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Deep learning approach to nuclear masses and α-decay half-lives
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Ab initio calculations of nuclear masses, binding energy, and α-decay half-lives are intractable for heavy
nucleus because of the curse of dimensionality in many-body quantum simulations as proton number (N) and
neutron number (Z) grow. We take advantage of the powerful nonlinear transformation and feature representation
ability of deep neural network (DNN) to predict the nuclear masses and α-decay half-lives. For nuclear binding
energy prediction problem we achieve standard deviation σ = 0.263 MeV on 10-fold cross validation on
2149 nuclei. Word-vectors which are high-dimensional representation of nuclei from the hidden layers of
mass-regression DNN help us to calculate α-decay half-lives. For this task, we get σ = 0.797 on 100 times
10-fold cross validation on 350 nuclei on log10T1/2 and σ = 0.731 on 486 nuclei. DNN is also used to reduce
the residual of three-parameter Gamow formula on 159 even-even nuclei, from 0.3627 to 0.2297 on log10T1/2,
using 100 times 10-fold cross validation. We find physical a priori such as shell structure, magic numbers and
augmented inputs inspired by finite-range droplet model are important for this small data regression task.
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I. INTRODUCTION

Ground-state nuclear mass (binding energy), α-decay half-
life, and β-decay half-life are all important properties of the
nucleus [1,2]. Accurately calculating and predicting these
quantities are crucial for justifying ab initio quantum many-
body calculations as well as phenomenology models, such
as liquid droplet model and shell model. Understanding the
creation of heavy elements in our universe by the rapid
neutron-capture process or r-process require accurate nuclear
mass predictions in nuclear astrophysics [3,4]. These quanti-
ties also play important roles in nuclear stability studies which
may guide us to find more super-heavy nuclei and even the
“super-heavy island.”

Machine learning is a collection of algorithms that let
the computer learn patterns from big data by themselves.
The learned patterns are widely used in classification and
regression tasks to get the state-of-the-art performance in
many scientific problems. Various machine learning meth-
ods have been used in nuclear physics for regression tasks.
For example, Bayesian neural network [5–8] (BNN), ra-
dial basis function (RBF), light gradient boosting machine
[9] (LightGBM), and many other methods [10,11] have
been applied to predict the residual between true nuclear
mass and phenomenology models, such as FRDM [12],
Weizsäcker-Skyrme (WS) mass model [13,14], and Skyrme
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HartreeFock-Bogoliubov (HFB) model [15,16]. These ma-
chine learning methods have improved both accuracy and
extrapolation ability greatly [17,18]. The mass predicted using
Machine Learning algorithm is used to construct the outer
crust equation of state (EoS) of a neutron star which is com-
parable to existing models [19].

Deep neural network (DNN) with multiple hidden layers
is the most popular machine learning tool, which has outper-
formed many traditional ways and advances many scientific
researches to the state-of-the-art. Read Refs. [20,21] for more
detailed reviews on its applications in nuclear physics. Deep
neural network is proved to have universal approximation
ability with at least one hidden layer. It has long been used
to predict the ground-state mass of nuclei [22–25]. However,
even with the rapid development in recent years, the per-
formance of deep neural network on ground state nuclear
mass are still much worse than other methods, as shown in
many recent researches. For example, the root-mean-square
(rms) deviation is above 1 MeV using a four-layer neural
network [26] recently. As a comparison, the rms deviation
from improved WS model is 0.336 MeV [14]. The best per-
formance from a decision tree-based method LightGBM has
rms deviation around 0.170 MeV [9]. We believe that the
feed-forward neural network used in recent studies are not
deep and wide enough to reach its best performance. After
performing a simple neural architecture search (NAS), we
achieve rms deviation 0.263 Mev in 10-fold cross validation.

The performance of deep neural network highly depends
on the amount of data, however, there are only about 2500
existing experiment data till 2020 [27] for nuclear mass
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regression, and less than 500 available experiment data for α-
decay half-life regression. One important question is whether
a deep neural network can learn from this tiny data without
terrible over-fitting. Will the patterns learned in mass predic-
tion help the α-decay half-life prediction?

One method is to train the same network to achieve mul-
tiple tasks, which is called multi-task learning (MTL). In this
way, different tasks have shared modules in the network as
well as their own modules. MTL optimizes the shared param-
eter with limited data for each task. MTL has been used to
describe the giant dipole resonance key parameters [28].

Another method is called representation learning. We use
the latent representations of each nucleus learned in the nu-
clear mass prediction task to assist the α-decay half-life
prediction. The latent representation is similar to word-vector
in natural language processing tasks where each word is repre-
sented by a high-dimensional vector with 256 or 512 floating
numbers, to represent individual words in a text, taking into
account the context and other surrounding words learned by
the deep neural network in other big-data problems. Using
a 256-dimensional word vector from the previous nuclear
mass prediction task as a new representation of a nucleus, we
predict the α-decay half-life and verify that the word-vector
really improve its performance.

The paper is organized as follows: In Sec. II we intro-
duce the network structure, the input data structure and the
prediction accuracy of nuclear binding energy. In Secs. III
and IV we introduce the method of nuclear-representation
and its application in predicting the α-decay half-lives. The
discussion and summary will be given in Secs. V and VI.

II. NUCLEAR BINDING ENERGY PREDICTION

A. Methods

The nuclear binding energy prediction is a supervised
regression problem. The objective is to minimize the the resid-
ual which is defined as the difference between experimental
data and semiempirical models. Two semiempirical models
are used, one is Bethe-Weizsäcker model (BWM) and the
other is liquid-droplet model (LDM). Both models have root-
mean-square error larger than 2 MeV.

Two types of inputs are used. The first type consists of three
native features, Z , N , and A, for each nucleus. The second type
has 26 features (see the Appendix) with physical a priori as
shown below. The neural network has one adjustable architec-
ture whose number of layers are n + 2 and neurons per hidden
layer equal to m or 4 × m.

Data flow in the feed-forward neural network according to
the following equation for adjacent layers,

hi = σ

(∑
j

wi jx j + bi

)
, (1)

where hi represents the value of the ith neuron in the next
layer, and x j represents values of the jth neuron in the pre-
vious layer. The network parameters are wi j (weights) and
bi (bias), which are initialized with random numbers and are
adjusted gradually during training using stochastic gradient
descent algorithm. The feature vector in the previous layer

FIG. 1. The adjustable neural network structure with the number
of hidden layers changed by n and the width of hidden layers changed
by m. The output layer is the residual defined in Eq. (2).

are first linearly transformed through zi = x jwi j + bi, and
then feed to a nonlinear activation function hi = σ (zi). The
operation corresponds to a manipulations of feature vector in
high-dimensional space.

As shown in Fig. 1, the input consists of three native fea-
tures (Z , N , A) or 26 physics-informed features. In the output
layer, there is one neuron representing the residual binding
energy. In between, there are n + 2 hidden layers. The first and
the last hidden layer have 4 × m neurons and the other n hid-
den layers have m neurons per layer. The number m is defined
as the “width” of the neural network. The performance of the
network prediction is scanned using 10-fold cross validation,
for n = (0, 2, 4, 6, 8, 10, 16) and m = (8, 64, 256, 512).

Other special method used in our DNN: between each
layer, batch-normalization method [29] is adopted to acceler-
ate learning as well as avoid vanishing gradient and exploding
gradient.

B. Performance scan and prediction accuracy

Shown in Fig. 2 are the 10-fold average RMS error for
different numbers of hidden layers and different numbers of
neurons per hidden layer. Using 26 features in the input, the
RMS error decreases from 1.5 to 0.3 MeV as the width of the
network increases from m = 8 to m = 64. Increasing m from
256 to 512 does not bring further improvement. However,
the performance is not sensitive to the depth of the neural
network. The RMS error changes slightly as one increases the
number of hidden layers from 2 to 18. For m = 256, the RMS
error reaches its minimum for 10 hidden layers (n = 8).

The parameters of the neural network are initialized with
random numbers and adjusted during the training process, as a
result, the final performance relies on the starting point of op-
timization in the parameter space. At rare times, the parameter
optimization starts at a position which produces worse results
than general cases. This happens in the performance scan for
a network with structure (n = 0, m = 256). Although it is a
rare event, we do not retrain the network for cherry picking. It
reminds us that repeating the training process many times is a
good way to capture the uncertainty of the network on small
data.

According to the performance scan, the optimal network
structure is (n = 8, m = 256) for LDM mass residual. As
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FIG. 2. The performance of the atomic mass prediction using 10-
fold cross validation. The bands represent the range of root-mean-
square error using different numbers of hidden layers and different
numbers of neurons per layer in the architecture of the deep neural
network. The optimal RMSE is around 0.22 MeV using 10 hidden
layers with 1,024 neurons in the first and the last hidden layer and
256 neurons for eight other hidden layers, which correspond to width
= 256 in the plot.

shown in Fig. 3, the average RMS error of 10-fold is approx-
imately 263 keV for 26 features and 332 keV for 3 features.
Using physical a priori as input, the RMS error reduces by
69 keV.

Shown in Fig. 4 are comparisons between semiempirical
models and network predictions with 3 and 26 features. As
the network is trained to predict the residual of semiempirical
model, the new prediction error is defined as

Residual = Mexp − MLDM − RNetwork. (2)

In this comparison, both training and testing data are included
as what has been done in semiempirical models.

Shown in Fig. 5 is the comparison between network pre-
diction and LDM for 322 new elements that have never been
used to train the network or to fit the parameters of LDM.
The network prediction for these 322 new elements has RMS
error 0.605 MeV which is larger than the validation accuracy
during training. However, it is much smaller than LDM where
the RMS is around 2.542 MeV. Usually it is believed that
a theoretical model with a few parameters generalize better
than a deep neural network, because the later has millions of
parameters (here our DNN has about one millions trainable
parameters) and was thought to be easy to overfit to the train-
ing data and fail to extrapolate to new data. In this study, it is

FIG. 3. The optimal performance of the atomic mass prediction
using 10-fold cross validation. The RMS error of the 10-fold cross
validation for (A) 26 features and (B) 3 features as the input of the
optimal network (n = 8, m = 256).

shown that the deep learning generalizes better than LDM on
new data.

III. GLOBAL α-DECAY HALF-LIFE PREDICTION

A. Methods

The neural network trained in the nuclear mass prediction
task can help the α-decay half-lives [30,31] prediction in two
folds. First, for super-heavy nucleus [32] whose Q value has
no experimental measurements or ab initio calculations, the
high precision network prediction provides a cheap way to
compute the Q value [33], using the mass of the mother
nucleus, daughter nucleus and the α particle. Second, the
network trained in nuclear mass prediction produces a word-
vector representation for each nucleus, it is simply get from
one of its hidden layers with a high dimension. The represen-
tation encodes high-dimensional information of the nucleus
which may help many other calculations in nuclear physics,
such as α-decay and β-decay [34,35] half-lives or charge
radius prediction. In the present work, we test the effect on
α-decay half-lives prediction.

The Q value is a key information in α-decay and the half-
lives is really sensitive to it according to most semiempirical
formulas, e.g., Royer formula [36]. It will be an important
feature to be used as the input of the neural network for
α-decay half-lives prediction. Shown in Fig. 6 is the prediction
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FIG. 4. The prediction error for all the nuclei as compared with
LDM. Both training and testing data are used with (A) 26 features
and (B) 3 features as the input of the optimal network (n = 8, m =
256).

error of the Q value as compared with experimental data for
486 nuclei. The performance is not good for some super-heavy
nuclei, however, the average rms deviation is only 0.15 MeV.
Figure 7 is a more detailed comparison for nuclei with proton
number = 86, 87, 88, 89, 92, 93.

The network we used is smaller in the α-decay half-lives
prediction after the performance scan. The structure is (n
input, 128, 256, 256, 256, 256, 256, 1) where “tanh” activation

FIG. 5. The mass-residual prediction error for 322 new elements
in AME2020 as compared with LDM.

FIG. 6. The Q-value prediction error for 486 nuclei.

functions are used for the first and the last hidden layer, and
“relu” activation functions are used for other hidden layers.

The training data used to get the nuclear word-vector is not
those best physical nuclear mass models, which contain both
macro and micro parts whose residual is only about 0.4 Mev
[37–39]. We only use the macro part of Bethe-Weizsäcker
model (BWM) and liquid-droplet model (LDM). In our expe-
rience, subtracting both macro and micro parts will not benefit

FIG. 7. The Q value from deep neural network (solid circles) as
compared with experimental measurements (square) for nuclei with
proton number = 86, 87, 88, 89, 92, 93.
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nuclear word-vector learning. We observe that keeping the
micro parts in the mass residual helps to reduce the α-decay
half-lives predicting error. Although the learning is more dif-
ficult if the effects of micro parts are included in the mass
residual, the network will try its best to encode the associated
quantum properties of nucleus to minimize the differences
to the residual in supervised learning. The encoded quantum
properties in the nuclear word-vector helps the α-decay half-
lives prediction.

The prediction accuracy for two types of inputs are calcu-
lated. The first type mainly consists of native features. The
second type uses representations of nucleus learned in the
atomic mass prediction task, which is the word-vector.

In the 10-fold cross validation, the data-set is evenly di-
vided into 10 folds, 9 folds are used for training and 1 for
validation. Since our training data set is small, even 10-
fold cross validation method still have big fluctuation and
cannot evaluate the performance in a credible way, so we
do 100 times 10-fold cross validation to better evaluate the
performance our neural network. As a result, there are 1000
validation scores for each type of inputs.

B. Results

The latent representations of nuclei are learned in the
nuclear mass prediction task. Analogous to the spatial rep-
resentation and momentum representation, the word-vector
representations carry the ground-state information of nuclei
using a high-dimensional array of floating numbers. The high-
dimensional word-vector of nuclei are believed to capture
physics of the many-body quantum system which will help
other relating tasks. This representation helps the network to
predict the α-decay half-lives better as compared with that
trained with native features as inputs on the 350 nuclei, as
shown in Fig. 8. We also test the performance of word-vector
gotten from different hidden layers, as show in Fig. 9 and
find that as the network goes deeper, the performance turns
worse. The word vectors from deep layers seem to encode
more information about the nuclear mass, which is objective
of the pretraining task and will not help too much in other
tasks. Word-vectors get from shallow hidden layers seem to
be good representations for new tasks.

It might seem a bit confusing in 10, some histograms have
“two peaks,” that is because there are two nuclei in the data set
hard to be predicted (Z = 64, N = 84 and Z = 71, N = 82),
so the folds that have these two will have bad scores.

If a nucleus in the α-decay table has not been used to train
the mass prediction network, then its latent representation will
not be as good as those nuclei in the training dataset. In the
previous data-set with 350 nuclei, 26% are missing from the
pretraining data. In another data-set which has 486 nuclei
along with the experimental Q value, 29% have not been used
to train the mass-residual prediction network. For this new
data-set, training with 64 native features still performs better
than the best word-vector performance. Using the 64 native
features as inputs, as show in Fig. 10 we get an RMS = 0.7315
on 100 times 10-fold cross validation, and the average training
loss is about 0.1.

FIG. 8. Prediction for α-decay half-lives using native inputs as
compared with word-vector representations on 350 nuclei. Word
vector 1 means it is obtained from the first hidden layer of the deep
neural network we used to predict nuclear mass; for the details of
those native features, see the Appendix.

The division of training data and testing data can hugely
influence the test result as we have seen in Fig. 10, the result of
100 times 10-fold cross validation. Figure 11 shows a certain
division which lead to the best testing result.

FIG. 9. The performance of word-vector from different hidden
layers compared with native features as inputs.
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FIG. 10. Result of α-decay half-lives prediction on 486 nuclei
using 64 native features as input.

IV. α-DECAY HALF-LIVES PREDICTION ON EVEN-EVEN
NUCLEI

Three-parameter Gamow formula [40–42] has a quite low
prediction error for the half-lives of even-even nuclei,

logT = a
Z

Q
+ b

√
Z + c. (3)

The residual between Gamow formula and measurements can
be further reduced either using a polynomial fit or a neural
network. Figure 12 shows the performance of DNN in im-
proving the residual. Using DNN, we can reduce the residual
of Gamow formula from 0.3627 to 0.2297, on 100 times 10-
fold cross validation. The inputs (native 64 inputs) and DNN
structure is the same as what we use for the global half-life
prediction.

Using polynomial fit, the lowest residual we can get is
0.3052 using the same cross validation. The DNN generalizes
better than a polynomial fit even on this small data problem.
We also try to fit the network prediction using polynomial
functions to see if it can generate some analytical relation.
And we find among 1 to 10 order polynomials, the second
order can do the best job with a result of 0.2679 on 100 times
10-fold cross validation. Although it is still not as good as
DNN’s 0.2297, it is already much better than fit the Gamow

FIG. 11. Best network model prediction on 486 α-decay half-
lives data.

FIG. 12. The distribution and the mean residual of the Gamow
formula as compared with the DNN improvement, on the α-decay
half-lives of even-even nuclei.

residual directly, with lowest residual 0.3052 using different
orders of polynomial functions. Higher order polynomials
make the performance worse because of over fitting. The
extracted coefficients are as follows:

0.1547Z − 0.0222N − 0.4344Q

− 0.0022Z2 − 0.0008N2 + 0.0204Q2

+ 0.0024ZN + 0.0037ZQ − 0.0022NQ. (4)

As Z and N are much larger than Q, the following four
terms, Z , Z2, ZN , and Q, have large contributions. Adding
these four terms may improve the performance of the Gamow
formula,

logT = a
Z

Q
+ b

√
Z + cZ2 + dZN + eQ + f Z + g. (5)

The cross validation performance of this modified Gamow
formula on even-even nuclei is shown in Fig. 13.

FIG. 13. The distribution and the mean residual of modified
Gamow formula on the α-decay half-lives of even-even nuclei.
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TABLE I. The correlations between various features and mass
residual for LDM and BWM. According to the table, the magnitude
of the correlation is strong for shell structure and magic numbers.

Features Correlation Features Correlation

residual_LDM 1.000000 residual_BWM 1.000000
N_shell8 0.194654 N_shell8 0.380971
Z_shell7 0.120731 Z_shell7 0.363741
N_shell3 0.116282 Z_shell6 0.170536
Z_shell3 0.086444 N_shell7 0.143813
N_shell4 0.072662 Z 0.130579
Z_shell4 0.070161 A 0.104727
N_shell5 0.040211 N 0.086945
pair_energy 0.013236 A2/3 0.082608
Z 0.002454 Z_shell3 0.039904
A2/3 −0.000487 N-Z 0.005158
A −0.007885 pair_energy −0.003228
N −0.014537 Z_shell4 −0.018830
Z_shell5 −0.028344 A−1/3 −0.021580
Z_valence −0.033500 N_shell3 −0.039164
Z_shell6 −0.036544 N_shell6 −0.039891
A−1/3 −0.036847 Z_valence −0.043764
N-Z −0.041295 N_shell4 −0.054386
N_shell6 −0.044589 Z_shell5 −0.055684
N_shell7 −0.096653 N_shell5 −0.064732
magic_Z −0.188633 N_valence −0.153176
N_valence −0.249767 magic_Z −0.157655
magic_N −0.253896 magic_N −0.201970

V. DISCUSSION

Correlation matrix between the mass residual and features

The Pearson correlation coefficient is a good measure of
the importance of each feature for the mass residual pre-
diction, it also tells what physics is missing or not fully
considered in the semiempirical model. The formula is given
by

r = n(
∑

xy) − (
∑

x)(
∑

y)√
[n

∑
x2 − (

∑
x)2][n

∑
y2 − (

∑
y)2]

,

where r is the Pearson correlation coefficient, x and y
represent values of two features for various samples, and n
is the total number of samples. Shown in Table I are the cor-
relations between mass residual and various features. Some
common features are important for the LDM and BWM mass
residual prediction, e.g., the number of neutrons on the 8th
shell [43], the number of protons on the 7th shell, the number
of valence neutrons, and whether N or Z are magic numbers.
These features are important for both mass residual from
LDM and BWM. In principle, the deep neural network is able
to construct these features using native ones (N , Z , A). In
practice, the data are small and the network may arrive at the
final conclusion using other latent features. From the 10-fold
cross validation, these features help to reduce the RMS error
by 60 keV.

The correlation between mass residual and magic numbers
is also shown in the heat-map Fig. 14. The deviations are large
for either magic Z or magic N .

FIG. 14. The binding energy per nucleon as a function of proton
number Z and neutron number N .

The correlation between binding energy per nucleon and
number of valence nucleons are shown in Fig. 15. There seems
to be several bands with each one shows a linear correlation
between BE/A and valence nucleons. The band structure
comes from different energy levels for different valence shells.
In the differential study for different valence shells, light nu-
clei show negative correlation between BE/A and the number
of valence nucleons as shown in Fig. 16, while heavy nuclei
show positive correlation, as shown in Fig. 17.

0 20 40
N Valence

−8

−7

B
E

/A

0 20
Z Valence

−8

−7

B
E

/A

FIG. 15. The residual of binding energy per nucleon as a function
of number of protons (left) and number of neutrons (right) on valence
shells. Different shells contribute to different bands in the figure.
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FIG. 16. The binding energy per nucleon as a function of number
of protons (left) and number of neutrons (right) on valence shells 3
and 4.

VI. SUMMARY AND OUTLOOK

A deep neural network is trained to predict the nuclear
mass residual between experimental data and phenomenologi-
cal models. We achieve standard deviation σ = 0.263 MeV on
10-fold cross validation on 2149 nuclei. We verify that physi-
cal a priori (e.g., shell structure and magic numbers) helps to
decrease the predicting error in this small data problem. The
correlations between nuclear mass and various features, e.g.,
Z , N , magic number, as well as nucleons in each shell are cal-
culated. It shows that the magic numbers as well as the number
of nucleons on valence shells have strong correlation with
mass residual. The values of neurons in the hidden layers of
the network are used as latent representations or word-vectors
of nuclei. These nuclear word-vectors from pretrained models
in mass predicting task is used in a new α-decay half-lives
prediction. We observe that keeping the micro part in the
mass residual helps to learn a better word-vector of nuclei
for α-decay prediction task. Word-vectors from shallow layers
perform better than deep layers indicating that deep layers
might be more specific to the mass residual prediction.

FIG. 17. The binding energy per nucleon as a function of number
of protons (left) and number of neutrons (right) on valence shells of
heavy nucleus.

In the future, the nuclear word-vector learned in the mass
residual, α-decay half-lives prediction as well as other regres-
sion tasks can be used in relating tasks, such as β decay, r
process, and so on. The method developed in the present paper
paves a new way to use heterogeneous big data in the field of
nuclear physics.

ACKNOWLEDGMENTS

This work is supported by the National Natural Sci-
ence Foundation of China under Grants No. 12075098 and
No. 11861131009. Computations are performed at Nuclear
Science Computer Center at CCNU (NSC3). L.G.P. also ac-
knowledges the support provided by Huawei Technologies
Co., Ltd.

The data used in this study are listed below:

(1) 2149 nuclei (mass): FRDM (2012) [12]
(2) 2471 nuclei (mass): AME2020 [27,44]
(3) 350 nuclei (α decay): [45]
(4) 486 nuclei (α decay): [46–48]

APPENDIX: FEATURES OF DIFFERENT INPUTS

Twenty-six features for nucleus:

(1) (3 features) Z, N, A
(2) (7 features) Number of protons on 7 shells
(3) (8 features) Number of neutrons on 8 shells
(4) (1 feature) Number of valence protons
(5) (1 feature) Number of valence neutrons
(6) (3 features) N − Z , A2/3, A−1/3

(7) (1 features) Is Z a magic number? (1 for yes, 0 for no)
(8) (1 features) Is N a magic number? (1 for yes, 0 for no)
(9) (1 features) Pair energy: (−1)Z +(−1)N

2

Four features for odd-even:

(1) (1 features) Is odd-odd nucleus? (1 for yes, 0 for no)
(2) (1 features) Is even-even nucleus? (1 for yes, 0 for no)
(3) (1 features) Is odd-even nucleus? (1 for yes, 0 for no)
(4) (1 features) Is even-odd nucleus? (1 for yes, 0 for no)

Thirty features for nucleus:

(1) (26 features mentioned above)
(2) (4 features) odd-even

Native 11 features for α decay:

(1) (9 features) Z, N, A for mother, daughter nucleus and
He

(2) (1 features) Q value calculated by network.
(3) (1 features) Q−1/2 calculated by network.

Native 14 features for α decay:

(1) (9 features) Z, N, A for mother nucleus, daughter nu-
cleus and He.

(2) (1 features) Q value calculated by network.
(3) (4 features) odd-even for mother nucleus.
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Native 64 features for α decay:

(1) (60 features) 30 features for mother nucleus and
daughter nucleus.

(2) (3 features) Z, N, A for α particle
(3) (1 features) Q value calculated by network.

Word-vector 517 inputs for α decay:

(1) (512 features) 256-dimensional word-vector features
for mother nucleus and daughter nucleus.

(2) (4 features) odd-even for mother nucleus.
(3) (1 features) Q value calculated by network.
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