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Angular-momentum projection in coupled-cluster theory: Structure of 34Mg
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Single- reference coupled-cluster theory is an accurate and affordable computational method for the nuclear
many-body problem. For open-shell nuclei, the reference state typically breaks rotational invariance and angular
momentum must be restored as a good quantum number. We perform angular-momentum projection after
variation and employ the disentangled coupled-cluster formalism and a Hermitian approach. We compare our
results with benchmarks for 8Be and 20Ne using a two-nucleon interaction from chiral effective field theory and
for p f -shell nuclei within the traditional shell model. We compute the rotational band in the exotic nucleus 34Mg
and find agreement with data.
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I. INTRODUCTION

While angular momentum, parity, and the numbers of
neutrons and protons are good quantum numbers of atomic
nuclei, mean-field states often break symmetries of the nuclear
Hamiltonian [1–3]. This is a blessing and a burden: On the
one hand, the actual breaking of symmetries by the mean field
corresponds to the emergent symmetry breaking in atomic
nuclei; it informs us about deformation and superfluidity
(in the case of breaking of angular momentum and parti-
cle numbers, respectively) and identifies the corresponding
Nambu-Goldstone modes as low-energy degrees of freedom.
Symmetry-breaking product states also are the starting point
of single-reference methods (such as coupled-cluster theory
[4,5], in-medium similarity renormalization group [6–11],
Green’s function and/or Gorkov approaches [12,13], and per-
turbation theory [14–19]) that capture dynamical correlations

*Present address: Theoretical Division, Los Alamos National Lab-
oratory, Los Alamos, New Mexico 87545, USA.

beyond the mean field [17,20,21]. On the other hand, the
restoration of broken symmetries is necessary when one wants
to obtain precise ground-state energies, excited states, or tran-
sition matrix elements between states with definite quantum
numbers.

One can, of course, address phenomena related to emergent
symmetry breaking without actually breaking any symmetry
[22–28]. However, such exact computations typically scale
exponentially with increasing number of active nucleons be-
cause the emergence of a new low-energy scale associated
with, e.g., collective rotational excitations in intrinsically de-
formed nuclei requires the superposition of A-particle–A-hole
excitations in a nucleus with mass number A. The successful
computation of such states is then limited to light nuclei or
small shell-model spaces. Monte Carlo methods with angular
momentum projection extended such computations to some-
what larger model spaces [29]. In contrast, symmetry-adapted
approaches [30,31] and effective theories [32–36] are simpler
because they employ the degrees of freedom that are relevant
at such low energies. The effective theories have advantages
and disadvantages: they have less predictive power because
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low-energy constants such as the moment of inertia, for in-
stance, must be taken from data or microscopic computations.
However, they allow us to estimate uncertainties and reveal
the simple patterns that complex systems exhibit based on
their symmetries and symmetry breaking.

While nuclear density-functional theory has been the
main workhorse to compute nuclei across the nuclear chart
[2,37–41], polynomially scaling computational methods
[5,7,12,19] based on nucleon-nucleon and three-nucleon in-
teractions from effective field theories of quantum chromody-
namics [42–44] are advancing steadily towards heavier nuclei
[10,20,45–48]. In this paper we employ single-reference
coupled-cluster theory [4,5,49], start from a deformed but
axially symmetric reference state [20], and perform angu-
lar momentum projection. Alternative methods for angular
momentum projection are the multireference in-medium sim-
ilarity renormalization group method [50] and many-body
perturbation theory based on a reference state obtained via the
projected generator coordinate method [51–53].

Several works discuss symmetry projection within
coupled-cluster theory [54–60]. In particular the disentangled
cluster formalism of Refs. [55,57,58] performs angular-
momentum and particle-number projections. Here, the sim-
plest approach is to insert the projected coupled-cluster state
into the Schrödinger equation and project from the left onto
the symmetry-broken reference state. In standard coupled-
cluster theory, however, one would start from a bivariational
energy functional of the projected Hamiltonian, where the bra
state consists of a linear superposition of particle-hole excita-
tions [49]. Such an approach is more accurate in general [55].
In both approaches the energy expression is non-Hermitian
and the ket state is the usual exponential wave function ansatz.

There are coupled-cluster methods where the bra state is
treated more on equal footing with the ket state, such as
the extended coupled-cluster [61,62], the quadratic coupled-
cluster [63,64], the expectation-value coupled-cluster [65],
and the variational coupled-cluster [66] methods. While these
methods are more accurate than the standard coupled-cluster
method they come at a significantly higher computational
cost. In this work we also follow a middle way using a
Hermitian energy functional in the projection, inspired by the
variational coupled-cluster method [66]. In this approach the
rotation operator can be treated exactly but the exponential
coupled-cluster state must be truncated.

This paper is organized as follows. In Sec. II we dis-
cuss the role of static and dynamical correlations in angular
momentum projection. Section III introduces the coupled-
cluster method and discusses reference states. In Sec. IV
we present the theoretical derivations of angular-momentum
projections after variation. Here, both the non-Hermitian
and Hermitian projection methods will be described. In
Sec. V we construct collective Hamiltonians within an ef-
fective theory and discuss the resolution-scale dependence
and size consistency in projections. In Sec. VI we show
results for angular-momentum projection of the nuclei 8Be,
20Ne, and 34Mg. Section VII deals with angular momentum
projection of coupled-cluster computations in the traditional
shell model. We present a discussion and summary in
Sec. VIII.

II. STATIC AND DYNAMICAL CORRELATIONS

The restoration of rotational symmetry of a nucleus with
mass number A involves A-particle–A-hole (Ap-Ah) excita-
tions, because it requires the rotation of a deformed nucleus.
This makes it challenging to keep size extensivity [67]
together with computational affordability. Fortunately, the
problem is somewhat less daunting, because the computation
of a nuclear ground-state energy involves dynamic and nondy-
namic (or static) correlations; see, e.g., Ref. [68] for a recent
discussion of this topic.

Dynamic correlations mix a dominant configuration and
a large number of configurations carrying small individual
weights but yielding a significant energy contribution. An
example is provided by the dominant (symmetry breaking)
Hartree-Fock reference state and its 2p-2h and 3p-3h excita-
tions. While the number of relevant configurations is large, it
only grows polynomially with mass number and model-space
size for any targeted precision. As dynamical correlations
bring in the lion’s share of nuclear binding, one needs size-
extensive methods to capture them accurately.

In contrast, static correlations are caused by a number of
equally important configurations. Any rotation of a deformed
reference state, for example, yields a configuration that is
degenerate in energy. Mixing these states, e.g., via angular
momentum projection, lowers the rotational zero-point en-
ergy. As we will see below, this energy gain decreases with
increasing mass number. For heavy deformed nuclei the en-
ergy gain from projection is of the order of the nuclear level
spacing near the ground state.

Based on this discussion, we can decompose the ground-
state energy as

E = Eref + �E + δE . (1)

Here Eref , �E , and δE denote the energy of the symmetry-
breaking reference state, the energy associated with dynami-
cal correlations and the static energy from angular momentum
restoration, respectively. These energies scale as Eref ∝ A,
�E ∝ A and as δE ∝ A−η where η > 0. We estimate that
η ≈ 1/6, based on the scaling δE ∼ 〈J2〉/� where � ∼ A5/3

expresses the scaling of the moment of inertia and 〈J2〉 ∼ A3/2

is the scaling of the angular momentum for the unprojected
reference state found empirically in projected mean-field cal-
culations [69]. Because of its smallness and scaling with A,
one does not need size-extensive methods to compute δE . In
contrast, we compute Eref and �E via the symmetry-breaking
and size-extensive Hartree-Fock and coupled-cluster methods,
respectively.

III. COUPLED-CLUSTER METHOD
AND REFERENCE STATES

We use single-particle states |p〉 where p = (n, π, jz, tz )
denotes a quantum number n, parity π , angular momentum
projection jz, and isospin projection tz. We have |p〉 ≡ c†

p|0〉
where |0〉 is the vacuum and c†

p creates a nucleon. The creation
operators and corresponding annihilation operators cp obey
the usual anticommutation relations for fermions.
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The Hamiltonian is

H =
∑

pq

εpqc†
pcq + 1

4

∑
pqrs

vpqrsc
†
pc†

qcscr . (2)

While three-nucleon forces are unavoidable in nuclear physics
[70–73], we omitted them for simplicity and to benchmark
with other methods that employ the same interaction.

Our calculations start from the symmetry-unrestricted
product state

|�〉 ≡
A∏

i=1

c†
i |0〉. (3)

This state breaks angular momentum but we assume that its
projection Jz is conserved. We also assume that parity, isospin
projection, and mass number A are conserved, and that we
deal with even-even nuclei. Then, the reference |�〉 is also
invariant under time reversal (and occupied single-particle
states come in degenerate Kramer pairs), invariant under ro-
tations by an angle π around any axis that is perpendicular
to the symmetry axis (denoted as R parity [74]), and fulfills
Jz|�〉 = 0.

We discuss three choices for the reference state. The
Hartree-Fock state, which minimizes the energy, is the first.
The second reference is obtained as follows. We minimize the
energy under the constraint of a fixed expectation value q20 of
the mass quadrupole operator

Q20 =
√

16π

5

A∑
i=1

r2
i Y20(θi, φi ). (4)

Such a constrained Hartree-Fock calculation employs the
Routhian

R ≡ H − λQ20, (5)

where the Lagrange multiplier λ is adjusted to obtain the
desired value q20 = 〈Q20〉. We use the augmented Lagrangian
method [75] for this purpose and generate an energy curve as
a function q20. Performing an angular-momentum projection
after variation at fixed q20 then yields a new curve whose
minimum we seek. The corresponding product state is the
Hartree-Fock restricted-variation-after-projection (HF-RVAP)
reference [76,77]. The third reference state is obtained from a
variation-after-projection Hartree-Fock (HF-VAP) calculation
[78,79]. The HF-VAP reference state constitutes the optimal
(i.e., lowest energy) product state that can be obtained while
including the projection onto zero angular momentum.

We note that the HF-VAP solution is obtained via the min-
imization of the projected energy over the complete manifold
of Slater determinants. In contrast, the HF-RVAP solution is
obtained via the minimization of the projected energy over the
restricted manifold of Slater determinants generated through
a set of constrained HF calculations. If the manifold spanned
via the constrained HF calculation generates the complete set
of Slater determinants, the HF-RVAP solution actually equals
the HF-VAP solution. This clarifies the connection between
the two approaches and explains the name HF-RVAP.

Once the single-particle basis is determined we normal
order the Hamiltonian (7) with respect to the vacuum state

and write

H = Eref + HN . (6)

Here, Eref = 〈�|H |�〉 = ∑A
i=1 εii + 1

2

∑A
i, j=1 vi ji j is the vac-

uum energy and the normal-ordered Hamiltonian is

HN =
∑

pq

fpq{c†
pcq} + 1

4

∑
pqrs

vpqrs{c†
pc†

qcscr}. (7)

The curly brackets denote normal ordering and the Fock-
matrix elements are fpq = εpq + ∑A

i=1 vpiqi. The papers
[80,81] proposed how to deal with three-body forces
in the normal-ordered two-body approximation [82,83] in
symmetry-breaking situations.

Coupled-cluster theory parametrizes the ground state as

|�〉 ≡ eT |�〉. (8)

The cluster operator

T ≡ T1 + T2 + · · · + TA (9)

consists of np-nh excitation operators

Tn = 1

(n!)2

∑
a1,...,an
i1,...,in

t a1,...,an
i1,...,in

c†
a1

· · · c†
an

cin · · · ci1 . (10)

Here and in what follows, i, j, k, . . . label occupied single-
particle states while a, b, c, . . . refer to unoccupied states.
Generic states are labeled as p, q, r, . . .. Coupled-cluster
theory is a powerful method because the numerically inexpen-
sive singles and doubles (CCSD) approximation T ≈ T1 + T2

yields about 90% of the correlation energy for closed-shell
nuclei; the inclusion of triples T = T1 + T2 + T3, still numer-
ically affordable via perturbative methods, yields about 98%.
In CCSD, the cluster amplitudes are computed for a given
Hamiltonian and reference state by solving the well-known
coupled-cluster equations [84]〈

�a
i

∣∣e−T HN eT |�〉 = 0,〈
�ab

i j

∣∣e−T HN eT |�〉 = 0. (11)

Here, |�a1···an
i1···in 〉 ≡ c†

a1
· · · c†

an
cin · · · ci1 |�〉 is a np-nh excitation

of the reference state. The energy associated with the (dynam-
ical) CCSD correlations is

�ECCSD = 〈�|e−T HN eT |�〉. (12)

As 〈�|e−T = 〈�| and 〈�|�〉 = 1 we can rewrite the total
energy as

E = Eref + �ECCSD = 〈�|H |�〉
〈�|�〉 . (13)

This energy expression will be modified below for the eval-
uation of the static correlation energy (δE ) associated with
angular-momentum projection.

For any truncation of the cluster operator the state |�〉
breaks the same symmetries as the reference state |�〉. Only
the full expansion (9) restores the symmetries broken by the
reference. In what follows we restore the rotational invariance
via angular-momentum projection. In addition to CCSD, we
will also use the CCD approximation T = T2. In the Hartree-
Fock basis there is little difference between CCD and CCSD
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(because singles excitations are small). This is different in
other single-particle bases.

The angular momentum projection methods we employ
come at a considerable higher computational cost compared
to the unprojected coupled-cluster calculations, and thus re-
quire us to work in smaller model spaces. The residual basis
dependence can to a large extent be eliminated by includ-
ing the singles-excitations in the projection, i.e., by using
CCSD rather than CCD. In this work we also employ a
natural-orbital basis obtained from second-order many-body
perturbation theory [20,85]. In this approach we compute the
Hartree-Fock state in a large harmonic oscillator basis, and
in a final step truncate the normal-ordered Hamiltonian that
enter the coupled-cluster computations to a smaller model
space [86,87]. This alleviates the dependence on the oscillator
frequency. We note, however, that such a truncation of the
normal-ordered Hamiltionian breaks rotational invariance to
a small extent.

IV. ANGULAR MOMENTUM PROJECTION

Throughout this section we use the Hamiltonian in the form
of Eq. (6) [rather than Eq. (7)] because this facilitates the
evaluation of the matrix elements we need to compute within
the angular momentum projection.

A. Projection operator

The operator

PJ = 1

2

∫ π

0
dβ sin βdJ

00(β )R(β ), (14)

projects a state with Jz = 0 onto total angular momentum J .
Here,

R(β ) ≡ e−iβJy (15)

denotes the operator that rotates by the angle β around the y
axis, and dJ

MK (β ) is related to the Wigner D function via [88]

DJ
MK (α, β, γ ) ≡ e−iMαdJ

MK (β )e−iKγ . (16)

The R symmetry allows us to restrict the domain of integra-
tion in Eq. (14) to the interval [0, π/2] because

R(π − β )|�〉 = R(β )|�〉. (17)

In a spherical single-particle basis {|p〉 ≡ |αp jpmp〉} of the
one-body Hilbert space, matrix elements of the rotation op-
erator are given by

〈αp jpmp|R(β )|αq jqmq〉 = δαpαqδ jp jq d
jp

mpmq (β ). (18)

B. Non-Hermitian projection formalism

1. Projected energy

The disentangled cluster formalism [55,57,58] (in its sim-
plest implementation) is based on the standard non-Hermitian
energy expression of coupled-cluster theory. In this approach
the energy projected onto angular momentum J after variation
is

E (J ) ≡ 〈�|PJH |�〉
〈�|PJ |�〉 . (19)

In this expression we used that PJ commutes with H . The
projected energy is a natural modification of Eq. (13). We
insert Eq. (14) into Eq. (19) and find

E (J ) =
∫ π

0 dβ sin βdJ
00(β )H(β )∫ π

0 dβ sin βdJ
00(β )N (β )

. (20)

Here,

N (β ) ≡ 〈�|R(β )|�〉 (21)

and

H(β ) ≡ 〈�|R(β )H |�〉 (22)

are the norm and Hamiltonian kernels, respectively. The R
symmetry implies

N (π − β ) = N (β ),

H(π − β ) = H(β ). (23)

We also have H(0) = Eref + �E and N (0) = 1. Using
Eq. (1) the static correlation energy associated with angular
momentum projection is then δE = E (0) − E .

2. Disentangled cluster formalism

Thouless’s theorem [89] allows us to write [55]

〈�|R(β ) = 〈�|R(β )|�〉〈�|eV (β ). (24)

Here the deexcitation operator is

V (β ) =
∑

ia

V i
a (β )c†

i ca. (25)

Expressions for the matrix elements V i
a and mean-field norm

kernel 〈�|R(β )|�〉 can be found in Ref. [55]. In what follows
we suppress the explicit dependence of various quantities,
e.g., V (β ), on the angle β.

By virtue of Eq. (24) the kernels become

N (β ) = 〈�|R(β )|�〉〈�|eV eT |�〉, (26a)

H(β ) = 〈�|R(β )|�〉〈�|eV HeT |�〉, (26b)

and we are left with the evaluation of the reduced kernels

n(β ) ≡ 〈�|eV eT |�〉, (27a)

h(β ) ≡ 〈�|eV HeT |�〉. (27b)

Inserting the identity operator 1 = e−V eV introduces the
similarity transformation [54,55]

H ≡ eV He−V . (28)

As V is a one-body operator, H has the same particle rank as
H , i.e., no many-body forces of higher rank are induced by
the similarity transformation. In contrast to H , the operator
H does not commute with Jz and this significantly increases
the number of nonzero matrix elements that need to be stored.
Using H yields

h(β ) = 〈�|HeV eT |�〉. (29)

The exact evaluation of eV eT in Eq. (29) is exponentially
expensive. To make progress we introduce the disentangled
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cluster operator

W (β ) = W0 + W1 + W2 + · · · + WA (30)

via

eV eT |�〉 ≡ eW0+W1+W2+···|�〉. (31)

Here Wk is a k-body excitation operator. In contrast to T , the
operator W (β ) also contains a zero-body term W0(β ). Even if
T is truncated within the CCSD approximation T = T1 + T2,
the operator W (β ) contains up to A-body operators. To keep
the computation affordable one needs to truncate at some rank
k � A. Then neither eV nor eT are exactly contained in the
truncated eW (note, however, that eT1 will be treated exactly
as it only amounts to a rotation of the basis, as will be shown
below). As a consequence the R symmetry of the kernels [see
Eq. (23)] is lost and the projection of the Hamiltonian H =
aĴ2 only leads to approximate values E (J ) ≈ aJ (J + 1). As
we will see below, however, the disentangled approach is quite
accurate. The truncation is a controlled approximation and can
be systematically improved.

The matrix elements of the operator W (β ) are computed by
solving the following set of ordinary differential equations:1

d

dβ
W0 = X i

aW a
i ,

d

dβ
W a

i = X k
c

(
W ac

ik − W a
k W c

i

)
,

d

dβ
W ab

i j = X k
c

[
W abc

i jk − P(i j)W ab
k j W c

i − P(ab)W cb
i j W a

k

]
,

... (32)

where

X i
a ≡

(
dV

dβ

)i

a

, (33)

and where P(ab) denotes the permutation operator. Expres-
sions of the matrix elements X a

i can be found in Ref. [55]. The
initial conditions for β = 0 are W0(0) = 0 and Wk (0) = Tk for
all k.

3. Approximation schemes

In this work we truncate W = W0 + W1 + W2 at the two-
body level. The Baker-Campbell-Hausdorff expansion yields

n(β ) = eW0 , (34a)

h(β ) = eW0〈�|H
(

1 + W1 + W2 + W 2
1

2

)
|�〉. (34b)

In Ref. [55] the disentangled formalism was developed for
the coupled-cluster doubles (CCD) approximation T = T2.
Those authors noted that the extension to T = T1 + T2 could
be achieved by inserting the identity eT1 e−T1 to the left and

1Equation (32) corrects typographical errors found in Ref. [55].

right of the rotation operator in the original expression of the
approximate kernels such that

N (β ) ≡ 〈�|R̆(β )eT2 |�〉, (35a)

H(β ) ≡ 〈�|R̆(β )H̆eT2 |�〉. (35b)

Here the similarly transformed operator

Ŏ ≡ e−T1 OeT1 (36)

amounts to a change of the single-particle basis. Given the
form of the approximate kernels in Eq. (35), all equations at
play for T = T2 can be reused by substituting R(β ) and H by
R̆(β ) and H̆ , respectively, and by using W1(β = 0) = 0 as the
initial condition. We checked that the two equivalent ways to
include T1 lead to identical results.

C. Hermitian projection formalism

1. Projected energy

The Hermitian ansatz for the projected-after-variation
(PAV) energy functional

E (J ) = 〈�|PJH |�〉
〈�|PJ |�〉 , (37)

where |�〉 is the coupled-cluster state (8), can be rewritten as

E (J ) =
∫ π/2

0 dβ sin βdJ
00(β )HH (β )∫ π/2

0 dβ sin βdJ
00(β )NH (β )

, (38)

using the norm and Hamiltonian kernels

NH (β ) ≡ 〈�|R(β )|�〉,
HH (β ) ≡ 〈�|R(β )H |�〉. (39)

As in the non-Hermitian case, the coupled-cluster energy is
recovered in absence of the projector [84].

2. Approximation schemes

In the following the coupled-cluster state (8) is truncated
at the CCSD level, T = T1 + T2. Because of the exponential
ansatz in the bra and ket, the exact evaluation of the projected
energy (37) is not feasible and we need to make an approx-
imation. We truncate the power series of eT2 term by its first
three terms and approximate |�〉 as

|�SQD〉 ≡ eT1
(
1 + T2 + 1

2 T 2
2

)|�〉, (40)

which leads to the singles quadratic doubles (SQD) approx-
imation. Further dropping the T 2

2 term leads to the singles
linear doubles (SLD) approximation

|�SLD〉 ≡ eT1 (1 + T2)|�〉. (41)

The SLD and SQD approximations are attractive because
they treat the rotation R(β ) and exp(T1) exactly via similarity
transformations. This approach is similar to the spin-extended
formalism of Ref. [59]. The SLD ansatz is computationally
inexpensive because it neglects the T 2

2 term.

3. Amplitude equations

The symmetry-breaking amplitudes t a
i and t ab

i j employed in
the SQD approximation (40) are obtained by left-projecting
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the Schrödinger equation onto 1p-1h and 2p-2h excitations of
the reference state; this yields〈

�a
i

∣∣(H − E )eT1
(
1 + T2 + 1

2 T 2
2

)|�〉 = 0, (42a)〈
�ab

i j

∣∣(H − E )eT1
(
1 + T2 + t 1

2 T 2
2

)|�〉 = 0, (42b)

E = 〈�|HeT1
(
1 + T2 + 1

2 T 2
2

)|�〉. (43)

These are the standard CCSD equations. In the SLD ap-
proximation, the amplitudes are obtained from solving a
configuration interaction problem truncated at doubles exci-
tations starting from H̆ , i.e.,

H̆ (1 + T2)|�〉 = E (1 + T2)|�〉, (44)

and projecting from the left with 〈�ab
i j | we obtain a linear

problem in T2 that can be solved iteratively. In contrast to SQD
(or CCSD), the SLD approach is variational but not size exten-
sive. Due to the lack of size extensivity the SLD (dynamical)
correlation energy will not be accurate for 20Ne and 34Mg,
but the SLD energy gain (δESLD) from angular-momentum
projection can accurately be computed with methods that lack
size extensivity since it is small and decreases with increasing
mass.

4. Hamiltonian and norm kernels

The norm and Hamiltonian kernels (39) are

NH (β ) ≡ 〈�|U †eT †
1 R(β )eT1U |�〉, (45a)

HH (β ) ≡ 〈�|U †eT †
1 R(β )HeT1U |�〉. (45b)

Here we introduced the excitation operator

U ≡ 1 + T2 + 1
2 T 2

2 . (46)

We note that for the SQD approach HH (0)/NH (0) 	= ESQD,
and that HH (0)/NH (0) > ESQD because the Hermitian ap-
proach lacks size extensivity when the exponential eT is
truncated. Nevertheless, the Hermitian approach is useful
to compute energy differences E (J ) − E (0) and the energy
gain δE = E (0) − HH (0) from angular-momentum projection
because the magnitudes of these quantities decrease with in-
creasing mass number.

Focusing first on the Hamiltonian kernel and inserting 1 =
exp (T1) exp (−T1) allows us to rewrite

HH (β ) = 〈�|U †R(β )H̆U |�〉. (47)

Here

R(β ) ≡ eT †
1 R(β )eT1 (48)

is a product of exponentiated one-body operators, each of
which induces a transformation of the single-particle basis
that can be handled exactly.

Inserting the identity R(β )R−1(β ) and using Thouless’s
theorem leads to

HH (β ) = 〈�|R(β )|�〉
× 〈�|eVR−1(β )U †R(β )H̆U |�〉. (49)

Here, the operator V (β ) results from Eq. (24) by replacing
R(β ) → R(β ). (This has to be kept in mind for the rest of this
subsection.)

We insert the identity 1 = exp (−V ) exp (V ) three times
and use exp (V )|�〉 = |�〉. This yields

HH (β ) = 〈�|R(β )|�〉〈�|Ũ †H U |�〉, (50)

where

Ũ † ≡ eVR−1(β )U †R(β )e−V . (51)

Because the similarity transformation (28) is presently applied

to H̆ and not to H , the notation H̆ should have been used in
Eq. (50). For simplicity we continue to use the lighter notation
H . The operators in Eq. (50) all depend on β and therefore do
not commute with Jz. This increases the storage demands.

Equation (50) requires us to perform a number of basis
transformations followed by taking expectation values of a
product consisting of up to three two-body operators. To do
this, we insert a resolution of the identity in terms of the
reference state and its particle-hole excitations:

HH (β ) = 〈�|R(β )|�〉
∑

μ

〈�|Ũ †|μ〉〈μ|H U |�〉. (52)

The sum truncates to the finite set of states |μ〉 ∈
{|�〉, |�a

i 〉, |�ab
i j 〉, |�abc

i jk 〉, |�abcd
i jkl 〉} including up to 4p-4h ex-

citations. The norm kernel is dealt with in a similar fashion,
i.e.,

NH (β ) = 〈�|R(β )|�〉〈�|Ũ †U |�〉
= 〈�|R(β )|�〉

∑
μ′

〈�|Ũ †|μ′〉〈μ′|U |�〉, (53)

where the sum now truncates to the smaller set |μ′〉 ∈
{|�〉, |�a

i 〉, |�ab
i j 〉} of up to 2p-2h excitations.

5. Algebraic expressions

Let us work out the algebraic expression of the norm and
Hamiltonian kernels given in Eqs. (53) and (52), respectively.
We focus on

U |�〉 =
(

1 + T 2 + 1
2 T

2
2

)
|�〉. (54)

Here,

T 2 = T
(0)
2 + T

(1)
2 + T

(2)
2 (55)

is decomposed into zero, one, and two-body operators (as in-
dicated by the subscript) and the normal-ordered components
are

T
(0)
2 = 1

2

∑
i j

t i j
i j, (56a)

T
(1)
2 =

∑
ipq

t ip
iq{c†

pcq} ≡
∑

pq

τ p
q {c†

pcq}, (56b)

T
(2)
2 = 1

4

∑
pqrs

t pq
rs {c†

pc†
qcscr}. (56c)

We introduced τ
p
q ≡ ∑

i t ip
iq and {· · · } denotes the normal or-

dering. By virtue of Thouless’s theorem, the amplitudes of the
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similarity-transformed cluster operators can be obtained via
a transformation of the single-particle basis; see Appendix A
for details.

Only the excitation part of the operators (55) matters in
Eq. (54). Thus, we limit ourselves to the excitation part of U
and rewrite Eq. (54) as

U |�〉 = (U
(0) + U

(1) + U
(2) + U

(3) + U
(4)

)|�〉. (57)

Again, we used subscripts (k) to denote a k-body operator.
The amplitudes of the excitation operators

U
(k) =

∑
i1···ik

∑
a1···ak

ua1···ak
i1···ik c†

a1
· · · c†

ak
cik · · · ci1 (58)

can be expressed in terms of those introduced in Eq. (56). The
corresponding algebraic expressions for

U
(0) = 〈�|U |�〉, (59a)

ua
i = 〈

�a
i

∣∣U |�〉, (59b)

uab
i j = 〈

�ab
i j

∣∣U |�〉 (59c)

uabc
i jk = 〈

�abc
i jk

∣∣U |�〉, (59d)

uabcd
i jkl = 〈

�abcd
i jkl

∣∣U |�〉 (59e)

are presented in Appendix B 1. The matrix elements as-
sociated with the bra state 〈�|Ũ † follow from the above
derivation by exchanging particle and hole indices, and by
replacing the matrix elements of the similarity-transformed
operator T 2 by those of T̃2 defined similarly to Eq. (51). With
these matrix elements at hand, the norm kernel (53) can be
evaluated.

To evaluate the Hamiltonian kernel (52) we also need the
matrix elements

X
(0) ≡ 〈�|HU |�〉, (60a)

xa
i ≡ 〈

�a
i

∣∣HU |�〉, (60b)

xab
i j ≡ 〈

�ab
i j

∣∣HU |�〉, (60c)

xabc
i jk ≡ 〈

�abc
i jk

∣∣HU |�〉, (60d)

xabcd
i jkl ≡ 〈

�abcd
i jkl

∣∣HU |�〉 (60e)

in terms of those of the normal-order pieces of H and U . These
expressions are presented in Appendix B 2.

Using these ingredients, the kernels can finally be com-
puted as

HH (β )

〈�|R(β )|�〉 = Ũ †(0)X
(0) +

∑
ai

ũi
axa

i

+ 1

4

∑
abi j

ũi j
abxab

i j + 1

36

∑
abci jk

ũi jk
abcxabc

i jk

+ 1

576

∑
abcdi jkl

ũi jkl
abcd xabcd

i jkl , (61a)

NH (β )

〈�|R(β )|�〉 = Ũ †(0)U
(0) +

∑
ai

ũi
aua

i

+ 1

4

∑
abi j

ũi j
abuab

i j + 1

36

∑
abci jk

ũi jk
abcuabc

i jk

+ 1

576

∑
abcdi jkl

ũi jkl
abcd uabcd

i jkl . (61b)

Naively estimated, the inclusion of T 2
2 in the bra and ket states

of the Hamiltonian kernel comes at a considerable cost of
n6

un4
o computational cycles, with nu the number of unoccupied

and no the number of occupied states, respectively. However,
U

(4)
is a product of two disconnected terms and this reduces

the cost to n5
un4

o because intermediates can be introduced. In
Eq. (61a), for example, we first compute a three-body interme-
diate by contracting T

(2)
2 with H and this is then followed by

a contraction with the second T
(2)
2 . We note that the SLD and

the disentangled approaches used in this work scale as n4
un2

o
(which is the familiar CCSD scaling), but they require sig-
nificant larger computational resources than the unprojected
CCSD solution because Jz is not a good quantum number in
the projection.

V. COLLECTIVE HAMILTONIAN AND EFFECTIVE
THEORY

A. Collective Hamiltonian

The expressions derived so far allow us to compute the
collective Hamiltonian [78,90–92]. Let � ≡ (θ, φ) consist of
a polar angle and azimuth, and let

|�〉 ≡ e−iφJz e−iθJy |�〉 (62)

be a rotation of the state |�〉. Thus, in the state |�〉 the
symmetry axis of the nucleus points into the direction of the
radial unit vector er (θ, φ). The matrix elements

H(�′,�) ≡ 〈�′|H |�〉,
N (�′,�) ≡ 〈�′|�〉 (63)

are related to the kernels (39) via

H(�′,�) = HH (β ),

N (�′,�) = NH (β ),
(64)

where cos β = er (θ, φ) · er (θ ′, φ′). The collective Hamilto-
nian then becomes

Hcoll(�
′,�) = [N− 1

2 HN− 1
2 ](�′,�). (65)

To compute the matrix elements (64) we distribute a few tens
of angles � evenly over the sphere, following Ref. [93]. The
diagonalization of Hcoll then yields the low-lying collective
spectrum, and the corresponding collective state can be used
to compute other observables or transition matrix elements of
interest. An alternative approach to the collective Hamiltonian
is via effective field theory (EFT).
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B. Effective theory

At lowest energies, the only degree of freedom for an ax-
ially symmetric even-even nucleus is the orientation er (θ, φ)
of its symmetry axis [32,35], where (θ, φ) define the polar
and azimuth angles. Following arguments from spontaneous
[94] and emergent symmetry breaking [91,92,95] the effective
Hamiltonian can only contain the angular derivative

∇� ≡ eθ

∂

∂θ
+ eφ

1

sin θ

∂

∂φ
. (66)

Here, eθ and eφ denote the polar and azimuth unit vectors that,
together with the radial unit vector er , form the body-fixed
coordinate system. The leading-order effective Hamiltonian
is [32]

HEFT = E (0) + a(−i∇�)2. (67)

Here, the low-energy coefficients E (0) and a are the ground-
state energy and the rotational constant, respectively. Thus, the
constraints from emergent symmetry breaking ensure that the
effective Hamiltonian (67) can be matched to the collective
Hamiltonian (65) by adjusting E (0) and a. The low-energy
coefficient E (0) contains short-range physics, and one needs
size-extensive methods to compute it. In contrast, the rota-
tional constant a is the inverse moment of inertia and depends
on the nuclear shape and—for heavy nuclei—also on the
degree of superfluidity. Thus, computing a does not require
high-resolution methods. As we will see below, mean field
methods (which are quite inaccurate regarding E (0)) yield
reasonable values for a in the nuclei we compute.

Introducing the angular momentum Ĵ = er × (−i∇�) al-
lows us to rewrite the effective Hamiltonian (67) as

HEFT = E (0) + aĴ2. (68)

This is the Hamiltonian of the rigid-rotor model, and its spec-
trum is

E (J ) = E (0) + aJ (J + 1). (69)

Taking the expectation value of the effective Hamiltonian (68)
in the unprojected wave function yields

E = E (0) + a〈J2〉. (70)

Thus, the ground-state energy gain from projection is

δE ≡ E (0) − E = −a〈J2〉, (71)

delivering the result of Peierls and Yoccoz [96].
To check the consistency of these arguments we return to

Eqs. (69) and (71) and find

E (J ) − E (0) = −δE
J (J + 1)

〈J2〉 (72)

for the excitation energy of the state with spin J . To estimate
the ground-state energy gain from projection we use

δE = (E (0) − E (2) )
〈J2〉

6
, (73)

where E (0) and E (2) result from, e.g., angular momentum
projection. Taking instead the energy difference E (0) − E (2)

from experimental data (i.e., 3 MeV in 8Be, 0.6 MeV in the

island of inversion), one immediately obtains an estimate for
the energy gain from symmetry projection by employing the
expectation value 〈J2〉 of the symmetry-unrestricted state. The
energy gain from projection is much smaller than the energy
from dynamical correlations, which allows us to employ ap-
proximations that lack size extensivity. It is also clear from
Eq. (73) that the gain from symmetry restoration is propor-
tional to the expectation value 〈J2〉 of the unprojected state.
Thus, including more correlations in that state is expected to
reduce the value 〈J2〉 and the energy gain from projection.

The approach via effective field theory also enables us to
estimate uncertainties. The first step involves the identification
of a breakdown scale. For simplicity we use here a breakdown
spin Jb where new physics enters; the corresponding break-
down energy, relative to the ground-state energy E (0), is then
�b = aJb(Jb + 1). The subleading correction to the Hamil-
tonian (68) is the term b(Ĵ2)2, which adds the contribution
b[J (J + 1)]2 to the spectrum (69); see, e.g., Ref. [32]. At the
breakdown scale, the subleading contribution becomes signif-
icant, and this allows us to estimate the unknown coefficient
b. A simple estimate can be obtained by assuming that the
leading and subleading contributions are approximately equal
in size at the breakdown scale; this yields b ≈ a/[Jb(Jb + 1)].
A more realistic assumption is that the subleading term is
of the same size as the leading-order level spacing E (Jb+1) −
E (Jb−1) = 2a(Jb + 1) at the breakdown scale; this yields the
estimate

b ≈ 2a

J2
b (Jb + 1)

. (74)

With this assumption about the breakdown scale, the uncer-
tainty at spin J � Jb is

�E (J ) ≈ 2a
[J (J + 1)]2

J2
b (Jb + 1)

. (75)

Using more information than merely the breakdown scale
(or making more assumptions), would allow us to quantify
uncertainties [97–99]. Here, we will contend ourselves with
the estimate (75). Long sequences of data would also allow
us to empirically determine the breakdown scale, e.g., via
Lepage plots [36].

The rotational constant a is inverse proportional to the mo-
ment of inertia which—for a liquid drop—is proportional to
A5/3 where A is the mass number. Taken together with the em-
pirical relation 〈J2〉 ∼ A3/2 from mean-field calculations [69]
then implies that the energy gain from symmetry projection
is small and decreases with increasing mass number. Long-
wavelength physics dominates angular momentum projection.
We can also see this in an equation-of-motion approach where
the (non-normalized) excited Jπ = 2+ state is

|2+〉 = Q(p)
20 |0+〉. (76)

Here the charge quadrupole operator Q(p)
20 is defined as in

Eq. (4) but the sum is over protons. This long-range operator
is insensitive to short-range physics. The equation-of-motion
approach to excited states then yields[

H, Q(p)
20

]|0+〉 = (E (2) − E (0) )Q(p)
20 |0+〉. (77)
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Employing the effective Hamiltonian (68) in Eq. (77) yields
E (2) − E (0) = 6a because Q(p)

20 is a spherical tensor of rank 2.
Thus, rotational excitation energies are low-resolution observ-
ables and can be computed with low-resolution methods.

The quadrupole operator connects harmonic oscillator
shells that differ by two units of h̄ω. Thus, the equation-of-
motion approach also shows that microscopic computations
of the states with angular momentum J = 2, 4, 6, . . . via sym-
metry projection requires model spaces that exceed the Fermi
surface by J shells.

A future goal consists of computing quadrupole moments
of projected states and transition matrix elements between
projected states. For now, we characterize collectivity via
a phenomenological approach. The quadrupole deformation
parameter for a charged liquid drop is [100]

β2 ≡
√

5π
〈
Q(p)

20

〉
3ZR2

0

, (78)

where R0 = 1.2A1/3 fm is the empirical charge radius. The
optimized next-to-next-to leading order (NNLOopt) potential
yields too small radii for all but the lightest nuclei [101–104].
To compute the quadrupole deformation parameter we there-
for replace R2

0 by the charge radius squared (R2
ch). Computing

expectation values in the unprojected ground state, the defor-
mation parameter then becomes

β2 ≡
√

5π
〈
Q(p)

20

〉
3ZR2

ch

. (79)

Superfluid systems that break particle number can similarly
be addressed in an effective theory. One then replaces the
orientation of the symmetry axis by the gauge angle and
aĴ2 by the pairing rotational term b(Â − 〈Â〉)2 where b is a
low-energy coefficient and Â the number operator. The energy
gain (71) from particle-number projection is then related to
the particle-number variation of the unprojected state. For an
estimate in medium-mass nuclei we note that b ≈ 0.1 MeV
in tin isotopes [105] and that 〈(A − 〈A〉)2〉 ≈ 16–36 in nickel
isotopes [19]. Thus, particle-number projections do also not
seem to require size extensive methods.

VI. RESULTS FOR 8Be, 20Ne, AND 34Mg

We compute the nuclei 8Be, 20Ne, and 34Mg using the
nucleon-nucleon interaction NNLOopt [106]. For 8Be, we
benchmark with the no-core shell model (NCSM) [27,28]
and for 20Ne with the symmetry-adapted NCSM [31]. These
benchmarks are close to experimental data, and the accuracy
of the NNLOopt potential makes it interesting to compute the
structure of the neutron-rich nucleus 34Mg.

The Hamiltonian (7) is the sum of the intrinsic kinetic en-
ergy (to decouple the center-of-mass mode [107–109]) and the
two-body potential. We use a single particle basis that consists
of the eigenstates {|p〉 ≡ |nl j jztz〉} with energy (2n + l )h̄ω

of the spherical harmonic oscillator (omitting the zero-point
energy). States with an energy up to and including Nmax h̄ω

are in the basis.
For the construction of the reference state, shells are

filled according to the nuclear shell model [110]. The par-

40 50 60 70

q20 (fm2)

−24

−22

−20

−18

−16

−14

E
(M

eV
)

8Be
HF

HF-RVAP

FIG. 1. Energies of 8Be from symmetry-unrestricted Hartree-
Fock (blue circles) and HF-RVAP (green diamonds) as a function of
the mass quadrupole moment q20. Calculations are performed with
h̄ω = 24 MeV.

tially occupied subshell at the Fermi surface is filled by
occupying Kramer-degenerate pairs of states with increasing
values | jz| = 1/2, 3/2, . . . of the angular-momentum projec-
tion. This leads to prolate deformation. The various reference
states we used are described in Sec. III.

Figure 1 shows the energy of the reference states from
Hartree-Fock and from HF-RVAP for 8Be as a function of
quadrupole moment. The projection shifts the minimum to-
wards a larger value of the quadrupole moment.

We found that the Hermitian SLD and SQD approxi-
mations are insensitive to the choice of the reference state
presumably because we treat the singles excitations eT1 ex-
actly. As we will see below these approaches also meet
benchmarks from NCSM calculations [27,31]. The disen-
tangled approach yields somewhat too compressed spectra,
particularly for the CCSD approximation. The CCSD spectra
exhibit a small spread with respect to the reference state.
The level spacing increases as we go from Hartree Fock to
HF-RVAP to HF-VAP, and the CCSD results also depend
mildly on the chosen oscillator spacing. We attribute the com-
pressed spectra to the simple energy expression (19), which
is not a bivariational energy functional. In contrast, results for
the CCD approximation are somewhat more accurate when
compared to the benchmarks. This, however, limits us to the
Hartree-Fock basis where singles excitations [exp (T1)] are
small.

A. Operator kernels

Figure 2 shows the norm and Hamiltonian kernels in 20Ne
and 34Mg, respectively, as a function of rotation angle β for
the disentangled formalism and compares them to Hartree-
Fock kernels. Here we employed the Hartree-Fock basis and
a model space with Nmax = 7 and h̄ω = 24 MeV. At β = 0
the Hamiltonian kernels yield the energies of the unprojected
Hartree-Fock and CCD states. The Hartree-Fock kernels ex-
hibit the R parity and are symmetric upon reflection at β =
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FIG. 2. Kernels for 20Ne (left panels) and 34Mg (right panels) as a function of the rotation angle. The norm kernels (top panels) and
Hamiltonian kernels (bottom panels) are shown for Hartree-Fock (orange circles) and CCD (green diamonds) calculations. We employed the
Hartree-Fock basis and a model space with Nmax = 7 and h̄ω = 24 MeV.

π/2. The disentangled formalism approximates the rotation
operator and does not keep the R parity. This is clearly seen
for the case of 20Ne while less so for 34Mg. To avoid problems
we assume R parity and limit the domain of integration in
Eq. (20) to [0, π/2]. This ensures that odd angular momenta
are excluded from the ground-state rotational band.

In the absence of symmetry breaking, the kernels are con-
stant and do not depend on β. Therefore, one expects that
operator kernels flatten out at higher truncation levels [58].
The upper panels of Fig. 2 show that this is indeed the case.
An alternative view is as follows: The curvature of the norm
kernel at β = 0 is proportional to the expectation value 〈Ĵ2〉
of the unprojected state, and this value should decrease with
increasing sophistication of the employed many-body wave
function. Figure 2 confirms this.

How do the truncations in the disentangled formalism im-
pact the projection? To address this question we computed the
expectation value of Ĵ2 in the projected states. We found that
the difference to J (J + 1) is less than 0.4 for J = 0, less than
4% for J = 2, and less than 2% for J = 4. Deviations where
largest for 20Ne and smallest for 34Mg. We speculate that is
because the 34Mg spectrum is closest to a rigid rotor.

B. Spectra of 8Be and 20Ne

Figure 3 displays the ground-state rotational band of 8Be
computed with the CCD (left panel), the SLD (middle panel),
and the SQD approximations (right panel). With CCD the ex-
citation energy of the Jπ = 2+ state is converged for Nmax = 7
and practically independent of h̄ω. The first 4+ energy still ex-
hibits some dependence on the basis. The convergence pattern
is somewhat different for the SLD and SQD approximations.
Here, the the 2+ energy starts to converge with Nmax = 3 and

the 4+ energy at Nmax = 5. This is consistent with the discus-
sions below Eqs. (76) and (77), because the Fermi surface of
8Be is in the Nmax = 1 shell.

In the disentangled CCD approximation, the projected en-
ergies are lower than the NCSM benchmarks [27], i.e., the
excitation energy of the Jπ = 2+ state is 1 MeV too low
whereas the 4+ excitation energy differs by about 2 MeV. In
the SLD approximation, the 2+ energy is close to the NCSM

16 20 24 28
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Nmax = 6
Nmax = 7

16 20 24 28
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SQD
4+

2+

4+

2+

FIG. 3. Projected coupled-cluster excitation energies for 8Be as a
function of oscillator frequency obtained from CCD (left panel), SLD
(middle panel), and SQD approximations (right panel). Model spaces
are labeled by Nmax. Horizontal dashed grey lines show NCSM
results.
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FIG. 4. Projected coupled-cluster excitation energies for 20Ne as
a function of oscillator frequency obtained from CCD (left panel),
SLD (middle panel), and SQD approximations (right panel). Model
spaces are labeled by Nmax. Horizontal dashed grey lines show
NCSM results.

result whereas the converged 4+ energy is about 0.5 MeV
(4%) too high. Finally, the 2+ energy from SQD agrees with
the benchmark while the the 4+ energy is too high.

For 20Ne we compare with benchmarks from the symmetry
adapted NCSM [31] and show results in Fig. 4. For the SLD
and SQD approximations the energies of the Jπ = 2+ and 4+
states start to converge at Nmax = 4 and Nmax = 4 and Nmax =
6, respectively, because the Fermi surface is in the Nmax = 2
shell. The SLD results display an optimal harmonic oscillator
frequency around 16 MeV, and the spectrum is slightly com-
pressed compared to NCSM. For CCD we employed up to
ten major harmonic oscillator shells which is large enough for
convergence. As can be seen the spectrum is too compressed

and resemble too much that of a rigid rotor. We also employed
the CCSD approximation for the largest model space and
found the 2+ energy at 1 MeV and the 4+ energy at ≈3
MeV. Computing rotational spectra via projection requires
much smaller model spaces than required for ground-state
energies. This is consistent with our discussion in Sec.. V B
and Ref. [53]. The symmetry restoration involves a nonper-
turbative mixing of states close to the Fermi surface such that
a comparably small number of harmonic oscillator shells is
sufficient to obtain converged results. As observed when going
from 8Be to 20Ne, the model space requirements increase with
increasing mass number because of the reference state.

Let us match the EFT to our results. The leading-order
EFT spectrum (69) depends on two low-energy constants. We
use the ground-state energy gained through projection, δE ,
and the expectation value 〈J2〉 of the unprojected state as
input to the EFT and determine the excitation spectrum via
Eq. (72). Uncertainties are estimated by Eq. (75). For 8Be the
breakdown energy �b ≈ 20 MeV is set by the energy of α par-
ticle excitations; the corresponding breakdown spin is Jb ≈ 5.
Figure 5 shows the EFT spectra (red error bars) based on
the input from projected Hartree-Fock and projected coupled-
cluster results in Table I using three different single-particle
bases. Also shown are NCSM benchmarks. About two-thirds
of the EFT results agree with the energies of the Hartree-Fock
and coupled-cluster calculations. For the Jπ = 2+ states the
energy ranges from the EFT are systematically higher than
the projected energies and the NCSM result. The EFT ranges
for the energy of the 4+ state agree with the microscopic
computations.

The projected Hartree-Fock results are close to the NSCM
benchmarks. This is in contrast to the ground-state energies
shown at the bottom of the plot (in units of MeV). While
the total binding energy requires dynamical correlations, the
low-lying rotational excitations are dominated by static corre-
lations and well captured through the symmetry restoration;
see also Ref. [53]. The coupled-cluster computations in-
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FIG. 5. Low-lying excitation energies of 8Be from projected Hartree-Fock (HF), projected coupled-cluster (SLD, SQD, and CCD) compu-
tations, and leading-order EFT using HF, HF-VAP, and HF-RVAP reference states (from left to right). Also shown are NSCM benchmarks and
experiment (dashed lines). The numbers at the bottom of the plot are projected ground-state energies (in MeV).
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TABLE I. Results for 8Be. Here, E and 〈J2〉 are the unprojected ground-state energy and angular momentum expectation values,
respectively, δE the gain of the ground-state energy from projection, and E (J ) is the energy of the excited state with spin J . All energies
are in MeV. For the projection we employed a model-space with Nmax = 5 and h̄ω = 22 MeV for HF, HF-VAP, HF-RVAP, SLD, and SQD,
while Nmax = 7 and h̄ω = 24 MeV for CCD. The SLD and SQD unprojected expectation values are obtained using the β = 0 kernels. The CCD
unprojected results were obtained using the linear-response approach. The EFT results are obtained by using δE and 〈J2〉 as input; uncertainties
are based on the assumption that the breakdown scale is at about 20 MeV of excitation energy. The NCSM results [27] are E (2) − E (0) = 3.5
MeV and E (4) − E (0) = 11.9 MeV.

Unprojected Projected EFT

8Be E 〈J2〉 δE E (0) = E + δE E (2) − E (0) E (4) − E (0) E (2) − E (0) E (4) − E (0)

HF −16.304 11.270 −7.399 −23.70 3.33 12.71 3.9 ± 0.3 13.1 ± 3.5
SLD −39.829 7.724 −4.923 −44.75 3.11 12.76 3.8 ± 0.3 12.8 ± 3.4
SQD −43.179 6.311 −4.146 −47.33 3.43 14.00 3.9 ± 0.3 13.1 ± 3.5
CCD −45.907 6.998 −3.852 −49.76 2.62 10.09 3.3 ± 0.3 11.0 ± 2.9
HF-VAP −13.535 17.502 −12.640 −26.18 4.15 14.47 4.3 ± 0.3 14.4 ± 3.9
SLD −39.564 8.379 −5.588 −45.15 3.20 12.75 4.0 ± 0.3 13.3 ± 3.6
SQD −42.812 7.033 −4.819 −47.63 3.48 13.66 4.1 ± 0.3 13.7 ± 3.7
CCD −41.961 11.243 −8.123 −50.08 3.67 12.74 4.3 ± 0.3 14.4 ± 3.9
HF-RVAP −13.535 15.335 −9.815 −23.35 3.58 12.66 3.8 ± 0.3 12.8 ± 3.4
SLD −39.604 8.418 −5.547 −45.15 3.20 12.72 4.0 ± 0.3 13.2 ± 3.5
SQD −43.112 6.844 −4.559 −47.67 3.50 13.87 4.0 ± 0.3 13.3 ± 3.5
CCD −44.979 9.165 −5.498 −50.48 3.06 10.62 3.3 ± 0.3 12.0 ± 3.2

clude dynamical correlations and achieve lower ground-state
energies. Clearly, those correlations contribute little to the
rotational spectrum.

Table I summarizes our results for 8Be. We note that 〈J2〉
of the unprojected state and energy gained from projection,
δE , decrease a lot from Hartree-Fock to coupled-cluster com-
putations because the latter include much more dynamical
correlations. We also note that the projected HF results for the
spectrum are more accurate than the projected CCD results in
the Hartree-Fock basis.

As can be seen in Table I the Hermitian SLD and SQD
results depend only weakly on the choice of reference due
to the exact treatment of exp(T1) in the projection. In con-
trast the CCD results exhibit a considerable dependence on
the reference states. The CCD calculations in the HF basis
are probably most consistent because the unprojected T1 am-
plitudes are small. One would expect that projected CCSD
would alleviate the dependence on the reference state, and
calculations show that this is indeed the case. However, the
resulting spectra are more compressed and less accurate than
CCD. This is presumably due to the simple parametrization
of the bra state. For these reasons, and limited compu-
tational resources, we limit our calculations for 20Ne and
34Mg in the CCD approximation to the HF reference. Future
work will employ the CCSD bivariational functional in the
projection.

For 20Ne we show results computed with the Hartree-Fock
basis in Fig. 6 (here the results shown in Table II were used
as input for the EFT predictions). The EFT uncertainties are
based on a breakdown angular momentum Jb ≈ 5 which cor-
responds to a breakdown energy of about 7 MeV. At this
energy, positive-parity states appear that are not part of the
ground-state rotational band. As for 8Be, the EFT ranges are
above the computed energies for Jπ = 2+ but agree for the 4+
levels.

Table II summarizes our results for 20Ne in the Hartree-
Fock basis using a model space with Nmax = 7 and with the
oscillator frequency h̄ω = 20 MeV. We see in particular that
the charge radius Rch is virtually unchanged by the projection.
This validates several calculations of charge radii [20,111].
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FIG. 6. Excitation energies of 20Ne from projected Hartree-Fock
and projected coupled-cluster (SLD and CCD) computations com-
pared to EFT results, the benchmark from the symmetry-adapted
NCSM, and experiment (dashed lines). The numbers at the bottom
of the plot are projected ground-state energies (in MeV). For the
projection we employed a Hartree-Fock basis in a model space with
Nmax = 7 and with oscillator frequency h̄ω = 20 MeV.
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TABLE II. Results for 20Ne. Here, E and 〈J2〉 are the unprojected ground-state energy and angular momentum expectation values,
respectively, Rch is the charge radius, δE the gain of the ground-state energy from projection, and E (J ) is the energy of the excited state
with spin-parity J . All energies are in MeV. For the projection we employed the Hartree-Fock basis in a model space with Nmax = 7 and with
the oscillator frequency h̄ω = 20 MeV. The SLD unprojected expectation values were obtained using the β = 0 kernels. The CCD unprojected
expectation value for Rch were obtained using the β = 0 kernel while for 〈J2〉 we used the linear response approach. The EFT results are
obtained by using δE and 〈J2〉 as input; uncertainties are based on the assumption that the breakdown spin is Jb ≈ 5. The NCSM benchmarks
are E (2) − E (0) = 1.64 MeV and E (4) − E (0) = 4.25 MeV [31]. The calculated charge radii are smaller than the experimental charge radius,
Rch = 3.0055(21) fm [112].

Unprojected Projected EFT

20Ne E 〈J2〉 Rch (fm) δE E (0) = E + δE Rch (fm) E (2) − E (0) E (4) − E (0) E (2) − E (0) E (4) − E (0)

HF −59.442 22.778 2.623 −5.760 −65.202 2.619 1.26 4.34 1.5 ± 0.1 5.1 ± 1.3
SLD −122.467 19.059 2.601 −4.332 −126.799 2.598 1.13 3.90 1.4 ± 0.1 4.5 ± 1.2
CCD −142.666 16.128 2.621 −3.627 −146.293 2.620 1.19 3.68 1.3 ± 0.1 4.5 ± 1.2

We also note that the projected HF results are close to the
NCSM benchmark.

C. 34Mg

Neutron-rich magnesium isotopes have long been in the
focus of experiment [113–116] and theory [117–119], be-
cause they are located in the “island of inversion,” where
deformed ground states emerge within the shell-model from
the presence of intruder orbits [120]. The experiments of
Refs. [121–124] observed a ground-state rotational band in
34Mg. This provides us with an opportunity to test our projec-
tion methods using the chiral interaction NNLOopt (which is
fairly accurate for 8Be and 20Ne).

To facilitate the convergence with respect to the size of
the underlying spherical harmonic oscillator basis, we also
use natural orbitals for SLD approach. Those are computed
from a one-body density matrix following Refs. [85,86,125]
in a large basis with Nmax = 12. We truncate the set of natural
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FIG. 7. Projected coupled-cluster excitation energies for 34Mg as
a function of oscillator frequency obtained from CCD (left panel),
SLD (middle panel), and SLD approximations with natural orbitals
(right panel). Model spaces are labeled by Nmax. Horizontal dashed
grey lines show experimental data.

orbitals selected based on their large occupations following
the procedure described in Ref. [86]. The CCD and SLD
results for the low-lying spectrum of 34Mg is shown in Fig. 7
for different Nmax and oscillator frequencies in the range h̄ω =
16, . . . , 28 MeV. The SQD results would begin to converge
at Nmax = 7 which is computationally too expensive for this
nucleus. As can be seen the SLD results are close to data
while the spectrum obtained with CCD is too compressed. We
also here employed the CCSD approximation in the largest
model-space and obtained an even more compressed spec-
trum with the 2+ energy at 0.4 MeV and the 4+ energy at
≈1.3 MeV.

Figure 8 shows the EFT predictions for the low-lying
spectrum of 34Mg obtained from projected calculations using
Hartree Fock, SLD, and CCD (taken from Table III). The
EFT results include uncertainty estimates that are based on
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FIG. 8. Excitation energies of 34Mg from projected Hartree-Fock
and projected coupled-cluster (SLD and CCD) computations com-
pared to EFT results and experiment (dashed lines), using the results
shown in Table III. The numbers at the bottom of the plot are
projected ground-state energies (in MeV).
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TABLE III. Results for 34Mg. Here, E and 〈J2〉 are the unprojected ground-state energy and angular momentum expectation values,
respectively, R2

p is the point-proton radius squared (including spin-orbit contributions), δE the gain of the ground-state energy from projection,
and E (J ) is the energy of the excited state with spin J . All energies are in MeV. For the projection we employed a model space with Nmax = 7
and with the oscillator frequency h̄ω = 20 MeV. The SLD unprojected expectation values for were obtained using the β = 0 kernels. The CCD
unprojected expectation value for 〈R2

p〉 were obtained using the β = 0 kernel while for 〈J2〉 we used the linear response approach. The EFT
results are obtained by using δE and 〈J2〉 as input; uncertainties are based on the assumption that the breakdown scale is at about 3.2 MeV, i.e.,
the breakdown spin is Jb = 5.

Unprojected Projected EFT

34Mg E 〈J2〉 Rch (fm) δE E (0) = E + δE Rch (fm) E (2) − E (0) E (4) − E (0) E (2) − E (0) E (4) − E (0)

HF −85.687 24.740 2.727 −3.184 −88.87 2.724 0.67 2.29 0.77 ± 0.06 2.6 ± 0.7
SLD −177.938 22.790 2.707 −2.479 −180.42 2.704 0.60 2.05 0.65 ± 0.05 2.2 ± 0.6
CCD −221.315 20.213 2.725 −1.893 −223.21 2.722 0.53 1.69 0.56 ± 0.04 1.9 ± 0.5

a breakdown scale of 3.2 MeV. At this energy there is a level
which is outside the ground-state rotational band [124]. The
corresponding breakdown spin is Jb ≈ 5. The EFT results are
consistent with the microscopic computations from angular
momentum projection. They also agree with data.

The recent computations by Miyagi et al. [119] failed to
reproduce the collective behavior of 34Mg. Calculated ener-
gies of the Jπ = 2+ states are about a factor 2 too large and
B(E2) values are too small. Those calculations were based
on a multishell approach including orbitals up to the 1p0 f
shell. Such a model space is probably too small to capture
quadrupole collectivity because the mass quadrupole operator
couples neutrons in the 1p0 f shell to the 2p1 f 0h shell.

Our results for the Hartree-Fock basis and a model space
with Nmax = 7 and with the oscillator frequency h̄ω = 20
MeV are summarized in Table III. Again we see that charge
radii only change at the per-mille level under projection.

D. Ground-state properties

Figure 9 shows the energy gain δE from angular-
momentum projection within CCD for the nuclei 8Be, 20Ne,
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FIG. 9. Gain in ground-state energy from angular-momentum
projection for 8Be, 20Ne and 34Mg (from left to right) as a function
of the harmonic oscillator spacing for model-space sizes as indicated
by Nmax. Calculations are performed in the CCD approximation.

and 34Mg. We see that δE is sufficiently converged in the
model spaces we employed and only find a small residual
dependence on the oscillator spacing. The gain decreases with
increasing mass number and is not an extensive quantity.

Figure 10 shows the ground-state energy per nucleon from
angular-momentum projected CCD for the nuclei 8Be, 20Ne,
and 34Mg. For comparison, projected CCSD for Nmax = 9
gives a total of ≈100 and ≈400 keV additional binding com-
pared to CCD at the optimal frequency for 20Ne and 34Mg,
respectively. Again, the results are sufficiently converged with
respect to the employed model spaces. We note that the pro-
jection only decreases the ground state energy per particle
by about 0.5, 0.17, and 0.08 MeV for 8Be, 20Ne, and 34Mg,
respectively.

More accurate ground-state energies require us to include
triples cluster excitations. We perform unprojected CCSD
and CCSDT-1 computations [126] starting from Hartree-Fock
computations in a large single-particle basis with Nmax = 12.
Using the Hartree-Fock basis we then compute natural orbitals
from second-order perturbation theory and truncate the basis
to a size corresponding to Nmax = 10 based on the occupation
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FIG. 10. Projected ground-state energy per nucleon for 8Be, 20Ne
and 34Mg (from left to right) as a function of the harmonic oscillator
spacing for model-space sizes as indicated by Nmax. Calculations are
performed in the CCD approximation.
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FIG. 11. Ground-state energies of 8Be, 20Ne, and 34Mg shown (from left to right) with unprojected Hartree-Fock, unprojected CCSD, and
unprojected CCSDT-1 truncations. The estimated energy gain from angular-momentum projection, δEest , is based on the leading-order EFT
result. The light red band shows the estimated uncertainty at the CCSDT-1 truncation. The NCSM result (dashed line in 8Be) is from an
extrapolation to an infinite model space [27]. The right column shows experiment.

numbers with respect to the Fermi surface. For the CCSDT-1
calculations we reduce the number of the 3p-3h amplitudes
by an additional cut on occupation numbers; see Refs. [20,85]
for details. These calculations yield the correlation energies
�ECCSD and �ECCSDT-1 along with the ground-state expecta-
tion values 〈J2〉CCSD and 〈J2〉CCSDT-1. Projected ground-state
energies can be decomposed as

E = Eref + �ECCSD + �ECCSDT-1 + δE , (80)

where δE denotes the gain of the ground-state energy from
angular-momentum projection. As the projection is presently
limited to smaller bases, and we have not performed projec-
tion of triples results, we use Eq. (73) to estimate δE based
on 〈J2〉CCSDT-1 and the energy spacing E (2) − E (0) based on
either SQD or SLD calculations; this estimate is denoted as
δEest in what follows.

Figure 11 shows how the ground-state energies of 8Be,
20Ne and 34Mg decrease with increasing sophistication of the
unprojected many-body computation (from left to right), and
with addition of the estimate δEest from angular-momentum
projection. The light red band shows the estimated uncertainty
at the CCSDT-1 truncation (which is about 2% of the total
correlation energy). For 8Be, the estimated energy gain from
projection is clearly outside the uncertainty estimate from the
CCSDT-1 truncation. This is possibly due to the strong α

correlations in this unbound nucleus. The ground-state en-
ergy of the α particle is −27.76 MeV with the NNLOopt

potential [106], and our result (as well as the extrapolated

NCSM energy of about −55.0 MeV [27]) is thus above the
α-α threshold. We note that the estimated energy gain from
projection decreases with increasing mass number. The com-
parison with experiment (shown as black bars) shows that the
NNLOopt interaction overbinds 20Ne and 34Mg.

The computation of 〈Q20〉 and R2
ch in the unprojected states

allows us to compute the nuclear deformation parameter β

via Eq. (79). We observe no significant difference between
CCSD and CCSDT-1 results. For 20Ne we find β2 ≈ 0.70,
larger than the value β2 = 0.47 deduced from experimental
data [127]. For 34Mg, we find β2 ≈ 0.57 and this agrees within
experimental uncertainties with the values β2 = 0.62(6) and
β2 = 0.68(16) extracted [128] from experimental data in
Refs. [124] and [123], respectively. Our results for the ground-
state properties of 8Be, 20Ne, and 34Mg are summarized in
Table IV.

VII. SHELL-MODEL HAMILTONIANS

We also compared projected coupled-cluster computations
with full configuration interaction (FCI) results for the tra-
ditional shell-model. We employ the KB3G interaction for
p f -shell nuclei [129]. The model space is relatively small and
consists of four spherical orbitals above the frozen core of
40Ca. In the nuclear shell model, many-body wave functions
typically exhibit strong correlations, and truncated coupled-
cluster wave functions do not yield accurate total energies
[130], while spectra are more accurate [131].

TABLE IV. Summary of results for 8Be, 20Ne, and 34Mg. Calculations started from a natural orbital basis constructed in a Nmax = 12 model
space and truncated to Nnat

max = 10 for the coupled-cluster calculations. We used the oscillator frequencies h̄ω = 24, 22, and 18 MeV for 8Be,
20Ne, and 34Mg, respectively.

Eref 〈J2〉ref 〈Q2〉ref �ESD 〈J2〉SD 〈Q2〉SD �ESDT−1 〈J2〉SDT−1 〈Q2〉SDT−1 δEest E EExpt.

8Be −16.74 11.17 19.46 −30.26 6.69 19.64 −3.24 5.82 18.86 −3.33 −53.58 −56.50
20Ne −59.62 21.26 35.84 −91.06 14.71 36.34 −11.27 12.09 35.71 −2.26 −164.21 −160.64
34Mg −90.21 22.62 38.56 −153.57 18.40 38.38 −20.56 15.03 36.97 −1.50 −265.84 −256.71
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FIG. 12. Low-lying states with spin J of selected p f -shell nuclei
computed with projection-after-variation Hartree-Fock (PAV HF),
variation-after-projection Hartree-Fock (VAP HF), and projected
CCD, SLD, and SQD methods, and compared to FCI results. Hor-
izontal lines shown are the ground-state energies from unprojected
coupled-cluster computations.

Figure 12 compares various projection techniques with
exact FCI results for the nuclei 44Ti, 46Ti, 48Ti, 48Cr, and 50Cr.
The Hartree-Fock energies lack several MeV of binding, and
the VAP results for the spectrum are not more accurate than
those from PAV. Including correlations beyond Hartree-Fock
significantly lowers the ground-state energies, as shown by the
CCD, SLD, and SQD results, and the spectra also improve.
The spacings of the SQD spectra are close to the FCI results.
The dotted and dashed-dotted horizontal lines show the results
from single-reference CCSD and CCSDT-1, respectively. We
see that projected SLD and SQD results improve on these
ground-state energies, and CCD results gain the most energy.
We attribute the difference between the projected coupled-

cluster and FCI results to lacking many-particle–many-hole
excitations.

VIII. SUMMARY

We performed angular-momentum projection after vari-
ation within coupled-cluster theory using two different
approaches. The first is based on the non-Hermitian energy
functional of coupled-cluster theory and projects within the
disentangled formalism via ordinary differential equations.
This approach scales favorably and yields somewhat too com-
pressed spectra when compared with benchmarks. We expect
that more accurate projections could be achieved within a
bi-variational energy functional, i.e., using a more sophis-
ticated parametrization of the bra state. Furthermore, we
also expect improvements from inclusion of W3 in the dif-
ferential equations. The second approach employs truncated
coupled-cluster wave functions within a Hermitian energy
functional. We studied a linear and a quadratic truncation of
the doubles cluster operator. The latter is numerically very ex-
pensive. Spectra are more accurate than in the non-Hermitian
approach. Benchmark calculations for 8Be and 20Ne based
on a chiral nucleon-nucleon potential show that the angu-
lar momentum projections are fairly accurate. Comparing
with traditional shell-model calculation of p f -shell nuclei
revealed the more accurate reproduction of spectra within the
Hermitian approach and the larger ground-state energy gain
within the non-Hermitian approach. The computed ground-
state rotational band of the exotic nucleus 34Mg agrees with
experimental data. This opens the avenue to perform ab initio
predictions of rotational properties in medium-mass exotic
nuclei.

We used our microscopic results to compute the low-
energy constants of the rigid-rotor model (which is the leading
order Hamiltonian within an effective theory of nuclear rota-
tion) and estimated uncertainties from omitted higher-order
corrections. The effective theory accurately reproduces rota-
tional bands.

The ground-state energy gained from angular-momentum
projection decreases with increasing mass number, and this is
understood within the effective theory. Thus, such corrections
can be computed using methods that are not size extensive.
Computations of charge radii revealed that projections have
only little impact on this observable.

The Department of Energy will provide public access to
these results of federally sponsored research in accordance
with the DOE Public Access Plan [132].
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APPENDIX A: TRANSFORMED OPERATORS

1. Computation of Ŏ

Considering an arbitrary operator O, we are interested in
computing its similarity-transformed partner

Ŏ ≡ e−Z OeZ , (A1)

where Z is a one-body operator Z ≡ ∑
pq zpqc†

pcq. Because
of the one-body nature of Z , the Baker-Campbell-Hausdorff
expansion is simple and one finds

e−Z cpeZ =
∑

q

[eZ ]pqcq, (A2a)

e−Z c†
peZ =

∑
q

c†
q[e−Z ]qp. (A2b)

Here and in what follows, the matrix of a single-particle
operator is denoted using brackets.

The transformation is thus represented by a matrix expo-
nential that takes a particularly simple form for Z ≡ T1. Let
us first provide the matrix representation of T1

[T1] =
(

thh thp

tph tpp

)
≡

(
0 0
t 0

)
, (A3)

where the one-body basis has been separated into occupied
(hole) and unoccupied (particle) states in |�〉. Because T1

[Eq. (10)] is a pure excitation operator, only the particle-hole
block t differs from zero.

Given Eq. (A3), the matrix exponential that transforms
one-body annihilation operators reads as

[eT1 ] = [1 + T1] =
(

1 0
t 1

)
, (A4)

whereas the one transforming one-body creation operators is

[e−T1 ] = [1 − T1] =
(

1 0
−t 1

)
. (A5)

In order to illustrate how Eq. (A1) eventually operates, let us
consider a one-body operator

O ≡
∑

pq

opqc†
pcq, (A6)

as an example. Given Eq. (A2), the similarity-transformed
operator is itself a one-body operator

Ŏ ≡
∑

pq

ŏpqc†
pcq, (A7)

whose matrix elements are

ŏpq ≡ [Ŏ]pq

=
∑

rs

[e−T1 ]pr[O]rs[e
T1 ]sq, (A8)

i.e., to each ket and bra index of the initial operator’s matrix
elements we associate a right and left multiplication with
matrix (A4) and (A5), respectively.

2. Computation of Õ

We consider an arbitrary operator O and want to compute

Õ ≡ eVR−1(β )OR(β )e−V , (A9)

where the modified rotation operator is given by

R(β ) ≡ eT †
1 R(β )eT1 . (A10)

This similarity transformation was used in Eq. (51). The
operator Õ thus results from four successive elementary
transformations as described in Appendix A 1, taking suc-
cessively Z ≡ T †

1 , Z ≡ −iβJy, Z ≡ T1, and Z ≡ −V . Each of
these transformations corresponds to a change of the single-
particle basis. The third transformation corresponds to the
case worked out in Appendix A 1. The first one is deduced
from it by taking the Hermitian conjugate of matrices (A4)
and (A5). The second transformation has the matrix elements
[R(β )]pr of R(β ) in the Hartree-Fock basis. These matrix
elements can be obtained from the initial matrix elements of
R(β ) in the spherical single-particle basis [Eq. (18)] via the
Hartree-Fock transformation. Thus, the first three transforma-
tions multiply each ket index of the original matrix elements
from the right by the matrix

[R(β )] =
(

1 t†

0 1

)
[R(β )]

(
1 0
t 1

)
, (A11)

and each bra index from the left by the matrix[R−1(β )
] =

(
1 0
−t 1

)
[R(−β )]

(
1 −t†

0 1

)
. (A12)

Finally, we need to work out the fourth transformation
associated with Z ≡ −V . Decomposing Eq. (A11) according
to

[R(β )] =
(Rhh Rhp

Rph Rpp

)
, (A13)

the matrix associated with the operator V reads [55]

[V ] ≡
(

0 vhp

0 0

)
(A14)

with

vhp = (Rhh)−1Rhp ≡ v. (A15)
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Thus, the similarity transformation is worked out such that to
each ket index of the initial matrix elements is associated a
right multiplication with the matrix(

1 −v
0 1

)
, (A16)

and to each bra index is associated a left multiplication with
the matrix (

1 v
0 1

)
. (A17)

APPENDIX B: MANY-BODY MATRIX ELEMENTS

1. Operator U

In Sec. IV C 5, the Hamiltonian and norm kernels where
expressed in terms of the matrix elements of the excitation part
of the similarity-transformed disconnected excitation operator
U :

ua1a2···
i1i2··· = 〈

�
a1a2···
i1i2···

∣∣U |�〉. (B1)

The expressions of these matrix elements up to 4p-4h are

U
(0) = 1 + T

(0)
2 + 1

2

⎛⎝∑
ia

τ i
aτ

a
i + 1

4

∑
i jab

t i j
abt ab

i j

⎞⎠, (B2a)

ua
i =

(
1 + 1

2
T

(0)
2

)
τ a

i + 1

2

(∑
c

τ a
c τ c

i −
∑

k

τ a
k τ k

i +
∑

kc

t ac
ik τ k

c +
∑

kc

t ak
ic τ c

k + 1

2

∑
cdk

t ak
cdt cd

ik − 1

2

∑
ckl

t ac
kl t

kl
ic

)
, (B2b)

uab
i j =

(
1 + 1

2
T

(0)
2

)
t ab

i j + P(ab)τ a
i τ b

j + 1

2

(
P(ab)

∑
c

t ac
i j τ

b
c − P(i j)

∑
k

t ab
ik τ k

j + P(i j)
∑

c

t ab
ic τ c

j − P(ab)
∑

k

t ak
i j τ

b
k

+ P(ab)P(i j)
∑

kc

t ac
ik t kb

c j +
1

2

∑
kl

t ab
kl t kl

i j + 1

2

∑
cd

t ab
cdt cd

i j

)
, (B2c)

uabc
i jk = P(ab/c)P(i j/k)t ab

i j τ
c
k + 1

2
P(ab/c)P(i j/k)

(∑
d

t cd
i j t ab

dk −
∑

l

t ab
kl t lc

i j

)

= P(ab/c)P(i j/k)

(
t ab

i j τ
c
k −

∑
l

t ab
kl t lc

i j

)
, (B2d)

uabcd
i jkl = 1

2
P(ab/cd )P(i j/kl )t ab

i j t cd
kl . (B2e)

Here P denotes the permutation operator [84]. In Eq. (B2d) the sum over d is the negative of the sum over l after
antisymmetrization, as can be shown by writing out the explicit similarity transformations of T2.

Employing the SLD approximation leads to U = (1 + T2) such that the matrix elements beyond rank two vanish. In this case,
the above expressions reduce to U

(0) = 1 + T
(0)
2 , ua

i = τ a
i , and uab

i j = t ab
i j .

2. Operator HU

Similarly, the matrix elements

xa1a2···
i1i2··· = 〈

�
a1a2···
i1i2···

∣∣HU |�〉 (B3)

are needed up to 4p-4h excitation level. These are

X
(0) = H

(0)
U

(0) +
∑

ia

h
i
aua

i + 1

4

∑
i jab

h
i j
abuab

i j , (B4a)

xa
i = H

(0)
ua

i + h
a
i U

(0) +
∑

b j

h
a j
ib ub

j +
∑

b

h
a
bub

i +
∑

b j

h
a j
ib ub

j + 1

2

∑
bc j

h
a j
bcubc

i j − 1

2

∑
b jk

h
jk
ib uab

jk +
∑

b j

h
j
buab

i j + 1

4

∑
bc jk

h
bc
jkuabc

i jk ,

(B4b)

xab
i j = H

(0)
uab

i j + h
ab
i j U

(0) + P(ab)P(i j)h
a
i ub

j + P(ab)
∑

c

h
b
cuac

i j − P(i j)
∑

k

h
k
ju

ab
ik + 1

2

∑
cd

h
ab
cd ucd

i j

064311-18



ANGULAR-MOMENTUM PROJECTION IN … PHYSICAL REVIEW C 105, 064311 (2022)

1

2

∑
kl

h
kl
i j u

ab
kl + P(ab)P(i j)

∑
ck

h
kb
c j u

ac
ik + P(i j)

∑
c

h
ab
c j u

c
i − P(ab)

∑
k

h
kb
i j ua

k +
∑

ck

h
k
cuabc

i jk + P(ab)
1

2

∑
cdk

h
bk
cd uacd

i jk

− P(i j)
1

2

∑
ckl

h
kl
jcuabc

ikl + 1

4

∑
cdkl

h
kl
cd uabcd

i jkl , (B4c)

xabc
i jk = H

(0)
uabc

i jk + P(ab/c)P(i j/k)
(

h
ab
i j uc

k + uab
i j h

c
k

)
+ P(ab/c)

∑
d

uabd
i jk h

c
d − P(i j/k)

∑
l

uabc
i jl h

l
k

+ 1

2
P(ab/c)

∑
de

udec
i jk h

ab
de + 1

2
P(i j/k)

∑
lm

uabc
lmkh

lm
i j + P(i j/k)P(ab/c)

(∑
dl

uabd
i jl h

lc
dk +

∑
d

ucd
i j h

ab
dk −

∑
l

uab
kl h

lc
i j

)

+
∑

dl

uabcd
i jkl h

k
d + 1

2
P(ab/c)

∑
del

uabde
i jkl h

cl
de − 1

2
P(i j/k)

∑
dlm

uabcd
i jlm h

lm
kd , (B4d)

xabcd
i jkl = H

(0)
uabcd

i jkl + P(ab/cd )P(i j/kl )h
ab
i j ucd

kl + P(abc/d )P(i jk/l )

(
h

d
l uabc

i jk +
∑
em

uabce
i jkmh

md
el

)

+ P(abc/d )
∑

e

h
d
e uabce

i jkl − P(i jk/l )
∑

m

h
m
l uabcd

i jkm + 1

2
P(ab/cd )

∑
e f

uabe f
i jkl h

cd
e f + 1

2
P(i j/kl )

∑
mn

uabcd
i jmnh

mn
kl

+ P(ab/cd )P(i jk/l )
∑

e

uabe
i jk h

cd
el − P(abc/d )P(i j/kl )

∑
m

uabc
i jmh

md
kl . (B4e)

Here H
(0)

, h
p
q , and h

pq
rs denote the matrix elements of the normal-ordered zero-, one-, and two-body parts of H , respectively.
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[40] T. Nikšić, D. Vretenar, and P. Ring, Relativistic nuclear energy
density functionals: Mean-field and beyond, Prog. Part. Nucl.
Phys. 66, 519 (2011).

[41] S. Shen, H. Liang, W. H. Long, J. Meng, and P. Ring,
Towards an ab initio covariant density functional theory
for nuclear structure, Prog. Part. Nucl. Phys. 109, 103713
(2019).

[42] U. Van Kolck, Effective field theory of nuclear forces, Prog.
Part. Nucl. Phys. 43, 337 (1999).

[43] E. Epelbaum, H. Krebs, and U.-G. Meißner, �-excitations
and the three-nucleon force, Nucl. Phys. A 806, 65
(2008).

[44] R. Machleidt and D.R. Entem, Chiral effective field theory and
nuclear forces, Phys. Rep. 503, 1 (2011).

[45] S. Binder, J. Langhammer, A. Calci, and R. Roth, Ab initio
path to heavy nuclei, Phys. Lett. B 736, 119 (2014).

[46] G. Hagen, G. R. Jansen, and T. Papenbrock, Structure of
78Ni from First-Principles Computations, Phys. Rev. Lett. 117,
172501 (2016).

[47] T. D. Morris, J. Simonis, S. R. Stroberg, C. Stumpf, G. Hagen,
J. D. Holt, G. R. Jansen, T. Papenbrock, R. Roth, and A.
Schwenk, Structure of the Lightest Tin Isotopes, Phys. Rev.
Lett. 120, 152503 (2018).

[48] B. Hu, W. Jiang, T. Miyagi, Z. Sun, A. Ekström, C. Forssén,
G. Hagen, J. D. Holt, T. Papenbrock, S. Ragnar Stroberg, and
I. Vernon, Ab initio predictions link the neutron skin of 208Pb
to nuclear forces, arXiv:2112.01125

[49] R. J. Bartlett and M. Musiał, Coupled-cluster theory in quan-
tum chemistry, Rev. Mod. Phys. 79, 291 (2007).

[50] H. Hergert, S. K. Bogner, T. D. Morris, S. Binder, A. Calci,
J. Langhammer, and R. Roth, Ab initio multireference in-
medium similarity renormalization group calculations of even
calcium and nickel isotopes, Phys. Rev. C 90, 041302(R)
(2014).

[51] M. Frosini, T. Duguet, J.-P. Ebran, and V. Somà, Multi-
reference many-body perturbation theory for nuclei, Eur. Phys.
J. A 58, 62 (2022).

[52] M. Frosini, T. Duguet, J.-P. Ebran, B. Bally, T. Mongelli, T. R.
Rodríguez, R. Roth, and V. Somà, Multi-reference many-body
perturbation theory for nuclei. II. Ab initio study of neon
isotopes via PGCM and IM-NCSM calculations, Eur. Phys.
J. A 58, 63 (2022).

[53] M. Frosini, T. Duguet, J.-P. Ebran, B. Bally, H. Hergert, T. R.
Rodríguez, R. Roth, J. Yao, and V. Somà, Multi-reference
many-body perturbation theory for nuclei. III. Ab initio cal-
culations at second order in PGCM-PT, Eur. Phys. J. A 58, 64
(2022).

[54] T. Duguet, Symmetry broken and restored coupled-cluster the-
ory: I. Rotational symmetry and angular momentum, J. Phys.
G: Nucl. Part. Phys. 42, 025107 (2015).

[55] Y. Qiu, T. M. Henderson, J. Zhao, and G. E. Scuseria, Pro-
jected coupled cluster theory, J. Chem. Phys. 147, 064111
(2017).

[56] T. Duguet and A. Signoracci, Symmetry broken and restored
coupled-cluster theory. II. Global gauge symmetry and particle

064311-20

https://doi.org/10.1140/epja/s10050-021-00437-4
https://doi.org/10.1103/RevModPhys.77.427
https://doi.org/10.1103/PhysRevC.75.054317
https://doi.org/10.1016/j.physletb.2012.12.064
https://doi.org/10.1103/PhysRevLett.113.142502
https://doi.org/10.1103/PhysRevLett.113.142501
https://doi.org/10.1142/S0218301315410025
https://doi.org/10.1103/PhysRevC.91.014310
https://doi.org/10.1093/ptep/pts012
https://doi.org/10.1103/PhysRevLett.111.252501
https://doi.org/10.1103/PhysRevLett.124.042501
https://doi.org/10.1016/j.nuclphysa.2010.12.013
https://doi.org/10.1103/PhysRevC.92.014323
https://doi.org/10.1140/epja/i2017-12404-5
https://doi.org/10.1103/PhysRevC.102.044324
https://doi.org/10.1103/PhysRevC.104.064311
https://doi.org/10.1088/0034-4885/70/5/R02
https://doi.org/10.1038/nature11188
https://doi.org/10.1103/PhysRevLett.102.152503
https://doi.org/10.1016/j.ppnp.2011.01.055
https://doi.org/10.1016/j.ppnp.2019.103713
https://doi.org/10.1016/S0146-6410(99)00097-6
https://doi.org/10.1016/j.nuclphysa.2008.02.305
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1016/j.physletb.2014.07.010
https://doi.org/10.1103/PhysRevLett.117.172501
https://doi.org/10.1103/PhysRevLett.120.152503
http://arxiv.org/abs/arXiv:2112.01125
https://doi.org/10.1103/RevModPhys.79.291
https://doi.org/10.1103/PhysRevC.90.041302
https://doi.org/10.1140/epja/s10050-022-00692-z
https://doi.org/10.1140/epja/s10050-022-00693-y
https://doi.org/10.1140/epja/s10050-022-00694-x
https://doi.org/10.1088/0954-3899/42/2/025107
https://doi.org/10.1063/1.4991020


ANGULAR-MOMENTUM PROJECTION IN … PHYSICAL REVIEW C 105, 064311 (2022)

number, J. Phys. G: Nucl. Part. Phys. 44, 015103 (2017);
Erratum: Symmetry broken and restored coupled-cluster the-
ory: II. Global gauge symmetry and particle number (J. Phys.
G: Nucl. Part. Phys. 44, 015103 2017) 44, 049601 (2017).

[57] Y. Qiu, T. M. Henderson, J. Zhao, and G. E. Scuseria,
Projected coupled cluster theory: Optimization of cluster am-
plitudes in the presence of symmetry projection, J. Chem.
Phys. 149, 164108 (2018).

[58] Y. Qiu, T. M. Henderson, T. Duguet, and G. E. Scuseria,
Particle-number projected Bogoliubov-coupled-cluster theory:
Application to the pairing Hamiltonian, Phys. Rev. C 99,
044301 (2019).

[59] T. Tsuchimochi and S. L. Ten-no, Orbital-invariant spin-
extended approximate coupled-cluster for multi-reference
systems, J. Chem. Phys. 149, 044109 (2018).

[60] T. Mizusaki and P. Schuck, Symmetry projection to coupled-
cluster singles plus doubles wave function through the Monte
Carlo method, Phys. Rev. C 104, L031305 (2021).

[61] J. Arponen, Variational principles and linked-cluster exp S
expansions for static and dynamic many-body problems, Ann.
Phys. (NY) 151, 311 (1983).

[62] J. S. Arponen, R. F. Bishop, and E. Pajanne, Extended
coupled-cluster method. I. Generalized coherent bosonization
as a mapping of quantum theory into classical Hamiltonian
mechanics, Phys. Rev. A 36, 2519 (1987).

[63] T. Van Voorhis and M. Head-Gordon, The quadratic cou-
pled cluster doubles model, Chem. Phys. Lett. 330, 585
(2000).

[64] Edward F. C. Byrd, T. Van Voorhis, and M. Head-Gordon,
Quadratic coupled-cluster doubles: Implementation and as-
sessment of perfect pairing optimized geometries, J. Phys.
Chem. B 106, 8070 (2002).

[65] R. J. Bartlett and J. Noga, The expectation value coupled-
cluster method and analytical energy derivatives, Chem. Phys.
Lett. 150, 29 (1988).

[66] Péter G. Szalay, M. Nooijen, and R. J. Bartlett, Alternative an-
sätze in single reference coupled-cluster theory. III. A critical
analysis of different methods, J. Chem. Phys. 103, 281 (1995).

[67] W. Duch and G. H. F. Diercksen, Size-extensivity corrections
in configuration interaction methods, J. Chem. Phys. 101, 3018
(1994).

[68] E. Ramos-Cordoba, P. Salvador, and E. Matito, Separation
of dynamic and nondynamic correlation, Phys. Chem. Chem.
Phys. 18, 24015 (2016).

[69] G. F. Bertsch, T. Kawano, and L. M. Robledo, Angular mo-
mentum of fission fragments, Phys. Rev. C 99, 034603 (2019).

[70] J. Fujita and H. Miyazawa, Pion theory of three-body forces,
Prog. Theor. Phys. 17, 360 (1957).

[71] P. F. Bedaque, H.-W. Hammer, and U. van Kolck, Renor-
malization of the Three-Body System with Short-Range
Interactions, Phys. Rev. Lett. 82, 463 (1999).

[72] E. Epelbaum, H.-W. Hammer, and Ulf-G. Meißner, Modern
theory of nuclear forces, Rev. Mod. Phys. 81, 1773 (2009).

[73] H.-W. Hammer, A. Nogga, and A. Schwenk, Colloquium:
Three-body forces: From cold atoms to nuclei, Rev. Mod.
Phys. 85, 197 (2013).

[74] A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. II: Nu-
clear Deformation (W. A. Benjamin, Reading, MA, 1975).

[75] A. Staszczak, M. Stoitsov, A. Baran, and W. Nazarewicz, Aug-
mented Lagrangian method for constrained nuclear density
functional theory, Eur. Phys. J. A 46, 85 (2010).

[76] T. R. Rodríguez, J. L. Egido, and L. M. Robledo, Phys. Rev. C
72, 064303 (2005).

[77] J. Ripoche, T. Duguet, J.-P. Ebran, and D. Lacroix, Combining
symmetry breaking and restoration with configuration inter-
action: extension to z-signature symmetry in the case of the
Lipkin Model, Phys. Rev. C 97, 064316 (2018).

[78] P. Ring and P. Schuck, The Nuclear Many-Body Problem
(Springer, Heidelberg, 1980).

[79] C. A. Jiménez-Hoyos, T. M. Henderson, T. Tsuchimochi, and
G. E. Scuseria, Projected Hartree–Fock theory, J. Chem. Phys.
136, 164109 (2012).

[80] J. Ripoche, A. Tichai, and T. Duguet, Normal-ordered k-
body approximation in particle-number-breaking theories,
Eur. Phys. J. A 56, 40 (2020).

[81] M. Frosini, T. Duguet, B. Bally, Y. Beaujeault-Taudière, J. P.
Ebran, and V. Somà, In-medium k-body reduction of n-body
operators: A flexible symmetry-conserving approach based on
the sole one-body density matrix, Eur. Phys. J. A 57, 151
(2021).

[82] G. Hagen, T. Papenbrock, D. J. Dean, A. Schwenk, A. Nogga,
M. Włoch, and P. Piecuch, Coupled-cluster theory for three-
body Hamiltonians, Phys. Rev. C 76, 034302 (2007).

[83] R. Roth, S. Binder, K. Vobig, A. Calci, J. Langhammer,
and P. Navrátil, Medium-Mass Nuclei with Normal-Ordered
Chiral NN+3N Interactions, Phys. Rev. Lett. 109, 052501
(2012).

[84] I. Shavitt and R. J. Bartlett, Many-body Methods in Chemistry
and Physics (Cambridge University Press, Cambridge, UK,
2009).

[85] A. Tichai, J. Müller, K. Vobig, and R. Roth, Natural orbitals
for ab initio no-core shell model calculations, Phys. Rev. C
99, 034321 (2019).

[86] J. Hoppe, A. Tichai, M. Heinz, K. Hebeler, and A. Schwenk,
Natural orbitals for many-body expansion methods, Phys. Rev.
C 103, 014321 (2021).

[87] M. Kortelainen, Z. Sun, G. Hagen, W. Nazarewicz, T.
Papenbrock, and P.-G. Reinhard, Universal trend of charge
radii of even-even Ca-Zn nuclei, Phys. Rev. C 105, L021303
(2022).

[88] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii,
Quantum Theory of Angular Momentum (World Scientific,
Singapore, 1988).

[89] D. J. Thouless, Stability conditions and nuclear rotations in the
Hartree-Fock theory, Nucl. Phys. 21, 225 (1960).

[90] C. Wa Wong, Generator-coordinate methods in nuclear
physics, Phys. Rep. 15, 283 (1975).

[91] R. A. Broglia, J. Terasaki, and N. Giovanardi, The Anderson-
Goldstone-Nambu mode in finite and in infinite systems, Phys.
Rep. 335, 1 (2000).

[92] C. Yannouleas and U. Landman, Symmetry breaking and
quantum correlations in finite systems: Studies of quantum
dots and ultracold Bose gases and related nuclear and chemical
methods, Rep. Prog. Phys. 70, 2067 (2007).

[93] M. Deserno, How to generate equidistributed points on the
surface of a sphere, 2004 (unpublished), https://www.cmu.
edu/biolphys/deserno/pdf/sphere_equi.pdf.

[94] S. Weinberg, The Quantum Theory of Fields (Cambridge Uni-
versity Press, Cambridge, UK, 1996), Vol. II.

[95] T. Papenbrock and H. A. Weidenmüller, Effective field theory
for finite systems with spontaneously broken symmetry, Phys.
Rev. C 89, 014334 (2014).

064311-21

https://doi.org/10.1088/0954-3899/44/1/015103
https://doi.org/10.1088/1361-6471/aa5d3e
https://doi.org/10.1063/1.5053605
https://doi.org/10.1103/PhysRevC.99.044301
https://doi.org/10.1063/1.5036542
https://doi.org/10.1103/PhysRevC.104.L031305
https://doi.org/10.1016/0003-4916(83)90284-1
https://doi.org/10.1103/PhysRevA.36.2519
https://doi.org/10.1016/S0009-2614(00)01137-4
https://doi.org/10.1021/jp020255u
https://doi.org/10.1016/0009-2614(88)80392-0
https://doi.org/10.1063/1.469641
https://doi.org/10.1063/1.467615
https://doi.org/10.1039/C6CP03072F
https://doi.org/10.1103/PhysRevC.99.034603
https://doi.org/10.1143/PTP.17.360
https://doi.org/10.1103/PhysRevLett.82.463
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1103/RevModPhys.85.197
https://doi.org/10.1140/epja/i2010-11018-9
https://doi.org/10.1103/PhysRevC.72.064303
https://doi.org/10.1103/PhysRevC.97.064316
https://doi.org/10.1063/1.4705280
https://doi.org/10.1140/epja/s10050-020-00045-8
https://doi.org/10.1140/epja/s10050-021-00458-z
https://doi.org/10.1103/PhysRevC.76.034302
https://doi.org/10.1103/PhysRevLett.109.052501
https://doi.org/10.1103/PhysRevC.99.034321
https://doi.org/10.1103/PhysRevC.103.014321
https://doi.org/10.1103/PhysRevC.105.L021303
https://doi.org/10.1016/0029-5582(60)90048-1
https://doi.org/10.1016/0370-1573(75)90036-8
https://doi.org/10.1016/S0370-1573(00)00046-6
https://doi.org/10.1088/0034-4885/70/12/R02
https://www.cmu.edu/biolphys/deserno/pdf/sphere_equi.pdf
https://doi.org/10.1103/PhysRevC.89.014334


G. HAGEN et al. PHYSICAL REVIEW C 105, 064311 (2022)

[96] R. E. Peierls and J. Yoccoz, The collective model of nuclear
motion, Proc. Phys. Soc. A 70, 381 (1957).

[97] M. R. Schindler and D. R. Phillips, Bayesian methods for
parameter estimation in effective field theories, Ann. Phys.
(NY) 324, 682 (2009).

[98] R. J. Furnstahl, D. R. Phillips, and S. Wesolowski, A recipe for
EFT uncertainty quantification in nuclear physics, J. Phys. G:
Nucl. Part. Phys. 42, 034028 (2015).

[99] E. A. Coello Pérez and T. Papenbrock, Effective field theory
for nuclear vibrations with quantified uncertainties, Phys. Rev.
C 92, 064309 (2015).

[100] K. E. G. Löbner, M. Vetter, and V. Hönig, Nuclear intrinsic
quadrupole moments and deformation parameters, At. Data
Nucl. Data Tables 7, 495 (1970).

[101] T. Dytrych, A. C. Hayes, K. D. Launey, J. P. Draayer, P. Maris,
J. P. Vary, D. Langr, and T. Oberhuber, Electron-scattering
form factors for 6Li in the ab initio symmetry-guided frame-
work, Phys. Rev. C 91, 024326 (2015).

[102] R. Kanungo, W. Horiuchi, G. Hagen, G. R. Jansen, P.
Navratil, F. Ameil, J. Atkinson, Y. Ayyad, D. Cortina-Gil, I.
Dillmann, A. Estradé, A. Evdokimov, F. Farinon, H. Geissel,
G. Guastalla, R. Janik, M. Kimura, R. Knöbel, J. Kurcewicz,
Yu. A. Litvinov et al., Proton Distribution Radii of 12–19C
Illuminate Features of Neutron Halos, Phys. Rev. Lett. 117,
102501 (2016).

[103] T. Duguet, V. Somà, S. Lecluse, C. Barbieri, and P. Navrátil,
Ab initio calculation of the potential bubble nucleus 34Si, Phys.
Rev. C 95, 034319 (2017).

[104] M. Burrows, R. B. Baker, Ch. Elster, S. P. Weppner, K. D.
Launey, P. Maris, and G. Popa, Ab initio leading order effective
potentials for elastic nucleon-nucleus scattering, Phys. Rev. C
102, 034606 (2020).

[105] D. M. Brink and R. A. Broglia, Nuclear Superfluidity (Cam-
bridge University Press, Cambridge, UK, 2005).

[106] A. Ekström, G. Baardsen, C. Forssén, G. Hagen,
M. Hjorth-Jensen, G. R. Jansen, R. Machleidt, W.
Nazarewicz, T. Papenbrock, J. Sarich, and S. M.
Wild, Optimized Chiral Nucleon-Nucleon Interaction at
Next-to-Next-to-Leading Order, Phys. Rev. Lett. 110, 192502
(2013).

[107] G. Hagen, T. Papenbrock, and D. J. Dean, Solu-
tion of the Center-Of-Mass Problem in Nuclear
Structure Calculations, Phys. Rev. Lett. 103, 062503
(2009).

[108] G. Hagen, T. Papenbrock, D. J. Dean, and M. Hjorth-
Jensen, Ab initio coupled-cluster approach to nuclear structure
with modern nucleon-nucleon interactions, Phys. Rev. C 82,
034330 (2010).

[109] N. M. Parzuchowski, S. R. Stroberg, P. Navrátil, H. Hergert,
and S. K. Bogner, Ab initio electromagnetic observables with
the in-medium similarity renormalization group, Phys. Rev. C
96, 034324 (2017).

[110] M. G. Mayer and J. H. D. Jensen, Elementary Theory of
Nuclear Shell Structure (John Wiley & Sons, New York, 1955).

[111] Á. Koszorús, X. F. Yang, W. G. Jiang, S. J. Novario, S. W. Bai,
J. Billowes, C. L. Binnersley, M. L. Bissell, T. E. Cocolios,
B. S. Cooper, R. P. de Groote, A. Ekström, K. T. Flanagan, C.
Forssén, S. Franchoo, R. F. Garcia Ruiz, F. P. Gustafsson, G.
Hagen, G. R. Jansen, A. Kanellakopoulos et al., Charge radii
of exotic potassium isotopes challenge nuclear theory and the
magic character of N = 32, Nat. Phys. 17, 439 (2021).

[112] I. Angeli and K. P. Marinova, Table of experimental nuclear
ground state charge radii: An update, At. Data Nucl. Data
Tables 99, 69 (2013).

[113] T. Motobayashi, Y. Ikeda, K. Ieki, M. Inoue, N. Iwasa, T.
Kikuchi, M. Kurokawa, S. Moriya, S. Ogawa, H. Murakami,
S. Shimoura, Y. Yanagisawa, T. Nakamura, Y. Watanabe, M.
Ishihara, T. Teranishi, H. Okuno, and R. F. Casten, Large
deformation of the very neutron-rich nucleus 32Mg from
intermediate-energy Coulomb excitation, Phys. Lett. B 346, 9
(1995).

[114] T. Baumann, A. M. Amthor, D. Bazin, B. A. Brown, C. M.
Folden, A. Gade, T. N. Ginter, M. Hausmann, M. Matos, D. J.
Morrissey, M. Portillo, A. Schiller, B. M. Sherrill, A. Stolz,
O. B. Tarasov, and M. Thoennessen, Discovery of 40Mg and
42Al suggests neutron drip-line slant towards heavier isotopes,
Nature (London) 449, 1022 (2007).

[115] H. L. Crawford, P. Fallon, A. O. Macchiavelli, P. Doornenbal,
N. Aoi, F. Browne, C. M. Campbell, S. Chen, R. M. Clark,
M. L. Cortés, M. Cromaz, E. Ideguchi, M. D. Jones, R.
Kanungo, M. MacCormick, S. Momiyama, I. Murray, M.
Niikura, S. Paschalis, M. Petri et al., First Spectroscopy of the
Near Drip-Line Nucleus 40Mg, Phys. Rev. Lett. 122, 052501
(2019).

[116] D. T. Yordanov, M. L. Bissell, K. Blaum, M. De Rydt, Ch.
Geppert, M. Kowalska, J. Krämer, K. Kreim, A. Krieger, P.
Lievens, T. Neff, R. Neugart, G. Neyens, W. Nörtershäuser, R.
Sánchez, and P. Vingerhoets, Nuclear Charge Radii of 21–32Mg,
Phys. Rev. Lett. 108, 042504 (2012).

[117] K. Fossez, J. Rotureau, N. Michel, Q. Liu, and W. Nazarewicz,
Single-particle and collective motion in unbound deformed
39Mg, Phys. Rev. C 94, 054302 (2016).

[118] N. Tsunoda, T. Otsuka, N. Shimizu, M. Hjorth-Jensen, K.
Takayanagi, and T. Suzuki, Exotic neutron-rich medium-
mass nuclei with realistic nuclear forces, Phys. Rev. C 95,
021304(R) (2017).

[119] T. Miyagi, S. R. Stroberg, J. D. Holt, and N. Shimizu, Ab
initio multishell valence-space Hamiltonians and the island of
inversion, Phys. Rev. C 102, 034320 (2020).

[120] E. K. Warburton, J. A. Becker, and B. A. Brown, Mass sys-
tematics for A = 29–44 nuclei: The deformed A ∼ 32 region,
Phys. Rev. C 41, 1147 (1990).

[121] H. Iwasaki, T. Motobayashi, H. Sakurai, K. Yoneda, T.
Gomi, N. Aoi, N. Fukuda, Z. Fülöp, U. Futakami, Z. Gacsi,
Y. Higurashi, N. Imai, N. Iwasa, T. Kubo, M. Kunibu,
M. Kurokawa, Z. Liu, T. Minemura, A. Saito, M. Serata
et al., Large collectivity of 34Mg, Phys. Lett. B 522, 227
(2001).

[122] J. A. Church, C. M. Campbell, D.-C. Dinca, J. Enders, A.
Gade, T. Glasmacher, Z. Hu, R. V. F. Janssens, W. F. Mueller,
H. Olliver, B. C. Perry, L. A. Riley, and K. L. Yurkewicz,
Measurement of E2 transition strengths in 32,34Mg, Phys. Rev.
C 72, 054320 (2005).

[123] Z. Elekes, Zs. Dombrádi, A. Saito, N. Aoi, H. Baba, K.
Demichi, Zs. Fülöp, J. Gibelin, T. Gomi, H. Hasegawa, N.
Imai, M. Ishihara, H. Iwasaki, S. Kanno, S. Kawai, T. Kishida,
T. Kubo, K. Kurita, Y. Matsuyama, S. Michimasa et al., Proton
inelastic scattering studies at the borders of the “island of
inversion”: The 30,31Na and 33,34Mg case, Phys. Rev. C 73,
044314 (2006).

[124] S. Michimasa, Y. Yanagisawa, K. Inafuku, N. Aoi, Z. Elekes,
Zs. Fülöp, Y. Ichikawa, N. Iwasa, K. Kurita, M. Kurokawa,

064311-22

https://doi.org/10.1088/0370-1298/70/5/309
https://doi.org/10.1016/j.aop.2008.09.003
https://doi.org/10.1088/0954-3899/42/3/034028
https://doi.org/10.1103/PhysRevC.92.064309
https://doi.org/10.1016/S0092-640X(18)30059-7
https://doi.org/10.1103/PhysRevC.91.024326
https://doi.org/10.1103/PhysRevLett.117.102501
https://doi.org/10.1103/PhysRevC.95.034319
https://doi.org/10.1103/PhysRevC.102.034606
https://doi.org/10.1103/PhysRevLett.110.192502
https://doi.org/10.1103/PhysRevLett.103.062503
https://doi.org/10.1103/PhysRevC.82.034330
https://doi.org/10.1103/PhysRevC.96.034324
https://doi.org/10.1038/s41567-020-01136-5
https://doi.org/10.1016/j.adt.2011.12.006
https://doi.org/10.1016/0370-2693(95)00012-A
https://doi.org/10.1038/nature06213
https://doi.org/10.1103/PhysRevLett.122.052501
https://doi.org/10.1103/PhysRevLett.108.042504
https://doi.org/10.1103/PhysRevC.94.054302
https://doi.org/10.1103/PhysRevC.95.021304
https://doi.org/10.1103/PhysRevC.102.034320
https://doi.org/10.1103/PhysRevC.41.1147
https://doi.org/10.1016/S0370-2693(01)01244-8
https://doi.org/10.1103/PhysRevC.72.054320
https://doi.org/10.1103/PhysRevC.73.044314


ANGULAR-MOMENTUM PROJECTION IN … PHYSICAL REVIEW C 105, 064311 (2022)

T. Machida, T. Motobayashi, T. Nakamura, T. Nakabayashi,
M. Notani, H. J. Ong, T. K. Onishi, H. Otsu, H. Sakurai,
M. Shinohara et al., Quadrupole collectivity in island-of-
inversion nuclei 28,30Ne and 34,36Mg, Phys. Rev. C 89, 054307
(2014).

[125] M. R. Strayer, W. H. Bassichis, and A. K. Kerman, Cor-
relation effects in nuclear densities, Phys. Rev. C 8, 1269
(1973).

[126] J. D. Watts and R. J. Bartlett, Economical triple excitation
equation-of-motion coupled-cluster methods for excitation en-
ergies, Chem. Phys. Lett. 233, 81 (1995).

[127] R. de Swiniarski, C. Glashausser, D. L. Hendrie, J. Sherman,
A. D. Bacher, and E. A. McClatchie, Evidence for Y4 Defor-
mation in 20Ne and other s-d Shell Nuclei, Phys. Rev. Lett. 23,
317 (1969).

[128] B. Pritychenko, M. Birch, B. Singh, and M. Horoi, Ta-
bles of E2 transition probabilities from the first 2+ states
in even-even nuclei, At. Data Nucl. Data Tables 107, 1
(2016).

[129] A. Poves and A. Zuker, Theoretical spectroscopy and the f p
shell, Phys. Rep. 70, 235 (1981).

[130] M. Horoi, J. R. Gour, M. Włoch, M. D. Lodriguito, B. A.
Brown, and P. Piecuch, Coupled-Cluster and Configuration-
Interaction Calculations for Heavy Nuclei, Phys. Rev. Lett. 98,
112501 (2007).

[131] S. Novario, P. Gysbers, J. Engel, G. Hagen, G. R. Jansen, T. D.
Morris, P. Navrátil, T. Papenbrock, and S. Quaglioni, Coupled-
Cluster Calculations of Neutrinoless Double-β Decay in 48Ca,
Phys. Rev. Lett. 126, 182502 (2021).

[132] http://energy.gov/downloads/doe-public-access-plan.

064311-23

https://doi.org/10.1103/PhysRevC.89.054307
https://doi.org/10.1103/PhysRevC.8.1269
https://doi.org/10.1016/0009-2614(94)01434-W
https://doi.org/10.1103/PhysRevLett.23.317
https://doi.org/10.1016/j.adt.2015.10.001
https://doi.org/10.1016/0370-1573(81)90153-8
https://doi.org/10.1103/PhysRevLett.98.112501
https://doi.org/10.1103/PhysRevLett.126.182502
http://energy.gov/downloads/doe-public-access-plan

