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Nuclear magnetic-dipole (M1) and Gamow-Teller (GT) transitions provide insight into the spin-isospin
properties of atomic nuclei. By considering them as unified spin-isospin transitions, the M1/GT transition
strengths and excitation energies are subject to isospin symmetry. The excitation properties associated to the
M1/GT symmetry need to be clarified within a consistent theoretical approach. In this work, the relationship
between the M1 and GT transitions in Ca isotopes is investigated in a unified framework based on the relativistic
energy-density functional (REDF) with point-coupling interactions, using the relativistic quasiparticle random-
phase approximation (RQRPA). It is shown that the isovector-pseudovector (IV-PV) residual interaction affects
both transitions, and the symmetry of M1 and giant-GT transitions is disrupted by this interaction in closed-shell
nuclei. In open-shell Ca isotopes, the proton-neutron pairing in the residual RQRPA interaction also plays a
role in GT transitions. Due to the interplay between these interactions, the M1/GT symmetry can be restored
especially in the 42Ca nucleus, i.e., the giant-GT strength can become comparable to that of the M1 mode
in terms of the unified spin-isospin transitions by adjusting the proton-neutron pairing strength to reproduce
the experimental low-lying GT-excitation energies. The mirror symmetry of both M1 and GT transitions is
also demonstrated for open-shell mirror partners, 42Ca and 42Ti. Further improvements are required to achieve
simultaneous reproduction of M1 and GT transition energies in the REDF framework.
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I. INTRODUCTION

Nuclear magnetic-dipole (M1) and Gamow-Teller (GT)
modes have attracted interest in their isospin symmetry [1,2].
The GT operator for an A-nucleon system formally reads∑

k∈A τ̂±(k)σ̂(k), where τ̂ and σ̂ indicate the isospin and spin,
respectively. For the spin-flip M1 transition, on the other side,
its isovector (IV) operator is given as

∑
k∈A τ̂0(k)σ̂(k) by

neglecting physical factors. Therefore, the GT and IV-spin
M1 transitions can be interpreted as the unified spin-isospin
transition, and a similarity based on the isospin symmetry
is expected. Theoretically, both the GT and M1 transitions
are roughly understood by considering the spin-orbit (SO)
splitting and relevant residual interactions [3–5] (see also
Refs. [6–12] for M1 and and Refs. [13–17] for GT transi-
tions). In open-shell nuclei, the isoscalar and isovector pairing
correlations have been shown as relevant [12,14,18–24].

The GT transition is one of the main ingredients of β

radioactivity [25–27]. It plays an essential role in nucleosyn-
thesis especially by determining the β-decay lifetimes, which
provide a key ingredient for understanding the r-process
timescale [26–28]. Furthermore, evaluation of the GT strength
is important in order to predict the neutrino-induced reactions
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and electron capture in nuclei during the late stages of stel-
lar evolution [29,30]. In Refs. [17,19], the GT resonances
are reproduced by improving the spin-isospin parameters in
the Skyrme energy-density functional (EDF). Recently in
Ref. [31], by utilizing the subtracted second Skyrme random-
phase approximation (RPA), the GT strengths of 48Ca and
78Ni are obtained in better agreement with experiments than
the other EDF calculations. In addition, one remarkable ad-
vantage in studies on GT modes is the existence of the
Ikeda-Fujii-Fujita sum rule [32,33]. This rule has provided an
essential constraint to validate studies of GT resonances and
spin-isospin properties in nuclei [13–19,31,34–36].

The M1 transition is the leading mode of magnetic tran-
sitions [25,37–40], and has been theoretically studied by
utilizing the nonrelativistic RPA [6–10,41–43], relativistic
RPA [11,12], shell-model calculations [44–47], etc. For fur-
ther information, see the references in reviews [37,38]. In
Refs. [45,46], the analogy with neutrino-nucleus scattering is
discussed. It also plays a role in the determination of neutron-
capture rates, of significance for the r-process nucleosynthesis
[46,48,49]. In Ref. [47], the minor (finite) quenching of the
IS (IV) M1 strength is concluded. There exists Kurath’s sum
rule for the M1 transitions in the case where the single-
orbit approximation is applicable [50]. In the nonrelativistic
RPA studies [6–10], the RPA-residual interaction essentially
contributes in determining the M1 energy and strength, and
its importance is also concluded in the relativistic RPA
studies [11,12].
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For experimental measurement of GT transitions, two pro-
cedures have been utilized, namely, those from β radioactivity
and charge-exchange (CE) reactions. The β radioactivity may
provide direct information on the GT strength BGT [25,26].
However, its experimental accessibility is limited by the en-
ergy release (Q value). The CE reactions by strong-interaction
probes, on the other side, enable one to measure the GT
transitions toward higher energies. The famous examples in-
clude the CE excitations by the (p, n) as well as (3He, t )
reactions [27,51–55]. For M1 transitions, although its con-
cept originates in the electromagnetic interaction, those can
be measured also with the common strong-interaction probes
[27,47,56–58]. Namely, assuming the isospin symmetry, this
type of M1 transition can be interpreted as the isobaric-analog
component in the same category of GT transitions. Recent
developments of experiments provide a rich amount of data
to this aim. However, the expected symmetry between these
M1 and GT transitions has not been completely validated. In
addition, for improvement of theoretical models, the simulta-
neous reproduction of these M1/GT properties could be used
as a standard benchmark.

In this work, we discuss the M1 and GT transitions
within a common framework of the relativistic energy-density
functional (REDF) theory [36,59–65]. By utilizing the rela-
tivistic quasiparticle random-phase approximation (RQRPA)
[14,66,67], we discuss the relationship between M1 and GT
transitions. The validity of current REDF parametrization is
examined from the experimental M1 and GT data.

In this paper, we use the CGS-Gauss system of units.
Also, all the systems discussed in the following sections are
assumed as spherical.

II. FORMALISM

The relativistic mean-field calculation and RQRPA devel-
oped in Refs. [11,12,36,64,68] are utilized in this work. We
briefly review the formalism and setting of parameters. Our
calculation is based on the point-coupling REDF determined
from the Lagrangian density,

L = LPC + LIV-PV, (1)

where LPC includes the isoscalar-scalar, isoscalar-vector, and
isovector-vector coupling terms with point-coupling (PC)
interaction [68,69]. In this work, two parametrizations of
density-dependent PC interactions are used, DD-PC1 [69] and
DD-PCX [70]. In addition, for description of GT and M1
transitions, the isovector-pseudovector (IV-PV) Lagrangian
density is included, where it contributes to the RQRPA resid-
ual interaction [62,67,71]. That is,

LIV-PV = −h̄c
αIV-PV

2
[ψ̄γ5γμ�τψ][ψ̄γ5γ

μ�τψ]. (2)

Note that, since this IV-PV term leads to the parity-violating
mean field at the Hartree level, it does not contribute to the
solution of natural-parity states, including the 0+ ground state.
In the nonrelativistic limit, the IV-PV interaction derived from
this Lagrangian density corresponds to the spin-isospin term
in the Landau-Migdal interaction [12].

TABLE I. Interactions used in our RHB and RQRPA calcu-
lations. The label ph (pp) indicates the quasiparticle-quasihole
(quasiparticle-quasiparticle) channel.

M1 GT

RHB (0+) ph DD-PC1/DD-PCX
pp T1 pairing

RQRPA (1+) ph DD-PC1/DD-PCX plus IV-PV
pp T1 pairing PN (T0) pairing

For open-shell nuclei, pairing correlations in the particle-
particle (pp) channel should be taken into account.
For this purpose, we employ the same model used in
Refs. [11,62,68,69]. Namely, for isospin-triplet (T1) pairs
of proton-proton and neutron-neutron, a finite-range two-
Gaussian potential is used. That is,

Vpp,T1(d ) =
∑
i=1,2

e−d2/μ2
i
(
Wi + BiP̂

σ

− HiP̂
τ − MiP̂

σ P̂τ
)
, (3)

where d = |r2 − r1|. The operators P̂σ and P̂τ indicate the
exchanges of the spin and isospin, respectively. Its parameters
μi, Wi, Bi, Hi, and Mi are taken from the central part of the
Gogny-D1S force in Ref. [72]. Therefore, both in the M1 and
GT cases, the ground state is obtained from the relativistic
Hartree-Bogoliubov (RHB) method with the DD-PC1 and T1-
pairing parameters in the particle-hole and particle-particle
channels, respectively. This T1 pairing is also used in the
RQRPA for M1 transitions.

For isospin-singlet (T0) proton-neutron (PN) pairing, on
the other side, we assume the same potential used in the PN-
RQRPA calculations in Refs. [14,73,74], i.e., the similar two-
Gaussian potential but only active in the S12 = 1 channel. That
is,

Vpp,T0(d ) = f

[
−G0

∑
i=1,2

e−d2/ν2
i gi

]
	S12=1,T12=0, (4)

where 	S12=1,T12=0 indicates the projection into the (S12 =
1, T12 = 0) channel. Here parameters G0, gi, and νi are the
same as utilized in Ref. [74] but with the strength param-
eter f = 0.81 adjusted to reproduce the low-lying GT(−)
excitation energy of 42Ca, 0.611 MeV [75], which is shown
in Sec. III C. We have summarized the interactions used for
the ground-state (RHB) as well as the excited-state (RQRPA)
calculations in Table I.

We use the isospin convention as τ̂0(k) |k〉 = τ0 |k〉 with
τ0 = 1 (−1) when the kth nucleon is a neutron (proton). The
GT operator thus reads

ÔGT(±)
ν =

∑
k∈A

τ̂±(k)ŝν (k), (5)

where ν = ±1 or 0 (magnetic quantum number). The isospin
operator τ̂±(k) changes the charge of the kth nucleon in the
GT(±) transition. Notice that the spin operator ŝν is used in-
stead of σ̂ν = 2ŝν , and thus, the present definition is different
by a factor of 1/2 from the usual GT operator. On the other
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side, the IV M1 operator reads

ÔM1
ν = μN

√
3

4π

∑
k∈A

τ̂0(k)[gsŝν (k) + gl l̂ν (k)], (6)

where μN indicates the nuclear magneton, and the nuclear
g factors for the IV M1 mode are gs = 4.706 and gl = 1/2
[50,76]. However, with respect to the GT operator, we ne-
glect the orbital-M1 component, τ̂0 l̂ν , except when mentioned.
We also omit the factors gs and μN

√
3/4π in the following

sections. This omission corresponds to the renormalization
of BM1 as in Ref. [77]. Namely, we employ the IV spin-M1
operator,

ÔM1S
ν =

∑
k∈A

τ̂0(k)ŝν (k), (7)

which is in correspondence to the GT operator. In this work
the so-called quenching factors on M1 and GT operators are
not considered, for simplicity.

For the orbital-M1 component, τ̂0 l̂ν , its contribution to the
IV M1 response is indeed finite, but it does not change the M1
excitation energies. We describe its details in the Appendix.
In the main text, we neglect this “inclusion” into the unified
spin-isospin modes, and consider their operators as in Eqs. (5)
and (7).

The charge-conserving RQRPA is utilized for the IV-spin-
M1 mode. Using the quasiparticle random phase approxima-
tion (QRPA) ansatz, the M1-excited state |ω〉 is formally given
as

Ĥ |ω〉 = h̄ω |ω〉 , |ω〉 = Ẑ†
M1(ω) |�〉 , (8)

where |�〉 is the RHB ground state and h̄ω is the excitation
energy. The M1-excitation operator reads

Ẑ†
M1(ω) =

∑
ρ<σ

{Xρσ (ω)Q̂†
σρ − Y ∗

ρσ (ω)Q̂σρ}, (9)

with Q̂σρ = [âσ ⊗ âρ](J,P) coupled to the JP = 1+ spin and
parity. Here âσ is the quasiparticle operator with the label
σ for quantum numbers. The labels (ρ, σ ) indicate proton-
proton and neutron-neutron pairs. In the PN-RQRPA for
GT(±) modes [14,67], on the other side, it reads

Ẑ†
GT(ω) =

∑
α,β

{Xαβ (ω)Q̂†
βα − Y ∗

αβ (ω)Q̂βα}, (10)

where labels (α, β ) indicate proton-neutron 1+ pairs. Then,
by solving the matrix form of the QRPA equation, excitation
amplitudes are obtained:(

A B
B∗ A∗

)(
X (ω)
Y ∗(ω)

)
= h̄ω

(
I 0
0 −I

)(
X (ω)
Y ∗(ω)

)
, (11)

where A and B are the well-known QRPA matrices [66,67,78].
From the RQRPA solutions |ω f 〉 with E f = h̄ω f , response
functions can be obtained as

RX (E ) =
∑

f

δ(E − E f )BX (E f )

=
∑

f

δ(E − E f )
∑

ν=±1,0

∣∣〈 f | ÔX
ν | �〉∣∣2

, (12)
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FIG. 1. The nonperturbed IV-spin-M1 and GT(±) strength
distributions obtained with the DD-PC1 interaction. The GT(±)-
excitation energies Ex are presented with respect to the daughter
nuclei [73].

for X = M1S and GT(±). For the purpose of visualization,
these response functions are smeared with the normalized
Cauchy-Lorentz profile, whose full width at half maximum
(FWHM) is 1.0 MeV in this work. For magic nuclei, corre-
sponding to the zero-pairing limit, the RQRPA reduces to the
relativistic random-phase approximation (RRPA). Similarly
to Refs. [11,12], our RHB and R(Q)RPA calculations are
performed in the model space expanded in the harmonic os-
cillator (HO) basis up to 20 major shells. The cutoff energy of
120 MeV for the configuration space in the QRPA is checked
to be sufficient to have the convergence of results.

III. RESULTS

A. Nonperturbed response

Before going to the full consideration of the RQRPA calcu-
lations, first we show the nonperturbed responses for the GT
and M1 transition operators. They are obtained by neglect-
ing the residual RQRPA interaction, thus keeping only the
response calculated with the DD-PC1 interaction. The pairing
(pp) correlations in the ground states are also neglected.

In Fig. 1, the nonperturbed response functions for GT
and M1 modes obtained with the DD-PC1 interaction are
displayed for 18O, 42Ca, and 48Ca. Since their operators
introduced in Eq. (5) have the identical form of τ̂ ŝ, their
responses can be directly compared. Note that, for GT(±)
modes, their excitation energies are given with respect to
the ground states of daughter nuclei by using the converting
method in Ref. [73].

First we focus on the isobaric-analog symmetry be-
tween the IV-spin-M1 and the giant, higher-energy GT(−)
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OISHI, RAVLIĆ, AND PAAR PHYSICAL REVIEW C 105, 064309 (2022)

transitions. For all three nuclei shown in Fig. 1, the non-
perturbed IV-spin-M1 strength is equal to the higher-energy
GT(−) strength: RM1

∼= RGT(−)(Ex) with Ex = 5.4, 6.6, and
8.5 MeV in 18O, 42Ca, and 48Ca, respectively. By analyzing
the transition components, this equivalence can be explained
from the identical set of quasiparticle transitions. That is,

ν(1d5/2) −→ ν(1d3/2) in IV M1 and

ν(1d5/2) −→ π (1d3/2) in GT(−),

for 18O, where the symbol π (ν) indicates the proton (neutron)
state. Similarly for 42,48Ca,

ν(1 f7/2) −→ ν(1 f5/2) in IV M1 and

ν(1 f7/2) −→ π (1 f5/2) in GT(−).

Because the form of operators and the set of quantum labels
are identical, it is natural to produce the same amount of
transition strength in these two modes.

On the GT(−) side in Fig. 1, there is another, low-
lying peak. This low-lying GT response is attributable to
the charge-exchange transition of ν( j = l + 1/2) → π ( j =
l + 1/2) [14]. That is, for 18O,

ν(1d5/2) −→ π (1d5/2) in GT(−),

whereas, for 42,48Ca,

ν(1 f7/2) −→ π (1 f7/2) in GT(−).

Notice that its isobaric-analog transition of M1 type is non-
physical because the initial and final states are in this case
identical.

In Fig. 1 the nonperturbed low-lying GT(−) responses
show the negative excitation energies. This implies that, by
neglecting the residual RQRPA interactions, the calculated
GT(−) energies of daughter nuclei inevitably result lower
than the experimental ground-state energies. This drawback
is remedied in the next section by including the residual
interactions.

By comparing the nonperturbed M1 and GT(−) energies
in Fig. 1, one can observe that EM1

∼= �EGT(−) for each nu-
cleus, where �EGT(−) is the gap between the higher and lower
GT(−) energies. This is trivial because EM1 (�EGT(−)) corre-
sponds to the SO-splitting gap of relevant orbits of neutrons
(protons). Since the relevant SO splitting is of the same l j
numbers, the EM1 and �EGT(−) values are also similar.

For these nuclei, the GT(+), as well as proton-M1 transi-
tions, are strongly suppressed by the Pauli blocking effect. By
comparing the results for Ca isotopes, one can read that the
nonperturbed M1 and GT responses are proportional to the
number of valence neutrons around the 40Ca core, namely,
BX (48Ca) ∼= 4BX (42Ca) both for X = M1 and GT. This is
simply because the 40Ca nucleus cannot be active for either
M1 or GT transitions.

Note that, for the 18O and 42Ca nuclei, the two-valence-
nucleon M1 sum rule [20] was consistently reproduced in the
nonperturbed relativistic RPA [11]. For the 42Ca and 48Ca
nuclei, in addition, Kurath’s M1 sum rule [50] was also repro-
duced: its details were presented in Ref. [12]. On the GT side,
the Ikeda-Fujii-Fujita sum rule [32,33] can be reproduced
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FIG. 2. Top: The IV-spin-M1 and GT(−) strength distributions
for 48Ca with the DD-PC1 and DD-PCX interactions supplemented
with the IV-PV residual interaction in the RRPA. The arrows indicate
the experimental M1 and GT(−) energies: EM1 = 10.23 MeV [79];
EGT = 2.517 MeV [75] and ∼= 10.8 MeV [80]. Several values for
the IV-PV coupling constant are used, i.e., αIV-PV = 0, 1.0, 1.7, and
2.1 fm2. For the GT(−) mode, the excitation energy is presented with
respect to the ground state of the daughter 48Sc nucleus. Bottom: The
same plot but for 208Pb. The experimental M1 and GT(−) energies
are measured as EM1

∼= 7.3 MeV [81] and EGT = 15.6 MeV [82,83].

up to 90–95% with a small deficiency due to omitting the
Dirac-sea states at the R(Q)RPA level [14,66,67].

B. IV-PV residual interaction

Next we employ the IV-PV Lagrangian density LIV-PV,
which contributes at the level of the R(Q)RPA residual in-
teraction [62,67,71]. In Fig. 2, the M1 and GT distributions
are presented for 48Ca and 208Pb, by using the DD-PC1 and
DD-PCX interactions combined with the IV-PV interaction
term with the coupling constant, αIV-PV. Notice that the pairing
correlations vanish in these closed-shell systems.

As a general result in both GT(−) and M1 cases in
Fig. 2, the IV-PV interaction works as an additional repul-
sion, which increases the 1+-excitation energies. Namely, the
single-particle energies and their SO-splitting gaps depend
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on the spin-parity value of the total system, JP, because the
IV-PV interaction becomes active (inactive) for the 1+ (0+)
states [62,67,71].

For the GT(−) transition of 48Ca −→ 48Sc, the recent
experiment by Fujita et al. reports the first major peak
at EGT = 2.517 MeV in the daughter 48Sc nucleus as the
low-lying GT excitation [75], whereas the second, giant
GT resonance is found around 9–14 MeV with wide frag-
mentation [75,80]. Compared with this set of experimental
data, our calculation becomes consistent when the IV-PV
coupling, αIV-PV = 1.70 fm2, is used with the DD-PC1 in-
teraction: the RRPA results in Ex = 2.53 and 13.43 MeV
for the two GT(−) peaks. Note that the second GT(−) peak
is expected as the transition to the continuum above the
proton-separation threshold, 9.45 MeV, in 48Sc [84]. There-
fore, as measured in Refs. [75,80], its width can be more
fragmented than our smearing assumption. For elucidating
this fragmentation, one may need to employ, e.g., the con-
tinuum effects [85,86] and/or the higher-order configurations
[3,31,34,53,87,88], which go beyond the present RQRPA
approach. On the other side, with respect to the experi-
mental M1 excitation energy, EM1 = 10.23 MeV in 48Ca
[79], the present setting of αIV-PV = 1.70 fm2 is a good
approximation; i.e., the RRPA with DD-PC1 gives the M1
excitation energy of 9.42 MeV. Considering the general ac-
curacy of the IV-PV parameter, however, we should mention
that the simultaneous reproduction of M1 and GT energies
for various nuclei is still demanding. To further exemplify
this point, the results for GT and M1 strength functions
for 208Pb are presented in the lower panel of Fig. 2. One
can observe that the current setting of αIV-PV = 1.70 fm2

with DD-PC1 overshoots its M1 and GT(−) energies by
1–2 MeV.

A similar problem occurs when we employ the DD-PCX
interaction [70] as shown in Fig. 2. For the 48Ca nucleus, by
using αIV-PV = 2.1 fm2 for the IV-PV coupling, the experi-
mental M1 and low-lying GT energies are well reproduced.
Simultaneously, however, this result overshoots the experi-
mental energy of giant GT resonance, EGT

∼= 10.8 MeV in
48Sc [80]. Also, for 208Pb as another example, the present
setting does not match with the experimental M1 and GT
energies [81,83]. Consequently, the simultaneous reproduc-
tion of M1 and GT energies for light and heavy systems is
challenging in the present context of DD-PCX plus IV-PV in-
teraction. For quantitative agreement, one may need, e.g., the
system-dependent tuning of αIV-PV −→ αIV-PV(N, Z ) and/or
more complicated parametrization of the IV-PV Lagrangian.
These tasks go beyond our present scope. Note also that the
present IV-PV coupling constant adjusted to the GT energy
in 48Ca is larger than that in our previous works [11,12].
This is because, in Refs. [11,12], the parameter was adjusted
differently, i.e., to the mean value of M1 energies of 48Ca and
208Pb nuclei.

Figure 2 describes how the IV-PV interaction disrupts
the equivalence of strength between the M1 and the gi-
ant, higher-energy GT(−) transitions. Remember that, in the
nonperturbed case with αIV-PV = 0, these two peaks can be at-
tributed to the transition between (1 f7/2) and (1 f5/2) states to
yield the equivalent BM1/GT values. Then, with αIV-PV �= 0, the

 0

 5

 10

 15

 20

 0  0.5  1  1.5  2

E
xc

ita
tio

n 
E

ne
rg

y 
 [M

eV
]

αIV-PV  [fm2]

EIV-M1, DD-PC1
EIV-M1, DD-PCX

Exp. M1
ΔEGT(-), DD-PC1
ΔEGT(-), DD-PCX

 0

 5

 10

 15

 20

 0  0.5  1  1.5  2

48Ca

αIV-PV  [fm2]

EGT(-), DD-PC1
EGT(-), DD-PCX

Exp. GT(-)

FIG. 3. The M1 and GT(−) excitation energies for 48Ca obtained
with the DD-PC1 and DD-PCX interactions supplemented with the
IV-PV residual interaction for the range of values of its coupling
constant αIV-PV. The �EGT(−) denotes the gap between two major
GT(−) energies. The experimental M1 energy, 10.23 MeV [79], is
indicated by a dashed line. The experimental low-lying and giant
GT(−) energies, 2.517 MeV [75] and 10.8 MeV [80], respectively,
are indicated by solid lines.

M1-strength height BM1 decreases when the IV-PV coupling
becomes stronger [3], whereas in contrast the higher-energy
GT(−) strength BGT increases [15]. This opposite behavior
can be attributed to the fact that the IV-PV residual interac-
tion in the nonrelativistic limit yields the spin-isospin form
of (�s1 · �s2)(�t1 · �t2) [12,15], and thus enhances the isospin-
singlet, ν(1 f7/2) −→ π (1 f5/2) component in the GT(−) case.
In parallel, the ν(1 f7/2) −→ ν(1 f5/2) component in the M1
excitation is suppressed because the PV interaction does not
support this isospin-triplet component. Notice also that the
low-lying GT(−) strength is suppressed; namely, the PV
interaction does not promote the ν(1 f7/2) −→ π (1 f7/2) com-
ponent. A similar change of GT strength with the residual
interaction was reported in Refs. [15,89].

Figure 3 displays the M1 and GT excitation energies for
48Ca, calculated with the RRPA using DD-PC1 and DD-PCX
interactions, and the IV-PV residual interaction for the range
of values of its strength parameter αIV-PV = 0–2.1 fm2. If the
simple shell-model picture is a good approximation, the M1
excitation energy, EM1, is consistent to the SO splitting of
neutron levels [37,38], whereas the gap of giant and low-lying
GT energies, �EGT(−), corresponds to the proton SO splitting
[27,54]. As confirmed in the previous nonperturbed results
with αIV-PV = 0, the EM1 and �EGT(−) values coincide except
for a small gap due to the Coulomb-repulsion potential on
the proton side. We checked that these values are indeed
equivalent to the SO-splitting gaps of neutrons and protons
in the numerical ground-state solutions. Then, by increasing
the αIV-PV value, the difference of EM1 and �EGT(−) values
becomes wider. This tendency is confirmed both in the DD-
PC1 and DD-PCX cases. Consequently, the IV-PV residual
interaction affects both M1 and GT energies but in different
ways. This inequality is attributed to the spin-isospin character
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FIG. 4. Cumulative GT(−) strength for 48Ca obtained from our
RRPA method. The Ikeda-Fujii-Fujita sum rule as in Eq. (14) is
plotted by the dotted line. The arrow indicates the experimental value
of

∑
BGT(−) = 15.3/4 up to 30 MeV [80].

of the IV-PV interaction, whose effect is not common between
the neutron-neutron (NN) and PN configurations in the M1
and GT transitions, respectively.

In Fig. 4, the cumulative GT(−) strength for 48Ca is plot-
ted. This is defined as [19,31]

SGT(−)(Ex) =
∫ Ex

0
dE

dBGT(−)(E )

dE

=
∫ Ex

0
dERGT(−)(E ), (13)

where RGT(−)(E ) is the response function in Eq. (12). Also,
for comparison, it is convenient to use the Ikeda-Fujii-Fujita
sum rule [32,33]. That is,

lim
Ex→∞

[SGT(−)(Ex) − SGT(+)(Ex)] = 3(N − Z )

4
, (14)

from the total GT(±) summations. Notice the factor 1/4 be-
cause we use the spin operator ŝ instead of σ̂ = 2ŝ. For the
Ca nuclei, the GT(+) response is strongly suppressed due
to the Pauli blocking effect, namely, SGT(+)(Ex → ∞) ∼= 0.
In Fig. 4, our cumulative GT strength is consistent with the
Ikeda-Fujii-Fujita sum rule, SGT(−)(Ex → ∞) ∼= 6 for 48Ca,
with a small deficiency of ∼=8% due to omitting the Dirac-
sea states [14]. There are two main jumps at Ex

∼= 2.5 MeV
and Ex

∼= 13 MeV in correspondence with the GT excitation
energies in Fig. 2. Note that the similar result is obtained
from the nonrelativistic RPA [31]. However, the experimental
data yield

∑
BGT(−) = 15.3 ± 2.2 up to 30 MeV [80], which

is lower than our result, 4SGT(−)(Ex � 30 MeV) ∼= 22. This
discrepancy is due to the missing high-energy GT strength in
experiments, and thus, the Ikeda-Fujii-Fujita sum rule is not
shown as applicable. Indeed in Ref. [31], by employing the
subtracted second RPA, the GT strength is shown to be more
fragmented and in better agreement with experimental data
[80]. The similar method in the REDF framework, however,
is technically challenging, and beyond the present study.
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42−46Ca nuclei with the DD-PC1 and the IV-PV interaction with
αIV-PV = 1.7 fm2. The GT(−) response is shown for three values of
PN pairing strength, f = 0, 0.81, and 1.1. Vertical arrows indicate the
low-lying GT(−) energies in experiment [55,75]: for 42Ca −→ 42Sc,
0.611 MeV; for 44Ca −→ 44Sc, 0.667 MeV.

C. Open-shell Ca isotopes

In the following sections, except when modified, we com-
monly use the DD-PC1 plus IV-PV Lagrangian with αIV-PV =
1.70 fm2 adjusted to the experimental M1 and GT ener-
gies of 48Ca. For open-shell nuclei, the pairing correlations
should be taken into account. As explained in Sec. II, the
T1 pairing is described by the pairing part of the Gogny-
D1S force as used in Refs. [11,68]. The PN (T0) pairing
is described by the two-Gaussian potential as given in
Refs. [73,74].

Figure 5 shows our results for 42−46Ca. In Fig. 5, the GT(−)
response is shown for three values of PN pairing strength,
f = 0.0, 0.81, and 1.1 in Eq. (4). This PN pairing indeed
plays an essential role to reproduce the low-lying GT energy,
which appears higher than the experimental data when the
PN pairing is neglected. For instance, the PN pairing with
f = 0.81 reproduces the low-lying GT(−) excitation of 42Sc
at 0.611 MeV [55,75]. Note that the similar GT distribution
and the decrease of GT(−) energy by the PN-pairing inter-
action were predicted from the Skyrme QRPA [19]. For 44Ca,
however, there still remains a finite gap between the calculated
and experimental low-lying GT energies: the enhancement
of f = 1.1 is instead necessary for this system. It suggests
that, instead of the PN pairing strength commonly used for
all the isotopes, one needs the system-dependent fine-tuning
of PN pairing strength and/or further complicated model for
quantitative agreement. This observation agrees with applica-
tions of the RQRPA in the calculation of β-decay half-lives,
where it was found that a single value of PN pairing strength
cannot reproduce experimental half-lives across the isotopic
chain [23,24,90,91].

In Fig. 5, the absolute strengths of the M1 and giant-
GT transitions from 42Ca become comparable by using the
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PN pairing interaction with f = 0.81: RM1 = 0.34 MeV−1 at
EM1 = 11.1 MeV in 42Ca, whereas RGT(−) = 0.37 MeV−1 at
Ex = 9.3 MeV in the GT(−) daughter 42Sc nucleus. Namely,
the M1-GT equivalence, which was disrupted by the IV-PV
interaction for closed-shell nuclei in Fig. 2, is in this case
restored. However, that restoring effect is less visible in the
neutron-rich Ca nuclei. In the 44Ca case, for instance, a
stronger attractive PN pairing with f = 1.1 is necessary to
reproduce its experimental low-lying GT energy. However,
there is still a finite difference between its M1 and giant-GT
strengths: RM1 = 0.66 MeV−1 at EM1 = 10.72 MeV in 44Ca,
whereas RGT(−) = 0.91 MeV−1 at Ex = 10.35 MeV in 44Sc in
Fig. 5.

Notice that, by using f = 1.1, the low-lying GT(−) re-
sponse in 42Sc shows the negative excitation energy. Namely,
this GT(−) state results lower than the experimental ground
state, because of the overenhancement of the PN-pairing at-
tractive interaction.

In Fig. 6, the cumulative GT(−) strength for 42Ca is
plotted. Our cumulative GT strength is consistent with the
Ikeda-Fujii-Fujita sum rule, SGT(−)(Ex → ∞) ∼= 1.5 for 42Ca,
whereas the GT(+) response is negligible due to the Pauli
blocking effect. With f = 0.81 for the PN pairing, there are
two main jumps at Ex

∼= 0.6 and ∼= 9 MeV in correspondence
with the two major peaks shown in Fig. 5. However, in recent
experimental data [55], the second jump has not been con-
firmed. In Ref. [55], the measured value of total GT strength
for 42Ca −→ 42Sc is 2.6/4 = 0.65, where the factor 1/4 is
needed for the present comparison. This value is close to
our result, 0.64 with f = 0.81 but only from the first peak
at Ex = 0.6 MeV in Fig. 6. Namely, the RQRPA calculation
can be valid but mainly in the low-lying region. One possible
reason for the absence of experimental GT(−) strength es-
pecially in the high-energy region is the continuum coupling,
where the GT(−) excitation brings the final-state proton above
the one-proton threshold, and thus, its width can be large.
Another possibility is the effect of higher-order configurations
beyond the present RQRPA level, as we mentioned in the 48Ca
case [31].
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FIG. 7. The IV-spin-M1 and GT strength distributions of 42Ca
and 42Ti obtained with the DD-PC1 plus IV-PV interaction with
αIV-PV = 1.7 fm2. For GT(±) modes, their excitation energies are
presented with respect to the common daughter nucleus 42Sc. The ar-
row indicates the experimental low-lying GT(−) energy 0.611 MeV
in 42Sc [75].

Before closing our discussion, we check the mirror sym-
metry in terms of the M1 and GT transitions. For this purpose,
calculations are performed for 42Ti, which is the mirror sys-
tem of 42Ca. Figure 7 shows our results. The GT(+) strength
function from 42Ti coincides well with the GT(−) strength
function from 42Ca, where their daughter nucleus is common,
42Sc. In particular, the RQRPA predicts the low-lying GT(+)
state equivalently to the GT(−) case. The PN pairing is again
found as essential to reproduce its energy. For the M1 tran-
sition, these two isobaric-analog nuclei have consistent M1
excitation energy and strength. This can be naturally under-
stood from that their M1 transitions are mainly attributed to
the f7/2 −→ f5/2 transition in the proton (neutron) side for
42Ti (42Ca). Consequently, the mirror symmetry holds both in
the M1 and GT(±) transitions. However, we note that the M1
excitation energy in 42Ti predicted here is much higher than
the one-proton-separation threshold, 3.75 MeV [84], and thus
its fragmentation can be wider than the width used in smearing
our RQRPA spectra. Measurement of this continuum M1 state
is thus expected to be challenging.

IV. SUMMARY

We discussed the isobaric-analog symmetry between the
M1 and GT transitions in Ca isotopes by investigating their
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excitation energies and transition strengths. The symmetry of
unperturbed M1 and GT response can be broken by including
the IV-PV residual interaction in the R(Q)RPA, which affects
the M1 and GT strengths inequivalently. This is explained by
the spin-isospin character of the interaction, whose effect is
not common for the NN and PN configurations in the M1
and GT transitions, respectively. The isoscalar PN pairing
effect is also considered for open-shell nuclei. This effect is
found indispensable to reproduce their low-lying GT ener-
gies [19,90,91]. Due to the interplay between the IV-PV and
pairing channels in the RQRPA, the GT-M1 symmetry can
be restored in the open-shell 42Ca nucleus; i.e., the giant GT
excitation shows its strength being comparable to that of the
M1 excitation. A remarkable agreement between the GT(±)
transitions is predicted for 42Ca and 42Ti nuclei, implying the
mirror symmetry. This mirror symmetry is predicted also in
their M1 transitions.

The validity of IV-PV parametrization is also discussed
with respect to the experimental M1 and GT excitation
energies. We conclude that, within the present DD-PC1
(DD-PCX) plus IV-PV parametrization, the accurate and si-
multaneous reproduction of M1 and GT transition energies
for various nuclei is still rather challenging. This problem
suggests that further improvements of the REDF, especially
for the SO splittings, are required, as well as more advanced
formulation of the PV coupling.

The quenching effect is not considered in this work.
Whether the common quenching can be valid or not for IV-M1
and GT modes is an open and essential problem, to which we
are aiming to approach. A similar question has been discussed
between the IS and IV modes of M1 [47], which the RQRPA
could answer in the near future. We note that it could also
be interesting to discuss the GT/M1 properties in deformed
nuclei. However, this task requires a development of the de-
formed relativistic QRPA and intensive computations. We aim
to address this topic in our future work.
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APPENDIX: INCLUSION OF ORBITAL M1 COMPONENT

In this section, we investigate the effect of the orbital-M1
component. The original IV-M1 operator is given in Eq. (6)
in the main text, including both τ̂0ŝν and τ̂0 l̂ν terms. We
perform the RQRPA calculations by using these operators.
Note that the factor μN

√
3/4π and g factors, gs = 4.706 and

gl = 1/2, are taken into account in this section. The DD-PC1
and T1 pairing interactions are utilized similarly to the main
text. The IV-PV coupling of αIV-PV = 1.7 fm2 is also used in
the R(Q)RPA-residual interactions.

In Fig. 8, our results for the 48Ca and 42Ca nuclei are
displayed. There we compare the two cases, where the
orbital-M1 operator, glμN

√
3/4π · τ̂0 l̂ν is neglected (only s)

or included (s and l). It is shown that the inclusion of the
orbital-M1 component reduces the IV-M1 strength of these
nuclei. We checked that, in terms of M1-response summation,
which reads

∫
RM1(E )dE , this reduction is approximately

80% of the “only s” case. Since the orbit-M1 inclusion is
shown as another source of quenching of BM1, a careful
treatment is necessary in forthcoming studies. However, the
major excitation energies are not affected even if the orbital-
M1 component is included. This is natural because the selec-
tion rule of spin and orbital IV-M1 operators are identical [25].
Therefore, the active excited states in the R(Q)RPA calcula-
tions should be common and have the same eigenenergies.
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[12] T. Oishi, G. Kružić, and N. Paar, J. Phys. G: Nucl. Part. Phys.
47, 115106 (2020).

[13] D. Vretenar, N. Paar, T. Nikšić, and P. Ring, Phys. Rev. Lett.
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