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Atomic masses of nuclei with neutron numbers N < 126 and proton numbers Z > 82
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In this paper we study atomic masses of the major shells to the northwest of the 208Pb nucleus, namely,
those with neutron numbers N < 126 and proton numbers Z > 82, in terms of neutron-proton interactions. With
statistical corrections, we are able to construct mass formulas for nuclei in this region with root-mean-squared
deviation close to 30 keV, which is more accurate than all previous efforts. Predicted results of some unaccessible
masses are tabulated in the Supplemental Material of this article.
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I. INTRODUCTION

Nuclear mass is one of the fundamental properties of an
atomic nucleus. There have been continuous efforts towards
understanding this quantity. Atomic mass evaluation of ex-
perimental measurements has been reviewed every four or
five years, and the latest three versions are the AME2012
[1], AME2016 [2], and AME2021 [3] databases. Theo-
retically, a few mass models were established, e.g., the
Duflo-Zuker model [4], the Skyrme-Hartree-Fock Bogoliubov
theory (SHFB) [5], the Weizsäcker-Skyrme model [6], and
the finite-range droplet model (FRDM) [7]. Besides these
theoretical models, local mass relations have been proved to
be useful, and efforts along this line include the Audi-Wapstra
extrapolation method [8], the Garvey-Kelson (G-K) mass re-
lations [9–13], mass formulas related to the neutron-proton
interaction relation [14,15], and mass formulas between mir-
ror nuclei [16–18].

The purpose of this paper is to report mass formulas for
nuclei in the major shells with neutron numbers N < 126 and
proton numbers Z > 82, namely, where both valence protons
and valence neutrons are in the 82–126 major shells, or north-
west of the doubly-closed-shell 208Pb nucleus in the nuclear
chart. For convenience, we treat neutrons as holes with respect
to the N = 126 major shell. With statistical correlations taken
into account, we are able to construct simple formulas of the
neutron-proton interaction between the last i neutrons and
the last j protons, denoted by δVin- j p, within the root-mean-
squared deviation close to 30 keV, and based on which we
demonstrate the predictive power of these formulas, which
have a remarkable accuracy.

This paper is organized as follows: In Sec. II we study a lin-
ear dependence of δV1n-1p on A, and study the statistical linear
correlation of deviations of calculated δV1n-1p from experi-
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mentally defined δV1n-1p, where mass formulas are obtained
with an accuracy typically about 30 keV. In Sec. III we apply
our formulas and make predictions of nuclear masses which
are not accessible in the AME2021 database. In Sec. IV there
is a brief summary.

II. NEUTRON-PROTON INTERACTIONS
AND MASS FORMULAS

The important role of the neutron-proton interaction in the
evolution of collectivity, deformation, and phase transitions
was stressed a long time ago by Shalit and Goldhaber [19] and
Talmi [20]. A surrogate of neutron-proton interaction strength
is the empirically obtained interaction for even-even nuclei.
This neutron-proton interaction was first constructed and stud-
ied by Zhang, Brenner, Casten, and collaborators [21,22]
and later refined by Fu and collaborators [23]. An integrated
neutron-proton interaction VNP was studied in Refs. [21,24],
which exhibits a linearity with NnNp, the product of valence
neutron and proton numbers. Casten and Zamfir proposed and
studied extensively the evolution of nuclear structure in terms
of the simple NnNp scheme [25].

The systematics of the neutron-proton interaction was ap-
plied to mass formulas in successive papers by Fu, Jiang, and
collaborators [14,15,26]. They defined the empirical neutron-
proton interaction between the last i neutrons and j protons,
denoted by δVin- j p as

δVin- j p(N, Z ) = M(N, Z ) + M(N − i, Z − j)

− M(N − i, Z ) − M(N, Z − j), (1)

where M(N, Z ) is the atomic mass of a nucleus with N neu-
trons and Z protons. Apparently, once δVin- j p is available,
one immediately obtains relations of four neighboring nu-
clei with neutron and proton numbers (N, Z ), (N − i, Z − j),
(N − i, Z ), and (N, Z − j). Therefore, it is highly desirable
to evaluate the value of δVin- j p as accurate as possible, in
advance. Usually, δVin- j p is given by empirical formulas which
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FIG. 1. δV1n-1p, extracted based on the AME2021 database [3],
vs mass number A, for nuclei with neutron numbers N < 126 and
proton numbers Z > 82.

yield root-mean-squared deviations (RMSD) about 130–170
keV for mass number A � 100, in comparison with those
extracted from experimental data.

In Ref. [27], it was reported that the neutron-proton inter-
action is very small when both the number of valence protons
and the number of valence neutron holes for nuclei in the
major shells to the northwest of the 208Pb nucleus are small.
This is actually understandable, because in this case valence
protons are in the high- j h9/2 orbit and valence neutron holes
are in the low- j, successively, p1/2, p3/2, and f5/2 orbits,
and thus the neutron-proton interaction strength is very small
due to the small overlaps between those valence protons and
neutron holes. As the numbers of valence protons and neutron
holes increase, more and more configurations involving of
the f orbits for neutron holes set in, the overlap between
valence protons and neutron holes increases, and so does the
neutron-proton interaction. From another perspective, proton
separation energy and neutron separation energy exhibit a
linear combination of Np and Nn [28], and this linearity is ex-
cellent in particular in this region [29]. Because δV1n-1p could
be written as the difference between two separation energies,
the value of δV1n-1p is expected to evolve very smoothly and
compactly throughout the valence shells to the northwest of
208Pb.

In Fig. 1, we plot δV1n-1p, extracted by using the AME2021
database [3], versus mass number A for experimentally acces-
sible nuclei in this region, as an exemplification of δVin- j p. One
sees that the magnitude of δV1n-1p of nuclei with even value of
mass number A is very small indeed, although with fluctua-
tions, for those nuclei close to 208Pb, and becomes larger for
those with smaller A (note that the δV1n-1p of nuclei with even
values of A is negative). As for δV1n-1p of nuclei with odd A,
in Ref. [14] the value of δV1n-1p was assumed to be a constant
value (−74 keV) for all nuclei with mass number A � 100,
and the odd-even difference of δV1n-1p was interpreted in terms
of a subtle effect of pairing interaction. One sees in Fig. 1
that the values of δV1n-1p for the odd-A case exhibit a compact

TABLE I. Parameters C and a in Eq. (2) and corresponding
RMSDs (denoted by σ ) of δVin- j p in keV, the so-called Pearson cor-
relation coefficient r between �Vin- j p(N, Z ) and �Vin- j p(N − 2, Z −
2), the linear coefficient λ in Eq. (4), and the RMSD value σ ′ with the
improvement of statistical linear correlation described by Eq. (4), for
nuclei with neutron numbers N < 126 and proton numbers Z > 82.

C a σ λ r σ ′

δV1n-1p (odd A) −142(16) −4.25(88) 52 26
0.73 (6) 0.81

δV1n-1p (even A) −179(19) 7.14(107) 65 34
δV1n-2p −328(14) 2.32(83) 62 0.87 (6) 0.87 29
δV2n-1p −364(16) −0.44(101) 70 0.77 (6) 0.85 35
δV2n-2p −642(17) 6.14(105) 75 0.88 (7) 0.84 37

trajectory which decreases very slightly with A. This behavior
brings a correction to the simple relation δV1n-1p � −74 keV
(the RMSD of which is −60 keV), and thus is expected to
yield a more accurate formula of δV1n-1p (to be explained later
in this paper) than the previous relation δV1n-1p � −74 keV.

The values of δVin- j p with (i, j) = (1, 2), (2, 1), and (2, 2)
exhibit a similar pattern as δV1n-1p, but without odd-even dis-
crimination. A simple formula of δVin- j p with this property is
given as

δV cal
in- j p(N, Z ) = C + a(A − 220), (2)

where C and a are free parameters (δV1n-1p is discriminated
between odd A and even A cases). Here the constant 220 is
adopted artificially, as the largest mass in this region is close
to this number; without this constant, all values of C would be
−1000 keV or even lower. The optimized C and a, together
with corresponding RMSD, are presented in the first three
columns of Table I, according to which the root-mean-squared
deviation, denoted by σ , between δVin- j p calculated by us-
ing Eq. (2) and those extracted from the AME2021 database
changes fluctuates between 50 to 75 keV, with σ of δV1n-1p

being the smallest.
In order to further reduce the RMSD values of our calcu-

lated δV1n-1p by using Eq. (2), we introduce a quantity

�Vin- j p(N, Z ) = δVin- j p(N, Z ) − δV cal
in- j p(N, Z ). (3)

The first term on the right-hand side of the above formula,
δVin- j p, is calculated by using Eq. (1) in terms of experimen-
tal data, and the second term, δV cal

in- j p, is calculated by using
Eq. (2) with parameters in Table I. In Fig. 2, we plot the cor-
relation between �V1n-1p(N, Z ) and �V1n-1p(N − 2, Z − 2).
Apparently, these two quantities exhibit statistical correla-
tions; without details we note that other �Vin- j p exhibit similar
patterns. We thus assume

�Vin- j p(N, Z ) = λ�Vin- j p(N − 2, Z − 2), (4)

where λ is the linear-correlation coefficient, listed in the fourth
column of Table I, together with the so-called Pearson cor-
relation coefficient (denoted by r, listed in the fifth column
of Table I). If the value of r is larger than 0.8, usually, one
calls the correlation strong. Therefore according to Table I, all
these linear correlations of �Vin- j p(N, Z ) versus �Vin- j p(N −
2, Z − 2) are strong.
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FIG. 2. �V1n-1p(N, Z ) versus �V1n-1p(N − 2, Z − 2), defined in
Eq. (3). The solid straight line in purple is plotted by the optimal
value of λ.

With this statistical correlation, the refined formula for our
theoretically predicted δVin- j p, denoted by δV th

in- j p, is

δV th
in- j p(N, Z ) = δV cal

in- j p(N, Z ) + λ�Vin- j p(N − 2, Z − 2).

(5)

On the right-hand side of the above formula, the first term
δV cal

in- j p is calculated by using Eq. (2), the parameter λ in the
second term is taken from Table I, and the second term �Vin- j p

is calculated by using Eq. (3). We denote the RMSD of the
above formula by σ ′ and tabulate them in the last column
of Table I. One sees substantial improvements by considering
this statistical correlation; here the RMSD values are reduced
by about 50%.

Besides the above formulas of δVin- j p, in Ref. [30] a
number of local mass formulas were unified in the form of
S(i, j)

N ′,Z ′ (N, Z ) � 0 (including the nice relation of α-decay ener-
gies of neighboring nuclei reported in Ref. [31]), where

S(i, j)
N ′,Z ′ (N, Z ) = δVin- j p(N, Z ) − δVin- j p(N − N ′, Z − Z ′).

(6)

We note without details that similar correlation exists for
these mass relations; unfortunately, their RMSD values are
systematically larger than those in Table I.

III. APPLICATIONS OF OUR MASS FORMULAS

In this section, we apply our approach of δVin- j p in Eq. (5)
and predict atomic masses which are not accessible in the
AME2021 database in these major shells.

The procedure adopted in this paper is explained as fol-
lows. We make use of our theoretically predicted δV th

in- j p in the
extrapolation of atomic masses. Replacing δVin- j p in Eq. (1)
by using δV th

in- j p, we have

δV th
in- j p(N, Z ) = M(N, Z ) + M(N − i, Z − j)

− M(N − i, Z ) − M(N, Z − j).

From the above formula, we obtain our predicted masses,
Mpred(N, Z ), via extrapolations:

Mpred(N, Z ) = δV th
in- j p(N, Z ) − M(N − i, Z − j)

+ M(N − i, Z ) + M(N, Z − j),

Mpred(N, Z ) = δV th
in- j p(N + i, Z + j) − M(N + i, Z + j)

+ M(N + i, Z ) + M(N, Z + j),

Mpred(N, Z ) = − δV th
in- j p(N + i, Z ) − M(N + i, Z − j)

+ M(N + i, Z ) + M(N, Z − j),

Mpred(N, Z ) = − δV th
in- j p(N, Z + j) − M(N − i, Z + j)

+ M(N, Z + j) + M(N − i, Z ). (7)

For one-proton separation energy Sp, we have

δV th
in- j p(N, Z ) = Sp(N − i, Z ) − Sp(N, Z ).

From this formula, we obtain

Spred
p (N, Z ) = Sp(N − 1, Z ) − δV th

1n-1p(N, Z ),

Spred
p (N, Z ) = Sp(N + 1, Z ) + δV th

1n-1p(N + 1, Z ),

Spred
p (N, Z ) = Sp(N − 2, Z ) − δV th

2n-1p(N, Z ),

Spred
p (N, Z ) = Sp(N + 2, Z ) + δV th

2n-1p(N + 2, Z ). (8)

Similarly, for two-proton separation energy S2p,

Spred
2p (N, Z ) = S2p(N − 1, Z ) − δV th

1n-2p(N, Z ),

Spred
2p (N, Z ) = S2p(N + 1, Z ) + δV th

1n-2p(N + 1, Z ),

Spred
2p (N, Z ) = S2p(N − 2, Z ) − δV th

2n-2p(N, Z ),

Spred
2p (N, Z ) = S2p(N + 2, Z ) + δV th

2n-2p(N + 2, Z ), (9)

except for Z = 83 for which the values of δV th
1n-2p and δV th

2n-2p
involve nuclei beyond the major shells to the northwest of
208Pb; for this case the value of S2p is evaluated by

S2p(N, Z ) = −Mpred(N, Z ) + Mexp(N, Z − 2) + 2M(1H).

Eqs. (7)–(9) are applied recursively in our extrapolation pro-
cess.

The uncertainty of our predicted results is taken to be the
squared root of a sum over uncertainties squared of all terms
on the right-hand side in a given formula. For instance, the
uncertainty of Mpred(N, Z ) in the first formula of Eq. (7) is
given by

[σpred(N, Z )]2 = [σth(N, Z )]2 + [σexp(N − i, Z − j)]2

+ [σexp(N − i, Z )]2

+ [σexp(N, Z − j)]2, (10)

where σth is given by σ ′ in Table I, and σexp is adopted from
the AME2021 database.

If there are two or more channels to predict one quantity,
the predicted result is simply taken to the average weighted
by their accuracies, as in the procedure in the literature,
e.g., Ref. [14]: Suppose that a given mass M has two pre-
dicted results, Mpred1 = M (1) ± σ1 and Mpred2 = M (2) ± σ2;
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TABLE II. Predicted mass excesses (not accessible in the AME2012 database but available in the AME2021 database for nuclei with
neutron numbers N < 126 and proton numbers Z > 82) and their uncertainties (in keV) predicted in this work, together with predictions by
using the approaches of Refs. [15,32] with readjusted parameters, and predictions in Ref. [6]. The corresponding RMSD values are tabulated
in the last row (values inside the bracket are RMSD values by excluding 219Np). One sees the predicted results in this work yield the smallest
RMSD among all, with respect to the AME2021 database.

Element AME2021 Jiang et al. Ma et al. WS4+RBF This work

198At −6708 ± 4 −6635 ± 60 −6714 ± 69 -6971 −6611 ± 30
197Fr 10253 ± 56 10440 ± 117 10334 ± 60 10282 10409 ± 47
198Fr 9577 ± 31 9597 ± 90 9513 ± 84 9183 9598 ± 47
202Fr 3101 ± 6 3123 ± 69 3056 ± 41 2876 3094 ± 23
201Ra 11936 ± 20 12033 ± 100 11970 ± 73 11819 11883 ± 56
205Ac 14106 ± 59 14049 ± 119 14031 ± 62 13972 14073 ± 47
206Ac 13484 ± 65 13391 ± 94 13375 ± 82 13249 13465 ± 28
211Pa 22052 ± 69 22020 ± 94 22002 ± 56 21877 22077 ± 52
215U 24889 ± 104 25183 ± 128 24817 ± 62 25212 24844 ± 51
216U 23066 ± 28 23282 ± 130 23072 ± 56 23118 23027 ± 44
219Np 29436 ± 91 29606 ± 249 29114 ± 153 29316 -
RMSD(keV) 143 (140) 114 (62) 207 (214) 58

the final result in this case is given by Mpred = M th ± σ th,
with

M th =
M (1)

(σ1 )2 + M (2)

(σ2 )2

1
(σ1 )2 + 1

(σ2 )2

,
1

(σ th )2
= 1

(σ1)2 + 1

(σ2)2 .

Let us now demonstrate the predictive power of this
method, by a comparison of our predicted results not acces-
sible in the AME2012 database [1] with those accessible in
the AME2021 database [3]. To be precise, we note that we
have adopted the extrapolated result of the 194Bi nucleus in the
AME2012 database, in order to predict the masses of 198At,
202Fr and 206Ac; the reason is that the key formula, Eq. (5),

FIG. 3. Predicted one- and two-proton separation energies (Sp and S2p, in keV) for nuclei with proton number Z from 83 to 93. In each
block, the first row corresponds to Sp predicted in this work, the second row corresponds to Sp in Ref. [3], the third row corresponds to S2p

predicted in this work, and the fourth row corresponds to S2p in Ref. [3]. The predicted results in this work and experimental data in Ref. [3]
are in black and red, respectively. The values in the brackets correspond to uncertainties. The orange solid line plots the proton drip line. We
note that the extrapolated results of the 186Po nucleus could be problematic, because theoretical δV1n-1p for one of its neighboring nuclei, 188Po,
deviates sizably from experimental data.
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of our extrapolation process involves of a correlation between
two nuclei, one with neutron and proton numbers (N, Z ) and
the other with (N + 2, Z + 2); it takes one step from 194Bi to
198At, one step from 198At to 202Fr, and one step from 202Fr to
206Ac.

The results of our numerical experiment are partially tabu-
lated in Table II, in which we also present the predicted results
of a few other approaches in the literature, with parameters
of Refs. [15,32] readjusted by using the AME2012 database.
One sees that the predicted results in this paper are in best
agreement with those in the latest AME2021 database. As
additional evidence of the strong predictive power in this
region, we predict the atomic mass of 214U. The latest exper-
imental result of alpha-particle emission energy Eα of 214U
in Ref. [33], 8533(18) keV, yields an alpha-decay energy of
8696 (18) keV. Our predicted result is 8654(47) keV (see
the Supplemental Material of this paper [34]), which is again
remarkably consistent with the result of experimental mea-
surement.

In Fig. 3 we present our predicted results of one- and
two-proton separation energies larger than −1.2 MeV, based
on the AME2021 database for proton numbers between 83 and
93, for the sake of convenience. Our predicted atomic mass ex-
cesses, one- and two-proton separation energies, and α-decay
energies, for systems with proton number 83–93 and neutron
number 104–125, are tabulated in the Supplemental Material
[34] (We note that the predicted results of the 186Po nucleus
might be problematic and could be put in doubt, because the
theoretical value of δV1n-1p involving a neighboring nucleus,
188Po, deviates sizably from that extracted from experimental
data).

IV. SUMMARY

In this paper, we investigate the residual proton-neutron
interaction δV1n-1p for neutron numbers N < 126 and pro-
ton numbers Z > 82. Empirical formulas of neutron-proton
interactions δVin- j p are reported to be, despite fluctuations,
linear with mass number A in this region. With corrections of
statistical correlation, the RMSD values of these formulas are
reduced to 26–37 keV, which is more accurate than all previ-
ous formulas for nuclear masses. According to our numerical
experiments, an application of the same procedure to other
regions, e.g., the region northeast of 208Pb, yields considerably
larger uncertainties, unfortunately.

We demonstrate the predictive power of our formulas
by using numerical experiments of extrapolation from the
AME2012 database to the AME2021 database. We find that
the present approach, with simplicity, yields the best consis-
tency between predicted results and experimental data not
accessible in the AME2012 database but accessible in the
AME2021 database.

Finally we present our predicted masses, one- and two-
proton separation energies, and α-decay energies in the
Supplemental Material [34].
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