between nuclei where the expected length of trajectory does
not exceed 4000 fm/c the energy cutoff Ec = 100 MeV is
sufficient [46].

Numerical stability is best reflected in energy and particle
number conservation during the evolution. The deviation of
the energy from its initial value �Etot = |Etot (t ) − Etot (t =
0)|/|Etot (t = 0)| did not exceed 8 × 10−4, which corresponds
to energy variations less than 1.3 MeV for each run. In
most simulations relative energy change was about �Etot �
4 × 10−4. The quantity describing change of the average par-
ticle number reads �Nq = |Nq(t ) − Nq(t = 0)|, where q =
n, p denotes neutrons and protons, respectively. For all runs
�Nq < 10−4 for both protons and neutrons. The time step
�t in calculations is related to the lattice spacing a: �t <
2ma2

h̄π2 . For the lattice spacing a = 1.25 fm we chose �t =
0.119 956 fm/c, which ensures numerical stability within the
evolution time considered in this paper.

The main results, presented in next sections, were executed
with the regularization prescription given by the relations (2).
However, we also confirmed stability of the results with re-
spect to the regularization scheme. Namely, we performed test
calculations with fixed coupling constant. We set 1

g(r) = 1
g′

0
,

where g′
0 was chosen separately for protons and neutrons to

match the average pairing gap (within 0.02 MeV accuracy)
obtained in calculations using the regularization (2). Other
simulation parameters remained unchanged. The difference of
the total energy between the two approaches did not exceed
0.5 MeV within the time interval of simulations. In Fig. 1 we
present the time evolution of neutron average pairing gap �n

(5) and the quadrupole moment Q20 (6) as obtained within two
schemes (see also movies in the Supplemental Material [47]).
For this test we consider a head-on collision of 96Zr + 96Zr at
the center-of-mass energy 185 MeV. As shown in the bottom
panel of Fig. 1, the shape evolution of the system, measured by
its quadrupole moment Q20, evolves, in both cases, in the same
way. The relative difference of quadrupole moments oscillates
around zero with maximum deviation of approximately 10%.
The differences in the evolution of the pairing gap are more
pronounced; however, closer inspection shows that in both
cases gross properties remain unchanged. Namely, after the
collision, the pairing gap oscillates around the same average
value and both the amplitude of oscillations and their period
remain the same. The executed tests confirmed that overall
system evolution, and thus quantities discussed in this paper,
are not sensitive to the regularization scheme.

III. SOLITONIC EXCITATION AND ITS DECAY

The outcome of a collision of two nuclei described within
TDSLDA can be naturally divided into two regimes: capture
or reseparation. Due to the fact that TDSLDA does not take
into account sub-barrier tunneling of the many-body wave

FIG. 1. Evolution of neutron pairing gap �n (top panel) and
quadrupole moment Q20 (bottom panel) during the head-on collision
of 96Zr + 96Zr at center-of-mass energy 185 MeV. Dashed (orange)
lines show the evolution obtained using the regularization scheme
(2) with g0 = 280 MeV fm3. Solid (gray) lines show the evolution
obtained with fixed coupling constant g′

0 = 190 MeV fm3. In the
top panel the average pairing gap after the collision is presented
(horizontal line). In the inset (a) of the bottom panel the evolution
of the relative difference of the quadrupole moment is shown.

function, the separation between the two cases can be well
defined by a certain threshold energy Ethresh (we consider here
head-on collisions only). In TDSLDA [where U(1) symmetry
is broken] superfluidity is represented by the complex pairing
field and thus allows for a freedom of setting the relative
phase factors of pairing fields of colliding nuclei. As a con-
sequence the threshold energy will be, in principle, a function
of the relative gauge angle: Ethresh(�φ). This dependence was
investigated in Ref. [27] for light systems and in Ref. [28]
for medium and heavy nuclei and has been attributed to the
appearance of solitonic excitation during the collision [28]. It
was shown that the dependence of the threshold energy on
the relative gauge angle appears as a result of creation of
a junction between colliding nuclei where the pairing field
exhibits strong spatial variation. Consequently, part of energy
is stored in the junction, which can be estimated from the
Ginzburg-Landau model to be proportional to

�Es ∝ sin2

(
�φ

2

)
. (3)

This energy gives rise to an effective increase of the thresh-
old energy for capture. It also implies that the variation of
Ethresh is of dynamic character, which cannot be explained
by the static calculations, even with inclusion of the pairing
field. In order to support this statement, in Fig. 2 we present
a comparison between static barriers obtained in the frozen
density approximation and the TDSLDA threshold energies,
which are shown for collisions 96Zr + 96Zr and 90Zr + 90Zr.
In the frozen density approximation the dynamical effects
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FIG. 2. Nucleus-nucleus potential calculated in the frozen den-
sity approximation with inclusion of the pairing field. The barrier was
calculated for the cases of 90Zr + 90Zr (solid line with filled triangles)
and 96Zr + 96Zr with relative phase of pairing fields �φ = 0 (solid
line with open circles) and �φ = π (solid line with filled circles).
Horizontal dashed lines indicate the minimum energy for capture,
Ethresh, extracted from TDSLDA calculations (see Table I). In the
inset we show a snapshot of the magnitude of the neutron pairing
field from collisions with �φ = π , where a solitonic excitation is
formed between nuclei.

during the collision are neglected and the density of each frag-
ment is fixed to be its ground-state one. Therefore it slightly
overestimates the height of the barrier and, compared to the
density-constrained TDHF, one expects that for the presented
collisions the difference reads 2–3 MeV [35]. In the frozen
density approximation the contribution from the pairing fields
were also taken into account. Namely, the pairing contribution
to the total energy was generated by the pairing field:

�q,tot(r) = �q,1(r − R/2) + �q,2(r + R/2), (4)

where q = n, p denote neutron and proton contributions
and 1,2 specify the initial nuclei. The parameter R denotes
the distance between centers of mass of two nuclei. Since
we consider collisions of two identical nuclei, �q,1(r) =
exp(i�φ)�q,2(r). Consequently the static barriers differ for
�φ = 0 and �φ = π cases, since in the latter case the over-
lapping pairing fields of two colliding nuclei cancel out. The
dashed lines correspond to the threshold energy Ethresh ob-
tained within TDSLDA, which is the energy at which merging
occurs. This energy was determined with 1-MeV accuracy,
and the condition for merging implies that the two nuclei form
a composite system and do not separate within a time interval
of 4000 fm/c. It has to be emphasized that the transition
between the two regimes is fairly sharp, so the changes of this
time interval by ±2000 fm/c do not affect the extracted value
of the threshold energy.

In Fig. 2 one may notice that the location of threshold
energy agrees relatively well with the maximum of the barrier
calculated in the frozen density approximation when there is
no phase difference. The situation is dramatically different in
the case of phase difference equal to π . In this case the barrier
height in the frozen density approximation is about 1–2 MeV
higher due to the cancellation of pairing fields belonging to
colliding nuclei. However, this increase of the barrier due to

TABLE I. The minimum energies needed for capture in
90Zr + 90Zr and 96Zr + 96Zr for the case of �φ = 0 [Ethresh(0)] and
�φ = π [Ethresh(π )]. The energy difference between the two cases is
shown in the last column. The average pairing gap �i is defined by
Eq. (5).

�q (MeV) Ethresh(0) (MeV) Ethresh(π ) (MeV) �Es

90Zr �n = 0.00 184 184 0
�p = 0.09

96Zr �n = 1.98 179 185 6
�p = 0.32

�n = 2.44 178 187 9
�p = 0.33

�n = 2.94 178 187 9
�p = 0.34

static pairing contribution does not reproduce the threshold
energy in this case. The difference between the static barrier
and the actual threshold energy obtained in time-dependent
calculations represents the contribution coming from forma-
tion of the solitonic excitation between colliding nuclei. It
therefore indicates that the effect is of dynamic origin, which
cannot be grasped in the static calculations. As was con-
jectured in Ref. [28], the contribution comes from the term∫ |∇�(r)|2d3r, present in the Ginzburg-Landau model, which
produces additional barrier depending on the relative differ-
ence of gauge angles according to Eq. (3). The coefficient in
front of Eq. (3) may depend on the pairing strength; however,
it is not a priori clear to what extent pairing magnitude can
affect Ethresh. In order to address this question, we list in
Table I the values of �Es, which measure the differences
between threshold energies corresponding to 0 and π phase
differences (see also Fig. 2). In the case of 96Zr + 96Zr we
performed collisions for three sets of the average pairing gaps,
defined as

�q = 1

Nq

∫
d3r|�q(r)|ρq(r), (5)

where q = n, p and Nq denotes the total number of neutrons
or protons. Namely, we varied the average of neutron pairing
gaps, which has a dominant contribution to the effect, while
keeping the proton pairing gap approximately constant. It can
be noticed that the dependence is not linear and the effect is
reduced as compared to the values reported in Ref. [28], where
Fayans energy density functional FaNDF0 without spin-orbit
term was employed. It is, however, consistent with estimations
of the impact of superfluidity on the fusion barrier extracted
from experimental data in Ref. [48], where the effect is con-
cluded to be weaker.

Since solitonic excitation leads to an effective barrier in-
crease, it also contributes to increased repulsion between
nuclei. This effect, although obvious, when one considers
the Ginzburg-Landau approximation may sound strange when
one thinks about superfluidity as a lubricant facilitating nu-
clear large-amplitude collective motion. In order to quantify
this effect we considered the total excitation energy (TXE)
of the fragments at sub-barrier energies Ec.m. < Ethresh. In
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TABLE II. Total excitation energies (TXEs) in 96Zr + 96Zr at
c.m. energies Ec.m. just below the threshold for capture (see Table I)
with �φ = 0 [TXE(0)] and �φ = π [TXE(π )]. The average pairing
gap �i is defined by Eq. (5).

TXE (MeV)

�q (MeV) Ec.m. (MeV) �φ = 0 �φ = π

96Zr �n = 1.98 178 37 25
�p = 0.32

�n = 2.44 177 34 10
�p = 0.33

�n = 2.94 177 34 8
�p = 0.34

Table II the total excitation energies are shown for collision
energies just below Ethresh(0). They were evaluated according
to the prescription TXE = Ec.m. − TKE, where TKE denotes
the asymptotic total kinetic energy of the outgoing fragments.
It can be seen that for the same energy of colliding nuclei the
case corresponding to �φ = π leads to significantly lower
TXE. Moreover, with increasing magnitude of the pairing
field this quantity is decreasing quite rapidly, contrary to the
�φ = 0 case where TXE decreases by about 10% only. The
sensitivity of TXE on pairing magnitude for �φ = π comes
from the fact that increasing magnitude of pairing field leads
to stronger repulsion between fragments. Consequently for
the same sub-barrier energy the nuclei colliding with �φ = π

experience significantly smaller overlap between densities at
the distance of the closest approach, than those colliding at
�φ = 0. This is another confirmation of the impact of soli-
tonic excitation on nuclear dynamics which effectively acts as
a “spring” between colliding nuclei, absorbing part of the en-
ergy and thus giving rise to additional repulsion. The absorbed
energy can be either released in the form of increased TKE
(for Ec.m. < Ethresh) or dissipated to other degrees of freedom
(for Ec.m. > Ethresh).

In the case of Ec.m. > Ethresh the energy absorbed by the
solitonic excitation is dissipated, since it is immersed in the
nuclear environment and thus is coupled strongly to other
collective and single-particle degrees of freedom. Conse-
quently the soliton will eventually decay and its energy will
be distributed among other degrees of freedom. Its decay is
correlated with the behavior of the average value of the pairing
gap. The dynamics of the pairing field during the collision
process is presented in Fig. 3, where the evolution of the
average neutron pairing gap �n is shown (see also movies in
the Supplemental Material [47]). At the moment of collision
the average pairing gap drops considerably due to breaking
of Cooper pairs. The peculiarity of the superfluid dynamics
is seen the best in the case of the strongest pairing. The
initial merging of two nuclei leads to significant decrease of
pairing magnitude in the first stage of the collision process,
which particularly visible in the case of �φ = π , and then is
followed by restoration of the pairing strength. The timescale
of the restoration process is of the order of 2000-6000 fm/c
and depends on the collision energy. The process of the pair-

FIG. 3. Neutron average pairing gap �n as a function of time for
96Zr + 96Zr for two initial magnitudes of neutron pairing [(a) 2 MeV,
(b) 3 MeV]. Solid lines represent the results obtained for �φ = 0,
and dashed lines represent those for �φ = π . The results for energies
Ec.m. = 185 MeV in (a) and Ec.m. = 187 MeV in (b) are denoted
by solid circles. The curves without symbols correspond to energy
Ec.m. = 193 MeV. Insets show snapshots of the magnitude of neutron
pairing field for collisions at lower energies (185 and 187 MeV) with
�φ = π at two selected times indicated by arrows.

ing restoration after the initial decrease due to the collision
is also seen for weaker pairing strengths, although it is less
pronounced. It turns out that the decay process of the solitonic
excitation occurs approximately at times when the restoration
process of pairing starts. In the simulations presented here
it corresponds to times 1500–2000 fm/c after the collision.
The insets of Fig. 3 show examples of neutron pairing field
distribution after merging at times when solitonic excitation is
still presents and when it is gone.

IV. PAIRING DYNAMICS AND EVOLUTION OF
DEFORMATION OF A COMPOSITE SYSTEM

TDSLDA predicts yet another qualitative difference in the
evolution of deformation of a composite system in the pres-
ence of pairing. It has to be emphasized that the pairing
dynamics in TDSLDA is independent of density fluctuations
although both are dynamically coupled. This is contrary to,
e.g., the TDHF + BCS approach [49], where the pairing field
is constructed as already coupled to the nucleon density. This
has serious consequences as a variety of excitation modes
of a superfluid system cannot be described within the latter
approach (see Ref. [45] for details).

Evolution of deformation of the composite system after
collision is shown in Fig. 4, where the quadrupole moment
is plotted as a function of time and collision energies (see also
movies in the Supplemental Material [47]). Since the head-
on collisions, considered here, possess a symmetry axis, the
elongation can be measured conveniently using quadrupole
moment with respect to the center of mass of two nuclei:

Q20 =
∫

d3r(3z2 − r2)ρ(r), (6)

064602-5



PIOTR MAGIERSKI et al. PHYSICAL REVIEW C 105, 064602 (2022)

FIG. 4. Rescaled quadrupole moment Q20/A5/3 (A is the total
nucleon number of the system) of colliding nuclei as a function of
Ec.m. and time. Panels (a) and (b) correspond to reaction 90Zr + 90Zr
(�n = 0.002 MeV, �p = 0.09 MeV). Other panels correspond to
96Zr + 96Zr with different pairing strengths: �n = 1.98 MeV, �p =
0.32 MeV [panels (c) and (d)] and �n = 2.94 MeV, �p = 0.34 MeV
[panels (e) and (f)]. The case of �φ = 0 is shown in panels (a), (c),
(e) whereas the case of �φ = π is shown in panels (b), (d), (f). Time
t = 0 is chosen to be when the quadrupole moment goes down and
reaches value Q20/A5/3 = 0.03 b. It corresponds to approximately
100 fm/c before neck formation. The value Q20/A5/3 = 0.03 b sets
also the upper limit of deformation shown in the figure.

where the z axis is assumed to be the symmetry axis. From
the figure we find that the evolutions of deformation in col-
lisions of neutron magic nuclei 90Zr + 90Zr and in reaction
96Zr + 96Zr are qualitatively different. In the former case
[Figs. 4(a) and 4(b)], which correspond to vanishingly small
pairing (see Table I), the system becomes more compact right
after collision. In contrast, the evolution of deformation of
96Zr + 96Zr system is more complex. The quadrupole moment
reveals variations as a function of time, which are attributed
to enhanced susceptibility towards shape changes caused by
pairing correlations. Moreover, the evolution of the deforma-
tion towards compact shape is visibly delayed in the presence
of superfluidity. This effect is particularly pronounced at en-
ergies close to the barrier in the case of �φ = π .

The delayed evolution of the deformation in the pres-
ence of pairing indicates another feature associated with neck
formation. Namely, the system, after developing a neck, is
considerably pushed back, increasing its deformation, until it
shrinks again (at smaller energy this effect leads to resepara-
tion). The effect can be seen in Fig. 5, where the total energy
of the system in the Thomas-Fermi (TF) approximation is
plotted. The TF energy ETF is defined as

ETF = ECoul +
∫

d3r

[ ∑
q=n,p

h̄2

2mq
τTF

q

+
∑
t=0,1

(
Cρ

t ρ2
t + C�ρ

t ρt∇2ρt + Cτ
t ρtτ

TF
t + Cγ

t ρ2
t ρ

γ

0

)]
,

(7)

FIG. 5. Energy of colliding nuclei in the Thomas-Fermi approx-
imation (see text for details) as a function of distance between their
centers of mass (r0 = 1.2 fm) for four Ec.m. values. �ET F denotes the
energy with respect to the configuration with two nuclei at infinite
distance. The upper panel shows the case of 90Zr + 90Zr (�φ = 0,
�n = 0.002 MeV, �p = 0.09 MeV). The lower panel presents the
case of 96Zr + 96Zr (�φ = π , �n = 2.94 MeV, �p = 0.34 MeV).

where isoscalar and isovector nucleon densities, ρ0 = ρn +
ρp and ρ1 = ρn − ρp, respectively, are obtained from TD-
SLDA calculations and the kinetic energy distribution is

taken as τTF
q = 3

5 (3π2)2/3ρ5/3
q + 1

36
(∇ρq )2

ρq
+ 1

3∇2ρq, where the
second-order correction to the standard TF approximation was
included. Isoscalar and isovector components τTF

t are defined
similarly to densities ρt . The quantity ETF includes the static
part of the energy of colliding nuclei (excluding collective
flow energy), allowing us to follow the energy changes due to
evolution of the deformation. In Fig. 5 this quantity is plotted
as a function of the relative distance. The formation of the
neck is visible as a rapid drop of initially increasing energy.
Subsequently, in the case of 90Zr + 90Zr, the trajectory either
goes back towards reseparation or leads to shrinking and de-
veloping a more compact configuration. Contrarily, in the case
of 96Zr + 96Zr there is an energy window in which another
regime is possible. Namely, the merged fragments are pushed
back, increasing the quadrupole moment. Subsequently, how-
ever, this process does not lead to reseparation since the
system stops and returns to forming a compact system. It
indicates that the presence of pairing alters significantly the
process of neck formation.

V. ENHANCEMENT OF PAIRING CORRELATIONS
AS A RESULT OF COLLISION

Pairing fields of two colliding nuclei undergo a significant
weakening as a result of kinetic energy transfer to internal
degrees of freedom, leading to Cooper pair breaking. Sur-
prisingly the inverse process, i.e., the enhancement of pairing
correlations due to collision, is possible as well. Suppose that
colliding nuclei have a relatively small pairing field, which is
due to their shell structure. The collision of such nuclei may
increase the magnitude of the pairing field of the composite
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system. The mechanism of such behavior is simple. The ini-
tial pairing strength is dictated by the product of the pairing
coupling constant g and density of states at the Fermi surface.
Namely, in the weak coupling limit the relation reads

� ∝ exp

[
− 2

gN (εF )

]
, (8)

where N (εF ) is the density of states at the Fermi surface. Due
to collision a composite system is formed where the relation
Nc(εF ) � N (εF ) can hold. Consequently the effect will be
similar to increasing artificially the pairing coupling constant
and thus causing instability and leading to the symmetry
breaking. In this case, however, this is due to the change of
geometry of the system, which affects the density of states.

One has to keep in mind, however, that these are static
considerations which correspond to the limit in which we have
a system in equilibrium at the initial time, which subsequently
evolves under external perturbation (in this case caused by
collision) to another equilibrium state, characterized by a
different density of states. This picture is oversimplified in
the situation of colliding nuclei. The created composite sys-
tem will eventually equilibrate but at much longer timescale.
At the short timescale which we consider in this paper, the
composite system is still far from equilibrium and the concept
of density of states does not have a clear meaning. Moreover
there is a significant amount of energy deposited in the system
which weakens pairing in the composite system. Therefore,
although the presented arguments may remain valid, there are
various factors related to nuclear collision dynamics which
may change the actual evolution of the pairing field.

In order to explore this effect the collision of 90Zr + 90Zr
was considered for energies within a 10 MeV window at the
Coulomb barrier. In order to be able to observe the symme-
try breaking effect, the initial pairing field has to be kept
as nonzero. Its average value was set to be small, �n =
0.002 MeV. The results are shown in Fig. 6, where substantial
pairing correlations, indicating symmetry breaking, set in at
a certain time after collision (see also movies in the Sup-
plemental Material [47]). The pairing field exhibits relatively
regular oscillation as expected in the case of the Higgs mode
[50–52]. The mechanism that leads to activation of this mode
is schematically presented in Fig. 6(b). Before the collision
the minimum of energy E (|�|) corresponds to neutron pairing
gap |�| ≈ 0, since the colliding nuclei have a neutron magic
number N = 50. The composite system possesses an elon-
gated structure and turns out to be dynamically unstable with
respect to paring field fluctuations, which eventually triggers
the Higgs oscillations. Note that since the total energy is
conserved, the energy gained by developing pairing correla-
tions has to be transferred to other degrees of freedom. For
large amplitude oscillations the Higgs mode frequency is in
range |�| � h̄ωH � 2|�| [53]. For |�| ≈ 1 MeV it gives the
oscillation period in the range 600–1200 fm/c, which agrees
well with the observed oscillation period (especially well seen
for Ec.m. ≈ 188 MeV).

The induced pairing-field oscillation mode requires further
investigation, as typically the Higgs mode is considered in
the context of uniform systems, while here we have a finite
and nonuniform case. Still, the results presented in this paper

FIG. 6. Evolution of the average neutron pairing gap �n in colli-
sion 90Zr + 90Zr. The moment of collision is denoted by the vertical
dashed line. The upper panel corresponds to the case of �φ = 0. The
schematic figures in the lower panel describe the process of pairing
Higgs mode excitation during collision. Each figure corresponds to a
certain stage of the collision process which is indicated in the upper
panel.

raise a justified doubt whether the description of collision of
magic nuclei at low energy can be reliably described within
frameworks that neglect pairing, e.g., the TDHF approach.
Another question which naturally arises is, what are observ-
able consequences of the effect? If the timescale for symmetry
breaking is short enough, the effect should be pronounced at
energies below the threshold in collisions of magic nuclei, as
it should considerably affect TKE and TXE.

VI. CONCLUSIONS

We have shown that the effect of increasing the barrier in
collisions of two superfluid nuclei with different phases of
the pairing field is still present when realistic functionals with
spin-orbit terms are used. The effective barrier increases with
the magnitude of the pairing field. We have confirmed that
the effect is of purely dynamical origin related to spatially
localized modulation of the pairing field, which we call a
solitonic excitation. The effective nucleus-nucleus repulsive
interaction induced by the soliton suppresses significantly the
excitation energy of the system. The dynamics of the pairing
field alter the shape evolution of the colliding system and
enhance the role of the neck in the collision process. This
effect may lead to modification of the dynamics of peripheral
collisions where the interplay between the centrifugal force
and the neck formation may affect the evolution. We have
shown that dynamics of the collision triggers the symmetry
breaking and thus an enhancement of the magnitude of the
pairing field. The mechanism of this effect can be traced
back to modification of the density of states in the composite
system leading to effective increase of the pairing effects.
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Mijatović, N. Soić, C. A. Ur, and M. Varga Pajtler, Neutron Pair
Transfer in 60Ni + 116Sn Far below the Coulomb Barrier, Phys.
Rev. Lett. 113, 052501 (2014).

[26] D. Montanari et al., Pair neutron transfer in 60Ni + 116Sn probed
via γ -particle coincidences, Phys. Rev. C 93, 054623 (2016).

[27] Y. Hashimoto and G. Scamps, Gauge angle dependence in
TDHFB calculations of 20O + 20O head-on collisions with the
Gogny interaction, Phys. Rev. C 94, 014610 (2016).

[28] P. Magierski, K. Sekizawa, and G. Wlazłowski, Novel Role
of Superfluidity in Low-Energy Nuclear Reactions, Phys. Rev.
Lett. 119, 042501 (2017).

[29] M. J. H. Ku, W. Ji, B. Mukherjee, E. Guardado-Sanchez, L. W.
Cheuk, T. Yefsah, and M. W. Zwierlein, Motion of a Soli-
tonic Vortex in the BEC-BCS Crossover, Phys. Rev. Lett. 113,
065301 (2014).

[30] M. J. H. Ku, B. Mukherjee, T. Yefsah, and M. W. Zwierlein,
Cascade of Solitonic Excitations in a Superfluid Fermi gas:
From Planar Solitons to Vortex Rings and Lines, Phys. Rev.
Lett. 116, 045304 (2016).

[31] G. Wlazłowski, K. Sekizawa, M. Marchwiany, and P.
Magierski, Suppressed Solitonic Cascade in Spin-Imbalanced
Superfluid Fermi Gas, Phys. Rev. Lett. 120, 253002
(2018).

[32] W. J. Swiatecki, The dynamics of the fusion of two nuclei, Nucl.
Phys. A 376, 275 (1982).

[33] S. Bjørnholm and W. J. Swiatecki, Dynamical aspects of
nucleus-nucleus collisions, Nucl. Phys. A 391, 471 (1982).

064602-8

https://doi.org/10.1103/RevModPhys.75.607
https://doi.org/10.1103/RevModPhys.45.353
https://doi.org/10.1103/RevModPhys.55.949
https://doi.org/10.1103/RevModPhys.61.131
https://doi.org/10.1016/0375-9474(90)93232-U
https://doi.org/10.1103/RevModPhys.88.045004
https://doi.org/10.1103/PhysRevLett.116.122504
https://doi.org/10.1088/1361-6471/abab4f
https://doi.org/10.3389/fphy.2020.00063
https://doi.org/10.1103/RevModPhys.77.935
https://doi.org/10.1103/RevModPhys.76.263
http://jetp.ras.ru/cgi-bin/dn/e_026_03_0617.pdf
https://doi.org/10.1016/0370-2693(70)90372-2
https://doi.org/10.1016/0003-4916(71)90067-4
https://doi.org/10.1016/0370-2693(71)90174-2
https://doi.org/10.1103/PhysRevC.27.2408
https://doi.org/10.1103/PhysRevC.36.1192
https://doi.org/10.1103/PhysRevC.53.1819
https://doi.org/10.1103/PhysRevC.55.R5
https://doi.org/10.1103/PhysRevC.103.L021601
https://doi.org/10.1103/Physics.14.27
https://doi.org/10.1103/PhysRevLett.113.052501
https://doi.org/10.1103/PhysRevC.93.054623
https://doi.org/10.1103/PhysRevC.94.014610
https://doi.org/10.1103/PhysRevLett.119.042501
https://doi.org/10.1103/PhysRevLett.113.065301
https://doi.org/10.1103/PhysRevLett.116.045304
https://doi.org/10.1103/PhysRevLett.120.253002
https://doi.org/10.1016/0375-9474(82)90065-3
https://doi.org/10.1016/0375-9474(82)90621-2


PAIRING DYNAMICS AND SOLITONIC EXCITATIONS IN … PHYSICAL REVIEW C 105, 064602 (2022)

[34] R. Donangelo and L. F. Canto, Studies of nucleus-nucleus
collisons with a schematic liquid-drop model and one-body
dissipation, Nucl. Phys. A 451, 349 (1986).

[35] K. Washiyama, Microscopic analysis of fusion hindrance
in heavy nuclear systems, Phys. Rev. C 91, 064607
(2015).

[36] A. Bulgac, Local density approximation for systems with pair-
ing correlations, Phys. Rev. C 65, 051305(R) (2002).

[37] A. Bulgac, P. Magierski, and M. M. Forbes, The Unitary Fermi
Gas: From Monte Carlo to density functionals, in BCS-BEC
Crossover and the Unitary Fermi Gas, edited by W. Zwerger,
Lecture Notes in Physics (Springer, Heidelberg, 2012),
Vol. 836, pp. 305–373.

[38] A. Bulgac, Time-dependent density functional theory and real-
time dynamics of Fermi superfluids, Annu. Rev. Nucl. Part. Sci.
63, 97 (2013).

[39] P. Magierski, Nuclear reactions and superfluid time depen-
dent density functional theory, in Progress of Time-Dependent
Nuclear Reaction Theory, edited by Y. Iwata, Frontiers in Nu-
clear and Particle Physics (Bentham Science, 2019), Vol. 2,
p. 57.

[40] S. Jin, K. J. Roche, I. Stetcu, I. Abdurrahman, and A. Bulgac,
The LISE package: Solvers for static and time-dependent super-
fluid local density approximation equations in three dimensions,
Comput. Phys. Commun. 269, 108130 (2021).

[41] J. Bartel, P. Quentin, M. Brack, C. Guet, and H.-B. Håkansson,
Towards a better parametrisation of Skyrme-like effective
forces: A critical study of the SkM force, Nucl. Phys. A 386,
79 (1982).

[42] A. Bulgac and Y. Yu, Renormalization of the Hartree-Fock-
Bogoliubov Equations in the Case of a Zero Range Pairing
Interaction, Phys. Rev. Lett. 88, 042504 (2002).

[43] S. Jin, A. Bulgac, K. Roche, and G. Wlazłowski, Coordinate-
space solver for superfluid many-fermion systems with shifted

conjugate orthogonal conjugate gradient method, Phys. Rev. C
95, 044302 (2017).

[44] M. C. Barton, S. Jin, P. Magierski, K. Sekizawa, G. Wlazłowski,
and A. Bulgac, Pairing dynamics in low energy nuclear colli-
sions, Acta Phys. Pol. B 51, 605 (2020).

[45] P. Magierski, J. Grineviciute, and K. Sekizawa, Pairing dynam-
ics and time dependent density functional theory, Acta Phys.
Pol. B 49, 281 (2018).

[46] J. Grineviciute, P. Magierski, A. Bulgac, S. Jin, and I. Stetcu,
Accuracy of fission dynamics within the time dependent super-
fluid local density approximation, Acta Phys. Pol. B 49, 591
(2018).

[47] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevC.105.064602 for movies presenting simu-
lations of collisions 90Zr + 90Zr and 96Zr + 96Zr at various
energies.

[48] G. Scamps, Examining empirical evidence of the effect of
superfluidity on the fusion barrier, Phys. Rev. C 97, 044611
(2018).

[49] G. Scamps, D. Lacroix, G. F. Bertsch, and K. Washiyama,
Pairing dynamics in particle transport, Phys. Rev. C 85, 034328
(2012).

[50] A. Behrle, T. Harrison, J. Kombe, K. Gao, M. Link, J.-S.
Bernier, C. Kollath, and M. Köhl, Higgs mode in a strongly
interacting fermionic superfluid, Nat. Phys. 14, 781 (2018).

[51] A. Bulgac, Time-dependent density functional theory for
fermionic superfluids: From cold atomic gases – to nuclei and
neutron stars crust, Phys. Status Solidi B 256, 1800592 (2019).

[52] J. Bjerlin, S. M. Reimann, and G. M. Bruun, Few-Body Precur-
sor of the Higgs Mode in a Fermi Gas, Phys. Rev. Lett. 116,
155302 (2016).

[53] A. Bulgac and S. Yoon, Large Amplitude Dynamics of the
Pairing Correlations in a Unitary Fermi Gas, Phys. Rev. Lett.
102, 085302 (2009).

064602-9

https://doi.org/10.1016/0375-9474(86)90419-7
https://doi.org/10.1103/PhysRevC.91.064607
https://doi.org/10.1103/PhysRevC.65.051305
https://doi.org/10.1146/annurev-nucl-102212-170631
https://doi.org/10.1016/j.cpc.2021.108130
https://doi.org/10.1016/0375-9474(82)90403-1
https://doi.org/10.1103/PhysRevLett.88.042504
https://doi.org/10.1103/PhysRevC.95.044302
https://doi.org/10.5506/APhysPolB.51.605
https://doi.org/10.5506/APhysPolB.49.281
https://doi.org/10.5506/APhysPolB.49.591
http://link.aps.org/supplemental/10.1103/PhysRevC.105.064602
https://doi.org/10.1103/PhysRevC.97.044611
https://doi.org/10.1103/PhysRevC.85.034328
https://doi.org/10.1038/s41567-018-0128-6
https://doi.org/10.1002/pssb.201800592
https://doi.org/10.1103/PhysRevLett.116.155302
https://doi.org/10.1103/PhysRevLett.102.085302

