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Methods for obtaining fusion cross section formulas are discussed, especially for those that take on an

empirical form. A new expression starting with σ (E ) = 1
E

∫ E
E0

(
∫ E ′

E0
B(E ′′)dE ′′)dE ′ has been explored. Here,

B(E ) is a reasonable, assumed function of the barrier height distribution, d2 (σE )
dE2 . The resulting analytic cross

section formula reproduces very well the excitation functions for many light and heavy fusion systems across
wide energy ranges, when B(E ) is assumed to be a multi-Gaussian function. This study offers an improved
determination of the fusion barrier height distribution over other numerical techniques.

DOI: 10.1103/PhysRevC.105.064601

I. INTRODUCTION

Heavy-ion fusion reactions, arguably the most complex
process in the interaction between two atomic nuclei, have
been investigated extensively for sixty years. More than one
thousand excitation functions have already been measured
and collected in the literature [1]. Some recent articles have
reviewed these studies in detail [2–7].

The study of the interplay between the reaction dynamics
and nuclear structure, the synthesis of very heavy elements,
and the extension of the nuclear chart towards the neutron-rich
side and neutron-deficient side of β stability constitute various
struggling efforts. However, attempts to obtain fusion cross-
section formulas remain central to theoretical studies from the
beginning until the present day.

The excitation function, σ (E ), is most commonly depicted
either in linear or logarithmic scales. However, because of the
steepness of the excitation function at near- or sub-barrier en-
ergies, it is difficult to recognize possible structures as well as
deviations from theoretical curves, especially in logarithmic
plots. In order to alleviate this problem, one often uses other
representations of σ (E ) in the comparison of measurements
and theoretical calculations, e.g., as reviewed in Ref. [7].
A particular representation may emphasize the behavior of
the excitation function in some part of the energy range and
specific structure local to this energy range. In principle, any
theoretical calculation which can reproduce the experimental
excitation function must also reproduce all the other represen-
tations as well.

In this article, two related issues are presented. First, the
two commonly used methods developed to obtain fusion cross
section formulas are summarized. We then explore a third,
new method, the reciprocal of a fusion representation, from
which a fusion cross section formula has been obtained. This
new formula reproduces a large number of excitation func-
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tions for light and heavy fusion systems across wide energy
region exceptionally well.

Second, because this fusion cross section formula and the
corresponding barrier height distribution B(E ) = d2(σE )

dE2 are
all analytic, the “ambiguity” problem in previous studies of
barrier height distributions has been avoided, and thus accu-
rate barrier-height spectra can be obtained.

II. DIFFERENT METHODS FOR CALCULATING FUSION
CROSS SECTIONS

A. Fundamental method

Starting from the equation of the two colliding nuclei, as-
suming the interaction between them, combining the nuclear
structure input, etc., one derives a fusion cross section for-
mula, σ (E ). The classical, strong absorption model [8],

σ (E ) = πR2(1 − B/E ) for E > B,

= 0 for E < B, (1)

and the Wong formula [9],

σw(E ) = R2h̄ω

2E
ln

[
1 + exp

(
2π

E − V

h̄ω

)]
. (2)

are well known examples. Here, R and V are the barrier radius
and barrier height, and ω in Eq. (2) is the frequency of the
inverted harmonic potential.

The above method is the fundamental one for obtaining
the fusion cross sections, since it is based on the essential
physics ingredients, although some approximations are of-
ten involved. Coupled channels (CC) calculations and many
other theoretical approaches by using Schrödinger or other
equations belong to this category also, although they re-
sult in numerical calculations and not analytic formulas (see
Refs. [10,11] and [2–7]).
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B. Modifications from previous cross section formulas

Stelson developed another method to calculate the fusion
excitation function. He was the first to introduce the expres-
sion

σ (E ) =
∫

σ (E , B)D(B)dB (3)

to fit the experimental fusion excitation function [12]. Here,
σ (E , B) is a known (previously obtained) excitation function
with a single barrier with a height B. Importantly, he assumed
that there are more than one barrier with different heights
during the collision of the two nuclei, and introduced the
distribution of barrier heights D(B). The function, D(B), con-
tains adjustable parameters which are determined in the fitting
process comparing with the experimental data. In general,
σ (E , B) in Eq. (3) can be either an analytic function or even
a known dataset of an experimental excitation function or
calculation results.

Rowley et al. [13] found that the experimental barrier
height distribution D(E ) can be extracted from a precise
experiment of the fusion excitation function via the second
derivative:

D(E ) = 1

πR2

d2(σ (E )E )

dE2
, with

∫
D(E )dE = 1. (4)

After that, many studies have concentrated on obtaining the
barrier height distribution and the understanding of the corre-
sponding reaction dynamics by comparing the experimental
barrier distributions in Eq. (4) with the results of CC cal-
culations. Then, the double-differentiation process is used to
obtain the barrier distribution both for experiments and calcu-
lations.

In Refs. [14,15], Siwek-Wilczyńska et al. applied Stelson’s
idea mentioned above to calculate the fusion cross sections.
They started from an expression based on the blackbody
approximation [8] and assumed that the barrier height distri-
bution, Dg(B), is a Gaussian function:

σ (E )E = πR2
∫ E

E0

(E − B)Dg(B)dB, (5)

Dg(B) = 1√
2πW

exp

[
−

(
B − V√

2W

)2]
. (6)

The resulting analytic cross section formula is

σ (E )E = πR2
0

W√
2π

[
√

πZ erfc(−Z ) + exp(−Z2)], (7)

with Z = (E − V )/
√

2W , where V and W are the centroid and
the standard deviation of the Gaussian function.

This formula given by Eq. (7) was developed in their
studies exploring the production of superheavy elements, and
the comparisons of this formula with the experimental data
were mostly in the cross section range of about 0.1–1000 mb.
This method has not been widely used and referenced in the
literature.

At around the same time, the heavy-ion fusion hindrance
phenomenon at extreme sub-barrier energies was discovered
[16–18], which is concerned with fusion dynamics at low
cross section, typically less than 0.1 mb. Just recently, Jiang

et al. [19], found that the fusion formula of Siwek-Wilczyńska
et al., Eq. (7), can reproduce the fusion hindrance behavior
very well, including the S-factor maximum. In Ref. [19], a
table was included which analyzed 29 fusion systems whose
excitation function has been measured down to lower than
0.01 mb.1

There are many ways to modify fusion cross-section for-
mulas by making modifications to known formulas. Two
recent examples, Refs. [22] and [23], made modifications to
the Wong formula [9] and achieved much better results than
the original.

C. A reciprocal of a fusion representation

In this paper we demonstrate that there is a third kind of
method to obtain the fusion cross section formula, namely, by
using a reciprocal of a fusion representation. This method has
been used implicitly before, but has never been illustrated as
a method in the literature.

It is well known that a straightforward signature of the
heavy-ion fusion hindrance behavior is the appearance of a
maximum of the astrophysical S(E ) factor at low energies
[17,18]. This is a significant structure seen in S(E ) but not
in σ (E ). At the same time, in another representation, the
logarithmic derivative,

L(E ) = d[ln(σE )]

dE
, (8)

the slope of L(E ) as a function of E , gets steeper and steeper
with decreasing energy. In Refs. [24,25], empirical recipes
to describe the behavior of L(E ) at low energies and to ex-
trapolate the excitation function to even lower energy were
formulated, via a two-parameter expression:

L(E ) = A0 + B0

(E + Q0)3/2
. (9)

Q0 is either 0 or the fusion Q value depending on whether
the fusion Q value is either positive or negative, respectively.
Parameters A0 and B0 are obtained from least-squares fits to
the experimental L(E ) data at low energies. From Eq. (9), the
corresponding cross section formula was derived in Refs. [24]
and [25]:

σ (E ) = σs
Es

E
exp

(
A0(E − Es)

− 2B0√
Es + Q0

[√
Es + Q0

E + Q0
− 1

])
. (10)

Es is the energy at the S-factor maximum, determined from
parameters A0 and B0 with the equation

L(Es) = Lcs(Es) = πη

E3/2
s

. (11)

1The hindrance phenomenon was explained first by Mişicu and
Esbensen [20] by considering the saturation properties of nuclear
matter, and later by Ichikawa et al. [21], among others, with various
models. In this paper we do not discuss the theoretical explanation of
the fusion excitation function.
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Here, Lcs(E ) is the constant S-faction function [17], η is
the Sommerfeld parameter Z1Z2e2/(h̄v), and v is the relative
velocity of the two heavy ions.

It is important to note that Eq. (10) was obtained with the
reciprocal of the representation L(E ) = d[ln(σE )]

dE , namely

σ (E ) = 1

E
exp

[∫ E

Q0

(Ltest (E
′))dE ′

]
a, (12)

without any approximation. Here, L(E ) in Eq. (12) is written
as Ltest (E ) and taken as Eq. (9).

In fact, any reasonable analytic function Ltest (E ) with ad-
justable parameters, not necessarily Eq. (9), can be applied in
Eq. (12), and leads to a cross section formula. By comparing
the calculated results with the experimental fusion excitation
function and using the least-squares fitting technique, the op-
timum parameters in Ltest (E ) can be determined. For example,
one may assume an Ltest (E ) other than Eq. (9), which can
describe not only the σ (E ) at low energies but also at the high
energy range. It is outside the scope of the present article and
will be studied in the future.

Now we explore a new heavy-ion fusion cross sec-
tion expression. By applying the reciprocal on another fusion
representation,

Btest (E ) = d2(σE )

dE2
= πR2

0Dtest (E ),

with
∫

Dtest (E )dE = t1, (13)

one obtains a new cross section formula:

σ (E )E =
∫ E

E0

(∫ E ′

E0

d2(σE ′′)
d (E ′′)2

dE ′′
)

dE ′

= πR2
0

∫ E

E0

(∫ E ′

E0

Dtest (E
′′)dE ′′

)
dE ′. (14)

Here, R0 is a normalization constant for the function Dtest (E ).
The lower integration limits in Eq. (14) are E0 = −Q or 0, de-
pending on whether the fusion Q value is negative or positive,
respectively.

Any reasonable analytic function Dtest (E ) with adjustable
parameters can be used in Eq. (14). By comparing the results
with the experimental fusion excitation function using least-
squares fitting techniques, the optimum parameters for the
assumed Dtest (E ) function will be determined.

When Rowley et al. derived Eq. (4), approximations were
introduced: the classical expression of fusion cross section for
a barrier of radius R was used, together with the assumption
that the radius R is independent of the the barrier height B(E ).
While Eq. (13) is similar to Eq. (4), it is defined without any
approximations, and is thus an exact formula. All approxima-
tions are contained in the assumption of function Btest(E ). It
should be mentioned that the upper limit of Eq. (13) should
not be infinity, but a finite number. In the study of low energy
nuclear physics, one always restricts the discussion within
a certain energy range, since other degrees of freedom may
appear outside the energy limit. In practice, the values of
Dtest (E ) at an energy near the high energy limit are often
negligible.

After testing a variety of barrier distributions we found that
a sum of L Gaussian (LG) distributions yields an excellent
result:

Dtest (E ) =
L∑

i=1

Di(E ) =
L∑

i=1

ωi√
2πWi

exp

[
−

(
E − Vi√

2Wi

)2]
.

(15)
Where, Vi, Wi, and ωi are the centroids, the standard de-
viations, and the weights of the ith Gaussian functions,
respectively, with a condition

∑
ωi = 1. L is the number of

Gaussians used in the Dtest (E ) function. With this assumption,
the cross sections are given by an analytic function (see also
Ref. [19]):

σ (E )E = πR2
0

L∑
i=1

ωiWi√
2π

[√
πZi erfc(−Zi ) + exp

( − Z2
i

)]
,

(16)
with Zi = (E − Vi )/

√
2Wi.

It should be mentioned that Eq. (7) is just the same as
Eq. (16) with L = 1. In an earlier publication (Ref. [19])
where Eq. (7) was discussed, only Refs. [14,15] were cited,
and the reciprocal method was not mentioned. This was just
for simplicity and because the results for 1G (L = 1) repro-
duce the excitation functions already quite well.

The superior performance of this new cross section for-
mula, Eq. (16), will be described in detail in the next section.
Here we want to point out that the reciprocal method can be
applied to other representations, e.g.,

Ctest (E )= d (σE )

dE
=πR2

0Ttest (E ), with
∫

Ttest (E )dE =1,

(17)

and one can obtain another new cross section formula:

σ (E )E =
∫ E

E0

d (σE ′)
dE ′ dE ′ = πR2

0

∫ E

E0

Ttest (E
′)dE ′. (18)

Here, R0 again is a normalization constant for function
Ttest(E ). The lower integration limits in Eq. (18) are either
E0 = −Q or 0, depending on whether the fusion Q value
is negative or positive, respectively. Ttest(E ) can also be any
reasonable function with adjustable parameters. It is well
known that Ttest(E ) is related to the transmission coefficient
(see Refs. [3], [7], and [26]).

Equations (14) and (18) are equivalent under the condition

Btest(E ) = dTtest(E )

dE
. (19)

But one may start either from an assumed Btest(E ) or from an
assumed Ttest(E ) to develop a cross section formula. Because
of the different “structures” emphasized in the different repre-
sentations, the two independent approaches serve as starting
points for different studies.

III. IMPROVED STUDY OF BARRIER HEIGHT
DISTRIBUTION

By inspection of the B(E ) [for brevity, from now on we
use B(E ) instead of Btest(E )] for a large number of systems,
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TABLE I. Results of least-squares 3G fits, ωiR2, Vi, and Wi (i = 1–3) for 16 fusion excitation functions. N are the numbers of data points
of the excitation functions used in the fit.

System Data range N χ 2
0 (3G) χ 2

0 (2G) χ 2
0 (1G) R ω1R2 V1 W1 ω2R2 V2 W2 ω3R2 V3 W3

(mb) (fm) (fm2) (MeV) (MeV) (fm2) (MeV) (MeV) (fm2) (MeV) (MeV) Ref.

16O + 208Pb 0.000016–1133 38 10.8 12.0 98.0 10.8 13.7 71.78 0.983 94.3 74.06 1.66 8.80 78.09 0.112 [27]
32S + 89Y 0.06–468 23 0.431 0.605 12.6 10.0 39.8 75.44 1.22 53.0 78.39 1.69 8.00 82.68 0.129 [28]
40Ca + 40Ca 0.02–531 21 1.35 1.43 4.48 9.97 36.4 52.58 0.344 58.1 53.27 1.40 4.98 56.70 0.240 [29]
40Ca + 96Zr 0.0027–474 62 1.00 1.09 5.40 9.72 63.8 92.84 2.46 19.3 96.41 1.06 11.25 98.74 0.170 [30]
58Ni + 60Ni 0.04–365 33 2.97 3.23 23.3 8.62 6.98 93.34 0.737 58.7 98.49 2.44 8.66 104.11 0.391 [31]
40Ca + 194Pt 0.061–398 31 11.0 37.5 41.9 10.4 40.09 168.09 3.62 42.9 172.27 0.862 26.0 182.48 0.536 [32]
16O + 144Sm 0.15–876 27 3.19 3.30 21.8 10.6 44.9 59.57 1.11 48.7 60.70 1.41 19.5 64.49 0.240 [33]
48Ca + 48Ca 0.00058–506 27 3.49 4.75 6.60 10.5 72.5 50.90 0.909 21.5 51.93 1.51 15.6 55.66 0.149 [34]
40Ca + 90Zr 0.84–407 40 2.40 2.52 5.33 10.1 61.1 95.44 1.32 16.9 96.02 0.526 24.0 98.68 0.409 [35]
11Be + 209Bi 10.8–889 15 1.31 1.34 1.52 11.6 54.2 36.80 1.51 28.0 39.22 0.519 52.9 43.69 0.304 [36]
40Ca + 132Sn 3.6–541 15 0.975 0.985 1.28 10.9 52.0 113.28 4.11 38.2 115.56 0.962 28.9 116.87 1.88 [37]
58Ni + 58Ni 0.049–226 17 0.486 0.501 4.16 10.5 11.4 94.62 0.790 61.0 99.47 1.98 37.8 108.05 1.37 [38]
12C + 30Si 0.0027–815 22 0.480 0.726 0.934 8.68 22.0 12.82 0.482 22.8 12.82 0.895 30.5 15.96 0.288 [39]
24Mg + 30Si 0.0080–332 20 0.256 0.256 0.499 8.52 23.4 23.44 0.723 46.6 24.60 1.28 2.57 27.48 0.089 [40]
40Ar + 112Sn 0.0085–478 15 0.604 0.613 3.33 9.53 26.1 101.93 1.75 55.8 105.92 2.14 9.06 108.10 1.43 [41]
64Ni + 124Sn 0.0008–126 12 0.076 0.147 0.814 10.1 30.4 152.03 2.07 46.2 158.42 0.598 26.3 165.97 0.577 [42]

we found that there are, fundamentally, two classes of bar-
rier distributions that reproduce very well the two classes of
fusion excitation functions, respectively: (1) a 3G multipeak
structure and (2) a 4G multipeak structure.

The results of a 3G description for the fusion bar-
rier of nine systems are summarized in the top part
of Table I: 16O + 208Pb [27], 32S + 89Y [28], 40Ca + 40Ca
[29], 40Ca + 96Zr [30], 58Ni + 60Ni [31], 40Ca + 194Pt [32].
16O + 144Sm [33], 48Ca + 48Ca [34], and 40Ca + 90Zr [35].
Two examples with a 4G description of the fusion barrier
are summarized in the top part of Table II for systems 40Ca
+ 192Os [32] and 16O + 154Sm [33]. Since these 11 systems
were all measured after Rowley’s paper [13], barrier distri-
butions extracted from the double-differentiation recipe are
available in the literature.

In Tables I and II the χ2
0 values of different L Gaussian

fits (either L = 1–3 or L = 1–4) are included for comparison.
Here, χ2

0 (LG) is defined as

χ2
0 = 1

N

N∑
i=1

[(σi − σexp-i )/�σexp-i]
2, (20)

σi and σexp-i are calculated and experimental cross sections,
�σexp-i are the experimental uncertainties, and N is the
number of experimental data points [43]. The experimental
uncertainties of the cross sections used in the fitting procedure
were taken from the original papers. Since these uncertainties
are treated differently in the various experiments, the absolute
values of χ2

0 for the different systems are not critical. As can
be seen from Tables I and II, for most systems there is a large
improvement of χ2

0 in going from a 1G to a 2G description,
while the improvement in going from 2G to 3G or from 3G
to 4G is smaller, but the B(E ) spectrum changes a lot. The
reason for that will be discussed later. Test calculations have
been performed where a single cross section was changed by
±20%. The barrier distribution from the 3G (or 4G) fit was
practically unchanged, but a substantial change of the barrier
distributions obtained from the double-differentiation recipe
was observed near these energies.

These two classes of structure will be discussed in detail
separately below.

A. 3G description

The barrier distributions B(E ) for two systems,
40Ca + 194Pt and 16O + 144Sm, are shown in Figs. 1 and

TABLE II. Results of least-squares 3G and 4G fits, respectively, ωiR2,Vi, and Wi (i = 1–3 or 4) for three fusion excitation functions. N are
the numbers of data points of the excitation functions used in the fit. The systems are 16O + 154Sm, 40Ca + 192Os, and 40Ar + 154Sm, the data
range, data points N , and references are 0.18–33, 37, [33], 0.074–1052,45, [32], and 0.0016–407, 15, [41], respectively.

System χ 2
0 (4G) χ 2

0 (3G) χ 2
0 (2G) χ 2

0 (1G) R ω1R2 V1 W1 ω2R2 V2 W2 ω3R2 V3 W3 ω4R2 V4 W4

(fm) (fm2) (MeV) (MeV) (fm2) (MeV) (MeV) (fm2) (MeV) (MeV) (fm2) (MeV) (MeV)

16O + 154Sm 2.94 2.96 13.0 10.4 14.1 55.13 1.42 40.9 58.92 2.10 53.5 60.38 1.83
2.54 10.4 13.1 54.80 1.28 57.8 58.56 1.53 29.7 61.02 0.481 7.18 63.40 0.200

40Ca + 192Os 14.8 15.3 16.7 10.5 53.5 164.79 4.42 33.7 168.15 5.21 23.7 171.33 4.54
13.8 10.5 49.5 164.33 4.15 30.6 166.89 4.93 21.0 170.01 0.482 9.59 176.40 0.443

40Ar + 154Sm 0.388 1.44 19.5 11.7 3.35 114.57 2.17 39.8 122.01 3.33 92.9 131.37 3.19
0.387 11.7 3.40 114.59 2.18 40.0 122.02 3.32 86.2 131.03 2.95 6.36 136.12 0.364
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FIG. 1. B(E ) spectrum for the system 40Ca + 194Pt. Curves are
obtained by using a 3G description for all or subsets of the measured
cross sections.

2, respectively. The open circles in Figs. 1 and 2 show the
barrier distributions obtained with the double-differentiation
recipe. Each B(E ) symbol is calculated from three cross
sections (three-point method), which are separated in energy
by �E . The different colors (red and black) of symbols
are obtained with different �E . As discussed in Ref. [5],
larger values of �E are often used in the literature for
the double-differentiation recipe, in order to reduce the
uncertainty of results. This, however, leads to a damping
of the structure in the barrier distribution, as can be seen
from a comparison of the black (�E ≈ 1 or 2 MeV) and red
(�E ≈ 2 or 4 MeV) symbols in Figs. 2 or 1, respectively.
The solid-black line in these figures are the results of a
3G description using least-squares fits to the measured
excitation functions with Eq. (16), which is obtained with
small energy steps (<0.1 MeV) and denoted as “analytic.”
In order to demonstrate the step-size dependence behavior
(ambiguity problem) we have applied the differentiation
recipe to the 3G fit curve also. In Fig. 1, the magenta and
green long-dashed curves are results determined by applying

FIG. 2. B(E ) spectrum for the system 16O + 144Sm. Curves are
obtained by using a 3G description for all or subsets of the measured
cross sections.

TABLE III. Comparison of the χ 2
0 and χ 2 values in the LG

fittings for fusion systems 16O + 144Sm, 40Ca + 194Pt, 16O + 154Sm,
and 40Ca + 192Os.

System LG, M χ 2
0 χ 2 System LG, M χ 2

0 χ 2

40Ca + 194Pt 1G, 3 41.9 46.4 16O + 144Sm 1G, 3 21.8 24.5
N = 31 2G, 6 37.5 46.5 N = 27 2G, 6 3.3 4.3

3G, 9 11.0 15.5 3G, 9 3.2 4.8
16O + 154Sm 1G, 3 13.0 14.1 40Ca + 192Os 1G, 3 16.7 17.9
N = 37 2G, 6 3.0 3.5 N = 45 2G, 6 15.3 17.7

3G, 9 2.9 3.9 3G, 9 14.8 18.5
4G, 12 2.5 3.7 4G, 12 13.8 18.2

the double-differentiation recipe on the black curve, with
�E = 4 or 2 MeV, respectively. The magenta line in Fig. 1
reproduces the red circle results [determined by applying the
double-differentiation (DD) recipe to the experimental cross
sections with �E ≈ 4 MeV] very well for all three peaks.
The black circles, derived with �E ≈ 2 MeV, show a large
scatter including some negative points; however, the green
curve reproduces the average behavior very well.

For the 40Ca + 194Pt system, the value of χ2
0 from 1G to 2G

and 3G improves from 41.9 to 37.5 and 11.0, successively. In
this case, the third (i = 3) peak in the 3G description nearly,
but not exactly, agrees with the results obtained from any of
the double-differentiation recipes (�E = 2 or 4 MeV). This is
because the fit was made to the measured fusion cross sections
and not to the points obtained from the double-differentiation
recipe, which have the disadvantage of step-size (�E ) depen-
dence.

There are two kinds of systems in Table I. For the sys-
tems given in the upper six rows, a 2G description does not
reproduce the narrow peak at high energy. One must use a 3G
description to obtain a detailed B(E ) spectrum. For three of
the systems in the middle part of the Table I the 2G description
already gives the narrow high energy peak, and the low energy
peak splits into two bumps in the 3G description. It follows
that for these cases a 2G description is already a rather good
description. Obviously this behavior is related to the ratios of
strength between the three components.

One may ask, for system 16O + 144Sm or 40Ca + 194Pt,
while a 3G fit is good, what happens for a 4G fit? In principle,
a fit by using a formula with more adjustable parameters often
leads to a smaller χ2

0 value. But there is another χ2 value that
should be considered, which includes the idea of degrees of
freedom:

χ2 = N

N − M
χ2

0 . (21)

Here, N is the number of fusion data points used in the fit
as indicated above, and M is the number of parameters used
in the formula. For 1G to 5G, M are 3, 6, 9, 12, and 15, re-
spectively. In principle, while L increases, a smaller χ2

0 in the
least-squares fit is obtained. But, it is a meaningful improve-
ment only if a smaller χ2 value is obtained at the same time.
In Table III, values of χ2 and χ2

0 for systems, 16O + 144Sm,
40Ca + 194Pt, 16O + 154Sm, and 40Ca + 192Os are compared.
For the 16O + 144Sm and 40Ca + 194Pt systems, χ2 increases
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FIG. 3. B(E ) spectrum for the system 16O + 154Sm. Curves are
obtained by using a 4G description for all or subsets of the measured
cross sections.

substantially for 4G (M = 12), thus offering no acceptable
improvement. Thus, for 40Ca + 194Pt, 3G is undoubtedly the
best. For 16O + 144Sm, 2G and 3G are similar and both are
acceptable (for 3G, χ2 = 4.8, only little worse than in 2G,
4.3).

For system 16O + 144Sm comparison with previous analy-
ses may be discussed. The CC calculations give a result with a
χ2

0 value of 36.5 [33]. Recently Hagino [44] developed a new
method for obtaining the barrier distribution by assuming that
the excitation function is a sum of several components, each
described by the Wong formula. For system 16O + 144Sm,
Hagino’s result gives a χ2

0 value of 15.1. Obviously the χ2
0

value 3.2 obtained from a 3G description is better than these
previous results.2

B. 4G description

The prime examples for a 4G barrier description are the
16O + 154Sm and 40Ca + 192Pt systems, both of which involve
highly deformed nuclei. These are shown in Figs. 3 and 4,
respectively.

As mentioned above for systems 16O + 144Sm and
40Ca + 194Pt, the χ2 values increase substantially when
changing the barrier description 3G to the 4G. In contrast, for
systems 16O + 154Sm and 40Ca + 192Pt, the χ2 values improve
when changing the barrier description from 3G to 4G, but get
significantly poorer when changing from 4G to 5G. In these
two cases, 4G is the best description.

The meanings of symbols and lines in Figs. 3 and 4 are the
same as in Figs. 1 and 2, with the only difference being that
4G descriptions are added in Figs. 3 and 4. From these two
figures, it is clear that one arrives at the same conclusion as
above. That is, a much better description of the barrier height
distribution is achieved using the present method when com-
pared with previous results using the double-differentiation

2We do not want to discuss the many papers detailing the different
ways of getting a better B(E ) spectrum. We refer the reader to, e.g.,
a recent paper by Scamps [45].

FIG. 4. B(E ) spectrum for the system 40Ca + 192Os. Curves are
obtained by using a 4G description for all or subsets of the measured
cross sections.

recipe. The present result yields a clear spectrum, which is not
the case with the previous methods. Further, it displays pat-
terns and features that are “hidden” in the previous attempts
using different �E .

Both systems 16O + 154Sm and 40Ca + 192Pt are highly de-
formed, and their B(E ) spectra are rather different from those
discussed in Sec. III A. Note that, in these cases, the peak
at high energy was revealed only with a 4G description. This
high energy peak in B(E ) was observed in previous analyses
with the double-differentiation recipe but is very step-size
dependent. For system 16O + 154Sm, CC calculations (green)
and analyses using five components of the Wong formula con-
ducted by Hagino (magenta) are compared with the 4G results
(black) in Fig. 5. The high energy peak was not expected from
the CC calculations and appeared as a weak tail in Hagino’s
analysis. The χ2

0 values for CC calculations [33], Hagino’s
new analysis [44], and the 4G description are 13.2, 88.9 and
2.54, respectively. Clearly, the present 4G description is the
best.

FIG. 5. B(E ) spectrum for the system 16O + 154Sm. Curves are
obtained by using a 4G description, CC, and Hagino’s analysis by
using five components of the Wong formula.
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C. Width of the high energy peak of B(E )

The FWHM of the high-energy peak obtained in the above
two subsections is often about a fraction of a MeV, which is
narrower than the peak width obtained in all previous studies
with the double-differentiation recipe. The reason for this has
been shown: the energy step size used in previous studies is
often rather large, thus the peak size is damped if it is a narrow
one. It follows that no narrow peak can be well recognized
when a smaller energy step, �E , is taken, as it would yield
huge uncertainties when determined with small energy steps.

In the early days of nuclear reaction studies the heavy-ion
fusion excitation functions were explained by the blackbody
(strong absorption) model, as given in Eq. (1). The values of
the radius, R, and barrier, V , are obtained from the slope and
the intersection with the abscissa in a linear plot of σb(E )E vs
E with Eq. (1), which only gives a good description of fusion
excitation functions for cross sections larger than ≈100 mb.
This formula is based on classical mechanics, neglecting the
wave properties of the incident beam [8]. Thus, it should be
applied at the energy range above the Coulomb barrier. Row-
ley obtained the corresponding barrier distribution of Eq. (1),
which is a δ function [13]:

1

πR2

d2(σb(E )E )

dE2
= δ(E − V ). (22)

The physics picture behind the fusion enhancement at en-
ergies around and lower than the Coulomb barrier was first
introduced by Dasso et al., [10] and is often cited in the
literature. With a qualitative consideration, he showed that the
sub-barrier fusion enhancement, which is not reproduced by
Eq. (1), can be approximately understood by a splitting of the
Coulomb barrier into two barriers due to channel couplings.
These two components are located at energies below and
above the original Coulomb barrier.

In the paper where Rowley established the idea to ob-
tain the barrier distribution B(E ) with the double derivative
d2(σE )/dE2, he estimated the barrier width due to the quan-
tum mechanical penetration, using Wong’s formula, to be
about 0.56h̄ω [13], where h̄ω is the curvature at the top
of the potential barrier in the Wong formula [9]. This re-
sult led Rowley et al., to infer another point: that one can
obtain the experimental B(E ) by the double-differentiation
recipe with a larger energy step size without loss of in-
formation, Eespecially because in practice, due to the large
uncertainty introduced in the numerical calculations in the
double-differentiation recipe, one can only use a large energy
step to get a well-defined (not too randomly distributed) B(E )
at higher energies with the double-differentiation recipe. This
guess that larger energy step size prevents loss of information
has not been proved.

The estimation of 0.56h̄ω is for a one-peak barrier dis-
tribution which includes the quantum mechanical penetration
effect. For a multipeak B(E ), influences of the quantum pene-
tration effect on the various components may be different. At
peaks whose energy is higher than the Coulomb energy, the
quantum mechanical effect is weaker and the strong absorp-
tion effect will most likely be dominant.

Naively, Dasso’s theory [10] covers the energy region orig-
inally described with the black-body model. In reality, it is
not so simple. The two (or three) broader peaks in 3G (or
4G) descriptions obtained in Secs. III A and III B are at lower
energies. That is what has been described qualitatively by the
two components in B(E ) in Dasso’s theory. Because in that
paper Dasso et al. focused their study around and lower than
the barrier, the cross section range discussed is less than 150
mb.

The narrow peak appears at an energy above the barrier,
where the fusion cross sections are above 100 mb and the
fusion excitation functions are nearly a straight line in a σE
vs E plot. The location of this narrow peak is always at an
energy several MeV higher than the value of V determined
from Eq. (1), the classical, blackbody model. The two compo-
nents description in Dasso’s theory, devoted to explain fusion
enhancement, did not emphasize well fusion for all energy
regions. At higher energies (above the Coulomb barrier),
rather pure strong absorption behavior takes effect, which may
be described with the blackbody model approximately. Of
course, quantum mechanical penetration effects are present
also, leading to a narrow, but not a delta, peak. This is only
a preliminary, tentative discussion; we leave it as an open
question, which needs to be studied further.

As pointed out by Bierman et al., [32], the energy sep-
aration of the two low-energy components is, on average,
proportional to the charge product Z1Z2. This energy separa-
tion is smaller (≈1 MeV) for the system of 16O + 144Sm and
therefore easily identified. In this case, the 2G result is already
good enough, as detailed above; see Table III. For cases with
deformed target nuclei, not two but three or more peaks have
to be included in the Dasso consideration.

It is important to mention that, in order to give detailed
comparisons of the CC calculations and the 3G or 4G descrip-
tion, and to get an understanding of the narrower component
in B(E ), the theoretical CC calculations have to be improved
in many cases, so that the double differentiation of σE
can be taken numerically with an energy step of less than
0.1 MeV.

D. Another advantage for the LG description

The data discussed in the previous sections were all mea-
sured in small energy steps, which, as mentioned earlier, is
a requirement for applying the double-differentiation recipe.
In this section we will describe another important advantage
of the new method for the analysis of systems which have
not been measured in small energy steps. For a comparison
we have chosen the systems 16O + 144Sm and 40Ca + 96Zr,
for which 27 and 62 data points are available, respectively.
Figure 6(a) shows the results of a 3G description, using all,
every other, or every third data point for the 16O + 144Sm
excitation function. Similar results for the system 40Ca + 96Zr
excitation function, using all or every sixth data point are
shown in Fig. 6(b). For both cases, the data at the highest and
lowest energy points are always included.

As expected, with the LG description method, results
from using fewer data points are rather similar to results
with all data points. Here the wide range of the measure-
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FIG. 6. B(E ) spectra for the systems 16O + 144Sm [33] (a) and
40Ca + 96Zr [30] (b). Solid curves are fittings with a 3G description.
The black and the colored ones are obtained from the whole dataset
or from the subsets of the measured cross sections, respectively.
Dashed curves are the three corresponding components for the whole
dataset.

ment is important. The ability to determine a fusion barrier
distribution with only 10 or 12 data points for systems
16O + 144Sm or 40Ca + 96Zr, respectively, is a clear advan-
tage of this method for reactions with radioactive beams
which are usually measured only with large energy steps. The
present method can also be applied to fusion studies in lighter
systems.

Results from seven experiments and one other experiment,
which were not measured with small energy steps, are listed
in the third part of Table I and the second part of Table II, re-
spectively. These include two systems from radioactive beam
experiments: 11Be + 209Bi [36] and 40Ca + 132Sn [37]. The
excitation function and the barrier distribution obtained from
a 3G least-squares fit for the system 11Be + 209Bi are shown in
Fig. 7. Obviously, in this case, results of B(E ) obtained with
the double-differentiation recipe are not practical to study the
reaction dynamics. However, three components can still be
obtained in the analysis with a 3G description. It is interesting
to note that the barrier distribution for 11Be + 209Bi (Fig. 7)
resembles the one from the system 16O + 208Pb, which also
involves a closed n-shell nucleus.

Note that the hindrance phenomenon is well reproduced
with a multi-Gaussian fit (as also discussed in Ref. [19]). For
fusion of 11Be + 209Bi, an S-factor maximum is predicted at
around 30 MeV from the 3G fit, near the prediction from
systematic studies of the hindrance phenomenon [17,46].

FIG. 7. Spectra for the system 11Be + 209Bi [36]: excitation func-
tion (b) and barrier distribution (a). The solid curves are obtained
from least-squares fits to the measured cross sections using a 3G
description. Dashed curves are the three corresponding components.

IV. SUMMARY

After a general discussion about the methods to obtain
formulas of fusion cross sections, a new method, the recip-
rocal of a fusion representation, was illustrated of extracting a
fusion cross section formula and the fusion barrier distribution
in heavy ion reactions, namely, based on a double integra-
tion of a parametrized barrier distribution D(E ): σ (E )E =
πR2

∫ E
E0

(
∫ E ′

E0
D(B)dB)dE ′. It was found that either a three-

Gaussian (3G) or a four-Gaussian (4G) description of D(E )
provides an analytic formula of the fusion excitation function
which can reproduce the experimental excitation functions for
a large number of systems extremely well across a cross sec-
tion range covering eight orders of magnitude. This method
can also be applied to fusion reactions involving lighter heavy
ions and to measurements which have been taken only in
larger energy steps, which is important for the study of fusion
reactions induced by radioactive projectiles.

The fusion barrier distribution obtained with this method
is much improved over those from previous studies using the
double-differentiation recipe, which suffers from the ambigu-
ity problem due to the energy-step-size dependence and large
uncertainties of the determined results.

It was found that there is a narrow barrier peak at energies
higher than the Coulomb barrier for most fusion systems,
which, in the past, has not been seen or recognized. The
physical meaning and interpretation of this peak, related to
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the strong absorption property of the nuclear reaction at higher
energies, is an interesting issue, to be studied further.

The improved B(E ) spectrum will be beneficial for stud-
ies of the reaction dynamics. Its capability of describing the
fusion hindrance phenomenon opens new possibilities for
studies at low bombarding energies.
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