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Analysis of the SU(3) symmetry versus rotor model
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The SU(3) symmetry, the subgroup in the dynamic chain of the SU(6) group in the interacting boson model
(IBM), corresponds to the Bohr-Mottelson rotor model for axially symmetric deformed nuclei. It is synonymous
but not identical to it. The common characteristics of the two models and their contrasting features are illustrated.
The effect of adding the pairing term in the IBM SU(3) Hamiltonian to bring it closer to the rotor model is
highlighted. The modified SU(3) Hamiltonian expression breaks the degeneracy of the β and γ bands in the
SU(3) spectrum. The different ways to produce the forbidden E2 transitions across the different (λ, μ)-multiplets
are discussed. The related features of SL(3, R) symmetry group are illustrated. We point out that the additional
pairing term affects only certain states, preserving the rotational features of the other states in the SU(3) spectrum.
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I. INTRODUCTION

The SU(3) symmetry, one of the three dynamic chains of
the SU(6) group of the interacting boson model (IBM) [1],
corresponds to the axially symmetric Bohr-Mottelson (BM)
rotor model [2], but it is not identical to it. The BM unified
collective model regards the nucleus as a liquid drop of uni-
form mass density with a sharp surface, and three semi-axes
Rk (k = 1, 2, 3), as a function of quadrupole deformation
variable β and asymmetry variable γ , which is capable of
rotation and vibration (RV). Besides the rotational ground g
band, it allows vibration in the β and γ variables. The level
energies follow the rotor formula E (I ) = AI (I + 1), where A
is related to the inverse moment of inertia θ . The interband
E2 transitions from various spin states are allowed and B(E2)
refers to the Alaga rules [2], based on the angular momentum
L components and band quantum number K. In the SL(3, R)
symmetry (see below) these ratios also depend on the inter-
state energy spacing. Small deviations from the Alaga rules
are explained in terms of band mixing [2].

The SU(6) group of the IBM has three dynamic chains,
SU(5), SU(3) and O(6), involving the O(3) subgroup. For
chain-II, viz. SU(6) � SU(3) � O(3),

EII (N, λ, μ, χ, L) = E0 + (3/4 k − k′)L(L + 1)

− k(λ2
. + μ2 + λμ + 3λ + 3μ). (1)

where k (λ2 + μ2 + λμ + 3λ + 3μ) corresponds to the SU(3)
Casimir operator C(λ,μ). In SU(3) symmetry, the (λ = 2N,
μ = 0) multiplet includes only the g band. The (λ = 2N
− 4, μ = 2) multiplet includes the γ band and the β band
[1]. The two excited bands are predicted to be degenerate.
As distinguished from the SU(5) and O(6) symmetries, the
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states (0+
1 , 2+

1 , 4+
1 , 6+

1 , . . .) form the rotational g band, with
L(L + 1) = I (I + 1) spacing. The rotational bands are char-
acterized by strong intraband E2 transitions, and the SU(3)
nuclei have large quadrupole moments, as in the BM rotor
model. The (λ = 2N − 4, μ = 2) multiplet lies much higher
than the 4+

1 state of the ground band but is decoupled from it.
In the energy difference expression

E (2γ ) − E (2g) = 6β(2N − 1), (2)

the coefficient β varies with boson number N [3]. The position
of the (λ = 2N − 4, μ = 2) multiplet is determined empirically
from experiment.

The SU(3) spectra are associated with four conditions:

(a) The energies of the g band exhibit the I(I + 1) rotor
pattern.

(b) For finite boson number N, the band has a cutoff.
(c) The β and γ bands in the (λ = 2N − 4, μ = 2)

multiplet are predicted to be degenerate.
(d) The exact SU(3) symmetry prohibits the γ -g and β-

g E2 transitions. In the slightly broken symmetry,
the B(E2, 2γ − 0β )/B(E2, 2γ − 0g) ratio is relatively
large. 156Gd and 170Er are cited as good examples of
SU(3) nuclei [4]. Each of the ideal symmetry applies to
only a few nuclei. Most other nuclei lie in the transition
classes between them.

A detailed analysis of the two models is presented here
in Sec. II to further study these four conditions. Section III
deals with interband transitions. The IBM study illustrates the
deviations from the exact SU(3) symmetry predictions and the
ways to minimize them. In some respects, our analysis differs
from earlier works on this subject.
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FIG. 1. Energy ratio R4/2 in 156–160Gd isotopes.

II. ANALYSIS OF PREDICTIONS FROM SU(3) SYMMETRY

A. Four conditions

The first condition of the SU(3) symmetry, viz. the for-
mation of the rotational I (I + 1) = L(L + 1) spectra is well
satisfied in the well-deformed nuclei, in the ground band, and
also in the two excited bands. In Ref. [5], Gupta illustrated the
almost equal moment of inertia of the three bands in the nuclei
of the mid-mass region (in the three quadrants) of the major
shell, as also predicted in the SU(3) symmetry.

The variation of rotational features with mass number of
deformed nuclei is illustrated here for Gd isotopes, in com-
parison with rotor model predictions.

The energy ratio R4/2 = E (4+
1 )/E (2+

1 ) equals 3.24 in
156Gd (Fig. 1), a good example of an SU(3) nucleus, lies
within 3% of the rotor model (RM) value of 3.33. For
158,160Gd it lies even closer to the 10/3 limit (within 1%).

For spin Iπ up to 12+, the energy ratio RI/2 for 156–160Gd
isotopes deviates slightly from the rotor model values (top
curve in Fig. 2, crosses). Arima and Iachello [4] illustrated
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FIG. 2. Energy ratio RI/2 for 156–160Gd isotopes.

the effect of slight breaking of the exact SU(3) symmetry
to account for the small deviations from the I(I + 1) limit
of the ground band spectrum, as occurs in the rotor model
as well. Thus, the SU(3) symmetry predicts the rotation-
vibration spectra in good measure.

The second condition of the SU(3) symmetry arises due to
the finite boson number N, as distinguished from the infinite
number in the rotor model. For L = 4 g bosons, in the sdg
IBM, the band cutoff spin increases.

The third condition, viz. degeneracy of β and γ bands,
arises from the built-in K independence of the (λ = 2N − 4,
μ = 2) multiplet. The same degeneracy applies to the higher
excited multiplet (λ = 2N−8, μ = 4) as well. The real nuclei
differ from the exact SU(3) symmetry in this respect. This
K independence differs from the rotor model, in which K
is a valid projection quantum number, which represents the
projection on the intrinsic axis and which is different for the
two bands [2].

The degeneracy in SU(3) arises because of the missing
quantum number K, which distinguishes the degenerate β and
γ bands. In the Elliot basis of SU(3) (which is not orthogonal
[1]), the K quantum number was included. But in the orthog-
onal basis of the Vergados representation used in the sd IBM
[1], χ is the extra quantum number used, which enables the
determination of the L quantum numbers of the β and γ bands.
This problem is related to the subgroup reduction problem
from SU(3) to SO(3) [1]. While χ = 0 allows one L, χ = 2
allows two L (0 and 2), corresponding to the β and γ bands.

Arima and Iachello [4] noted that the eigenvalues of the
SU(3) Hamiltonian do not depend on K and M but depend
only on angular quantum number L. While in the BM model
expression

E (nβ, nγ , K, L, M ) = αL(L + 1) + βnβ + γ nγ , (3)

the values of the coefficients α, β, and γ are arbitrary, in
SU(3), the coefficients β and γ are equal on account of the
K independence of the SU(3) Casimir operator C(λ, μ) [see
Eq. (1)] in the same L state.

B. Application of IBM-1 and use of PAIR term

In the multipole representation of the phenomenologi-
cal IBM-1 calculation [1], one often employs the four-term
Hamiltonian

HIBM = ε nd + kQ · Q + k′L · L + k′′P · P. (4)

The first term is the boson-energy term, second term is the
quadrupole interaction, third term is angular momentum, and
the fourth term is the pairing interaction. In the exact SU(3)
limit, only the Q�Q and L�L terms are required. The PHINT
Program of Scholten [6] solves Eq. (4). The coefficients of the
four terms in Eq. (4) are evaluated by a fit to the experimental
spectrum.

As an illustration, we applied the IBM-1 program for
154–160Gd isotopes. See Table I for the parameters. Scholten
et al. (1978) [7] retained the εnd term and varied it with boson
number N to reproduce the varying spectra (with mass num-
ber A) of 148–156Sm isotopes. Here we are dealing only with
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TABLE I. IBM-1 Hamiltonian parameters (keV) used for Gd
isotopes. Energies are in keV and B(E2) are in e2b2, χ = (−)

√
7/2.

Item 160Gd 158Gd 156Gd 154Gd

EPS = ε 0.0 0.0 0.0 349.5
QQ = 2k −22.9 −29.6 −31.1 −26.7
ELL = 2k′ 17.2 14.9 16.3 12.7
PAIR = k′′/2 17.1 3.9 −1.7 1.9
E (2β ) − E (2γ )
EXP 389 73.7 −26 −180
IBM 407 90 −36 −150
B(E2, 2+

1 − 0+
1 ) 1.05 0.89 0.756 0.765

EXP 1.04(3) 1.02(2) 0.94(3) 0.77(1)
B(E2.2γ − 0+

1 ) 0.023 0.019 0.016 0.027
EXP 0.020(1) 0.017(2) 0.024(1) 0.028(2)
B(E2, 2β − 0+

1 ) 0.0009 0.0022 0.0027 0.0005
EXP 0.0012 (2) 0.0032 (3) 0.0045(5)
B(E2.2γ − 2+

1 ) 0.035 0.029 0.026 0.043
EXP 0.020 (1) 0.029 (4) 0.025 (2) 0.061(5)
B(E2, 2β − 2+

1 ) 0.0014 0.0035 0.0045 0.0127
B(E2, 2β − 0+

2 ) 0.81 0.67 0.56 0.51
Ratio (2γ − 0+

1 /2+
1 ) 0.65 0.65 0.62 0.63

EXP 0.60(2) 0.59(6) 0.67(3) 0.46(1)
Q(2+

1 ) eb −2.07 −1.91 −1.75‘ −1.76
Q(2+

2 ) eb +1.92 +1.75 −1.51 −1.25
Q(2+

3 ) eb −1.81 −1.66 +1.60 +1.35

well-deformed rotor SU(3) nuclei, so we set the boson-energy
term εnd to zero (except for N = 90 154Gd).

The quadrupole operator in IBM-1 is expressed as

Q(2) = α(d+s + s+d ) − β(d+d )(2)
, (5)

and the E2 transition operator T (E2) = eb Q(2), for eb = α,
and β/α = χ .

For the IBM Hamiltonian, the |χ | coefficient (= β/α) is
taken equal to (−)

√
7/2 in the exact SU(3) limit. In the

slightly broken SU(3) symmetry, or the vibrational or shape
transitional nuclei, it may be reduced. The value of χ is set to
zero for the O(6) nuclei. The coefficient k in the k Q�Q term
in Eq. (4) determines the position of the excited bands. The
L�L term affects the band spread with spin L.

The pairing term is small for 156Gd (Table I), with almost
degenerate β and γ bands. It is larger for 160Gd, with larger

E = [E (2β ) − E (2γ )] (see rows 4 and 5 of Table I). It
illustrates the role of the pairing term for the splitting of the
K degeneracy in the SU(3) symmetry, for the well-deformed
nuclei.

The increased boson number N in Gd isotopes leads to the
increased split of the degeneracy of the β and γ bands. The
B(E2, 2β − 0+

1 ) is increasingly small in the more-deformed
isotopes. The pairing term does not affect the rotational struc-
ture of the β band, and of the ground band and γ band. This is
an interesting aspect of the use of the pairing term in the SU(3)
IBM. Further, the features of the two bands are also illustrated
below.

The same features, viz. E, B(E2), and Q, M, occur in the
BM model, as illustrated in Table II.

TABLE II. DPPQ model Hamiltonian parameters (keV) used for
Gd isotopes. Energies (theory) are in keV and B(E2) are in e2b2,

Item 160 158 156 154

E(2+
1 ) 76.8 76.5 87.2 126

E(2+
2 ) 1.491 1.429 1.420 1.179

E(0+
2 ) 1.596 1.383 1.235 0.984

E(2+
3 ) 1.717 1.583 1.525 1.505

Quad param 66.0 66.0 68.0 70.0
B(E2, 2+

1 − 0+
1 ) 1.04 0.92 0.868 0.772

B(E2, 2γ − 0+
1 ) 0.0222 0.0197 0.0295 0.0278

B(E2, 2β − 0+
1 ) 0.0103 0.0141 0.0039 0.0037

B(E2, 2γ − 21) 0,0456 0.0598 0.0432 0.0494
B(E2, 2β − 21) 0.0135 0.0112 0.0133 0.0330
B(E2, 2β − 02) 0.99 0.74 0.82 0.76
B(E2, 2γ − 0+

1 /2+
1 ) 0.48 0.33 0.68 0.56

B(E2, 0+
2 − 2+

1 ) 0.051 0.084 0.113 0.219
Q(2+

1 ) −2.05 −1.93 −1.88 −1.79
Q(2+

2 ) 1.97 1.81 −1.76 −1.93
Q(2+

3 ) −2.015 −1.73 1.626 1.57

C. Necessity of pairing term

In the collective model, the pairing interaction promotes
sphericity, and for the axially symmetric deformed nucleus,
it induces the axially symmetric β vibration. For the moment
of inertia (MoI), the θ expression in the shell-model cranking
approach [8] is

θ = h̄2
∑

n

[〈n|l|0〉]2
/

(En − E0), (6)

and one needs to incorporate the pairing interaction to obtain
the realistic value of the moment of inertia θ for a deformed
rotor, as illustrated by Beleav [9].

In the microscopic theories based on the mean-field ap-
proximation, besides the one-body interaction term, for the
residual two-body interaction, one adds the quadrupole in-
teraction, as well as the pairing interaction terms. The
quadrupole interaction produces the deformation of the nu-
cleus. In the application of the pairing plus quadrupole
interaction, Kumar and Baranger [10,11] treated the two resid-
ual interactions on equal footing. Kumar [11] pointed out that,
in the absence of pairing, the quadrupole force will make all
nuclei deformed, near or far from the closed shell.

The inclusion of the P·P term in Eq. (4) affects primarily
the β band in the (λ = 2N−4, μ = 2) representation, effect-
ing a split of the degeneracy from the γ band. It also removes
some of the deviations from the rotor model. In the micro-
scopic approach, pairing leads to the concept of quasiparticles.
In the IBM, the P operator (= 1/2{dd–ss}) [1] changes the s
boson−d boson level separation.

Unlike the inclusion of g bosons or the f and p bosons
to the sd boson IBM, which lead to supersymmetries for
odd-A and odd-odd nuclei, the inclusion of the pairing term
selectively modifies the character of some rotational excited
states in the SU(3) spectrum. Here it is an additional essential
term, which preserves the rotational character of the three
bands.
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Besides the degeneracy of β and γ bands, the quadrupole
moment Q(2+) differs in sign for the two excited bands. Also,
their decay characteristics differ. In the above-cited example
of Gd isotopes, we get different Q(2+) for the two bands, their
signs being different (Table I). Here we set the χ value slightly
smaller for the Q(2 ) operator for the FBEM part of the PHINT
package [6]. If |χ | is increased to �7/2, the signs of Q(2+)
still differ for the 2γ and 2β states in the IBM-1 calculation.
The same variation of Q(2+) is observed in the BM model
(Table II).

III. INTERBAND E2 TRANSITIONS

A. Fourth condition

The perturbation to SU(3) symmetry may be done in two
ways:

(a) By modifying β/α = χ for the quadrupole operator. In
the perturbed SU(3) symmetry, the coefficient |χ | may
be reduced slightly.

(b) The second way is to add other terms to the SU(3)
Hamiltonian, which may be the εnd term of SU(5)
symmetry as used in Ref. [7], or/and the pairing term
of O(5), as suggested here.

For the Hamiltonian, we set boson energy term εnd = 0.
The |χ | is kept equal to

√
7/2 = 1.322 for energies. For the

B(E2) values, we use the adjustable parameter χ . Normally we
kept β/α = 12/14 = 0.96 to get the B(E2) values, the same
for the four isotopes. For 160Gd, it yields B(E2, 2γ − 0+

1 ) =
0.023 e2b2.

The B(E2, 2β − 0+
1 )/B(E2, 2γ − 0+

1 ) ratio varies from
3/16 to 1/23 in 156–160Gd in the IBM (Table I) compared
with the prediction of ≈ 1/6 in the slightly broken SU(3)
limit [4], in general. In a review of the validity of the β

band representing the axially symmetric vibration, generally
(and not in exceptional cases only), Gupta and Hamilton [12]
demonstrated that the intraband E2 transition (2β − 0β ) is as
strong as B(E2, 2g − 0g) (see Table I in Ref. [12]). The same
is also illustrated in Table II here. In the IBM also for the Gd
isotopes B(E2, 2β − 0β ) is nearly as strong as B(E2, 2g − 0g)
(Table I). It implies that the intraband features in SU(3) are
similar to the rotor model. The pairing term preserves it.

B. Role of the wave function

Gupta, Kumar, and Hamilton (1977) [13] pointed out the
important contribution of the state wave functions. Here we
illustrate it for 156Gd (with near-degenerate β and γ bands),
the wave function for the 2+ states of the three bands (taken
from Ref. [13]) (Figs. 3, 4, 5) obtained by the dynamic pairing
plus quadrupole model [10,11]. From these plots, it is appar-
ent that the overlap of the β wave function (which has a node
in the middle) with the ground-state wave function is the least,
which explains the smallness of B(E2, 0g − 2β ) compared
with B(E2, 0g − 2γ ). See Table II for BM predictions and
Table I for the SU(3) IBM predictions.

In the IBM, the distribution of the nd components in the
IBM-SU(3) wave functions are also obtained, which enables

FIG. 3. Wave function of ground state in 156Gd from DPPQ model.

the distinction between the two excited bands. This explains
the different E2 transition rates in the SU(3) spectrum as well.

C. Role of softness parameter

Here we note the role of the softness parameter, which
may correspond to the σ parameter of the soft rotor formula
(SRF) [14],

E (I ) = AI (I + 1)/(1 + σ I ). (7)

From the plot of band-head energy E (0+
2 ) versus σ (Fig. 6),

it is apparent that smaller the σ , higher lies the 0+
2 band. The

smaller σ signifies the β hardness of the nucleus, raising the
band-head energy. It indicates a dichotomy whereby the larger
deformation corresponds to the larger β hardness (saturation).
This feature of a nucleus is missing in the SU(3) symmetry.
The pairing term fulfills this deficiency. This agrees with the
illustration in the above for Gd isotopes. Thus, the separation
here of the β band from the γ band for N � 92 occurs naturally
in the nucleus.

FIG. 4. Wave function of 0β state in 156Gd from DPPQ model.
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FIG. 5. Wave function of 2γ state in 156Gd from DPPQ model.

D. SL(3,R) symmetry

Reflecting an improvement over the Alaga rules for the γ -g
E2 transition ratios in the rotor model, Weaver and Biedenharn
[15] proposed the SL(3,R) symmetry group.

It is a group of symmetry transformations based on the
following assumptions:

(i) The electric quadrupole moment operator Qel is pro-
portional to the mass quadrupole moment operator Q.

(ii) The time derivatives of the components of Q generate
the SL(3,R) group, the group of real (3 × 3) matrices,
with unit determinant, with the SO(3) subgroup.

(iii) The excited states of a nucleus form the basis for a
single unitary representation of SL(3, R).

It represents a noncompact special linear symmetry group,
in contrast with the compact SU(3) symmetry group. The
SL(3, R) symmetry was first suggested by Gell-Mann,
Ne’eman, and Dothan. The generators of the group are the
five components of the quadrupole operator and the three
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FIG. 6. Level energy of the 0+
2 state in Dy, Gd, and Sm isotopes

versus softness parameter sigma σ .

components of the angular moment operator, just as for the
SU(3) group. The first derivatives of mass quadrupole moment
Qi j are the transition operators Ti j .

They applied it to the limited problem of the interband E2
transition ratios from the Kπ = 2+ γ band to the ground band
in the well-deformed rotational nuclei.

For 
K = 2 E2 transitions,

〈L′ K − 2||T |||L K〉 = (−)L′−K [(2 L + 1)(2L′ + 1)]1/2

× [−i(1 − K ) + δ]

×
(

2 L L′
−2 K −K + 2

)
, (8)

which gives

B(E2, L K → L′K − 2) = {constant/(Eγ )2}[(1 − K )2 − δ2]

× |〈2L − 2K|L′ K − 2〉|2. (9)

The model includes the K quantum number exclusively in
its expressions, unlike the SU(3) symmetry of IBM, besides
Eγ 1 and Eγ 2. It yields the B(E2) ratio

Ratio R = B(E2) (LK → L1 K − 2)/(LK − L2K − 2)

= (Eγ 2/Eγ 1)2 × F, (10)

where

F = [〈2L − 2 K|L1 K − 2〉/〈2L − 2K|L2K − 2〉]2. (11)

In a symposium presentation in 1980 [16] Jain and Gupta
illustrated the application of the SL(3, R) model for the γ -g
E2 transition ratios in a few rare-earth nuclei and noted that
the model predictions represent an improvement on the Alaga
rules which include the dependence on L and K of the two
levels. The SL(3, R) ratio also includes the energies Eγ , be-
tween the two levels involved in the transition. The inclusion
of the Eγ , improves the calculated value of the ratio, bringing
it closer to the experimental value.

As state above, the model is based purely on the rotor
model, with no connection to the shell model as in the IBM
SU(3) symmetry. In the latter, the γ -g energy difference is
taken into account through the experimental data and the Z, N
difference through the dependence on the total boson number
NB = Np + Nn.

E. Role of triaxiality

In the rigid triaxial rotor (RTR) model of Davydov and
Filippov [17], the γ -g transitions are allowed transitions. The
B(E2) transitions are a function of the asymmetry parameter
γ . In a recent study [18] of its application to the deformed
rotors, it is shown that, for γ less than 20°, the absolute
B(E2, 2γ − 0+

1 ) value increases with increasing γ (starting
from zero, for γ = zero). This is an interesting result, vis-
à-vis the SU(3) symmetry in the IBM. In the application
of IBM-SU(3), one takes level energies from experiment,
which affects the coefficient of the quadrupole term in the
IBM Hamiltonian and affects the (γ -g) E2 transition in the
IBM.
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IV. DISCUSSION AND SUMMARY

In Sec. I, we cite the important features of the IBM-SU(3)
symmetry and of the BM rotor model. In SU(3) symmetry, the
position of the excited band depends on boson number N and
the β, γ bands are predicted to be degenerate. Interband γ -
g, β-g E2 transitions are prohibited in SU(3) symmetry. This
differs from the rotor model and real nuclei.

In Sec. II, we illustrate the increased validity of the I(I +
1) energy formula for ground band of Gd isotopes with in-
creasing mass number, which are closer to SU(3), symmetry.
The β, γ band degeneracy is predicted in SU(3) symmetry on
account of K independence, which is related to the reduction
from SU(3) to the SO(3) subgroup. In Sec. II B the applica-
tion of IBM-SU(3) + the PAIR term to the Gd isotopes is
described. Table I cites the IBM predictions. Table II cites the
results from BM model based DPPQ model calculation for
the Gd isotopes. Details of the DPPQ model are available in
Refs. [19,20].

In both cases, the main features of the Gd spectra are illus-
trated, including the increase in PAIR term leading to larger
split of β band from the γ band. The effect on the interband
transitions is cited for the two excited bands. The signs of the
quadrupole moment of the two I = 2 states in 154–160Gd are
presented. Comparison with the BM model–based calculation
given in Table II displays similar features for the four isotopes
of Gd. The available experimental data are included.

In Sec. II C the necessity of including the PAIR term in
the SU(3) Hamiltonian expression (4) and of the pairing in-
teraction in the BM model is discussed. Warner et al. [21]
illustrated the application of IBM-SU (3) to the well-deformed
nucleus of 168Er.

Later, in Ref. [22], the relation of wave functions, calcu-
lated in the SU(5) basis, was studied with the inclusion of
the pairing term for boson number equal to 16 nuclei. Bohr

and Mottelson [23] illustrated the use of the pairing term in
their Eq. (3) for reproducing the spectra of 168Er. We illustrate
that, even for the well-deformed symmetric nucleus 160Gd
(see Table I) one also needs the pairing term to reproduce the
lowest three bands along with their distinguishing features.

Section III deals with the interband E2 transitions. We
explain that the εnd term is required for the shape transition
for varying Z or N. The reduction of |χ | in the quadrupole
operator leads to relaxation of prohibited E2 transitions. Both
of these alternatives affect the SU(3) rotational symmetry for
the whole nucleus. The PAIR term preserves the rotational
symmetry and affects selectively the β band. Section III B
cites the role of wave functions difference of the three bands.
Section III C illustrates the role of the reduction in the β

softness of the nucleus for increasing deformation in raising
the β band head, cited for Sm, Gd, and Dy isotopes. Sec-
tion III D cites the simpler SL(3) symmetry proposed long
ago.

In the SL(3,R) symmetry, the separation of bands is taken
into account by including the (Eγ )2 factor. In Sec. III E we cite
the role of the asymmetry parameter γ related to the γ -g band
separation and affecting (γ -g) E2 transitions. The same effect
is achieved in the IBM by fitting the band-head energies.

In the above, the emphasis is on the stated unique features
of the SU(3) symmetry Hamiltonian. Our work should be
helpful for further study of these aspects of SU(3) symmetry
in the IBM.
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