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Applications of the dynamical generator coordinate method to quadrupole excitations
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We apply the dynamical generator coordinate method (DGCM) with a conjugate momentum to a nuclear
collective excitation. To this end, we first discuss how to construct a numerically workable scheme of the
DGCM for a general one-body operator. We then apply the DGCM to the quadrupole vibration of 16O using
the Gogny D1S interaction. We show that both the ground state energy and the excitation energies are lowered
as compared to the conventional GCM with the same number of basis functions. We also compute the sum rule
values for the quadrupole and monopole operators, and show that the DGCM yields more consistent results
than the conventional GCM to the values from the double commutator. These results imply that the conjugate
momentum is an important and relevant degree of freedom in collective motions.
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I. INTRODUCTION

In strongly correlated quantum many-body systems such as
nuclei, collective behaviors often emerge due to cooperation
of many degrees of freedom. These phenomena are called
collective motions [1], for which a translational motion, a
rotational motion, a vibrational motion, and nuclear fission
are typical examples. To describe them based on microscopic
degrees of freedom is one of the major goals of many-body
theory.

One of the basic microscopic theories describing quantum
many-body systems is the mean-field theory. In this theory,
interacting quantum many-body systems are approximated by
those of independent particles in a common mean field. As
particles move independently with each other, the many-body
wave function in the mean-field approximation cannot include
explicitly the quantum correlation among particles, except for
the trivial Pauli correlation. Therefore, the pure mean-field
theory is not designed to describe collective motions.

A way to resolve this problem is to mix several mean-field
configurations. An important question in this method is what
states should be mixed in the wave function. The random
phase approximation (RPA) can be regarded as a configuration
mixing method, in which the configurations are restricted to
one-particle–one-hole (1p1h) excitations from a given mean
field solution [1]. Although the RPA is powerful in describing
a small oscillation around the mean field solution, it is difficult
to apply it to large amplitude motions, such as nuclear fission.
In order to describe such large amplitude collective motions,
the generator coordinate method (GCM) [1,2] has often been
used in nuclear theory. In this method, many-body states
which are generated along some collective coordinate(s) are
linearly superposed. Many numerical calculations have been
carried out in recent years [3–17].

A serious theoretical ambiguity inherent in the GCM is
that it is difficult to identify the appropriate collective co-
ordinate for a motion of interest. Notice that most of recent
GCM calculations have been formulated based on a collective
coordinate chosen empirically, but it is not obvious that this
approach can appropriately describe the collective motion. We
mention that a collective coordinate can be unambiguously
extracted in principle with the self-consistent collective co-
ordinate method (SCC) [18,19] by projecting the collective
motion onto a specific function space. This is a self-contained
theory, and does not require any empirical manipulation. Fur-
thermore, the collective coordinates and momenta are treated
on the same footing. However, the SCC is formulated in
such a way that a mixing of configurations does not appear
explicitly, and its application to the GCM is nontrivial. In this
sense, the GCM is not yet a rigorous framework unlike the
density functional theory (DFT) [20,21] or the time-dependent
DFT (TDDFT) [22–24], and one should carefully examine the
validity of a chosen generated coordinate. This problem has
been recognized for a long time.

In the case of the translational motion, Peierls and Thouless
pointed out that the naive GCM breaks certain symmetry,
and they developed the double projection method [25]. The
double projection has also been formulated for the rotational
motion. Numerical calculations based on this method for the
rotational motion are becoming possible with the development
of computer technology [26–31], even though it is still com-
putationally rather expensive.

Since the symmetries are fundamental to this approach,
the double projection has not been extended to more general
collective motions. In this connection, Goeke and Reinhard
improved the GCM by introducing the conjugate momentum
to the GCM. This method is referred to as the dynamical
GCM (DGCM) [32]. However, a practical application of this
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method has not been performed, except for the one with the
Gaussian overlap approximation [33]. In our previous work,
we proposed the implementation of the DGCM based on the
constrained variational method [34]. Based on this idea, we
applied the DGCM to the particle number, which is numeri-
cally the easiest case. This method, which could be regarded
as the double projection on the number of particles, is also
easy to implement due to the fact that the method of particle
number projection is well known. The purpose of this paper
is to apply the DGCM actually to more general collective
motions and to investigate the effect of the conjugate momen-
tum on the collective motions. For this purpose, we consider
a quadrupole oscillation, which is often described with the
conventional GCM.

The paper is organized as follows. In Sec. II, we give a
brief review of the GCM and the DGCM. We also discuss
how to perform the DGCM numerically based on the mean
field theory for general collective motions. In Sec. III, we
carry out the DGCM calculation for 16O with a quadrupole
operator and compare the results with those obtained with the
conventional GCM. We then summarize the paper and discuss
future perspectives in Sec. IV.

II. FORMULATION

A. GCM

In this section, we give a brief review of the GCM. The
GCM is a class of configuration mixing, which is performed
along some generator coordinate q. Therefore, the GCM starts
from creating many-body wave functions {|q〉}q specified by
the generator coordinate q. For a description of collective
motions, q is referred to as a collective coordinate. Of course,
q can be a complex number, and its dimension does not
need to be specified. However, for simplicity of the following
discussion, we consider in this paper a one-dimensional real
number for q. Then, the configuration mixing is expressed in
the integral form as

|�〉GCM =
∫

dq f (q)|q〉, (1)

where f (q) is called a weight function. The subspace spanned
by such a linear combination of |q〉 is called a collective
subspace. In the GCM, a Hamiltonian of a given system
Ĥ is diagonalized by restricting to the collective subspace.
Therefore, the fundamental equation of the GCM is obtained
by projecting the time-independent Schrödinger equation onto
the collective subspace,

〈q′|{(Ĥ − E )|�〉GCM} = 0, for ∀|q′〉. (2)

We then obtain a generalized eigenvalue problem∫
dq(〈q′|Ĥ |q〉 − E〈q′|q〉) f (q) = 0, (3)

where H(q′, q) := 〈q′|Ĥ |q〉 and I (q′, q) := 〈q′|q〉 are re-
ferred to as a Hamiltonian kernel and a norm kernel,
respectively. This equation is called the Hill-Wheeler equa-
tion [2].

The most serious problem in the GCM is how to prepare
|q〉. First, we have to decide what kind of function space to

prepare the states |q〉. In many cases, Slater determinant wave
functions [3,35] are used, but one may also superpose more
complicated wave functions. Next, we have to decide what
method we use to draw the path |q〉 on these function spaces.
Above all things, a collective motion is not mathematically
well defined in general, and thus the criteria of justification
for a chosen |q〉 is unclear. The dynamical GCM, which we
review in the next subsection, is theoretically more robust
than the GCM and has certain good properties even when the
collective operator Q̂ is chosen empirically.

B. Dynamical GCM

The dynamical GCM introduced by Goeke and Reinhard
can be regarded as the GCM that simultaneously considers the
conjugate momentum p in addition to a collective coordinate
q [32]. Therefore, as in the case of the GCM, the configuration
mixing is performed as

|�〉DGCM =
∫∫

dqd p f (q, p)|q, p〉, (4)

where this two-parameter path |q, p〉 is called a dynamical
path. The Hill-Wheeler equation is also obtained in the same
way:∫∫

dqd p(〈q′, p′|Ĥ |q, p〉 − E〈q′, p′|q, p〉) f (q, p) = 0. (5)

Notice that Eqs. (4) and (5) alone do not guarantee that p is
the conjugate momentum of q, and one additional equation is
required. That is, the conjugate momentum of p has to be
determined to satisfy the conjugation condition

〈q, p|←−∂ q
−→
∂ p − ←−

∂ p
−→
∂ q|q, p〉 = i, (6)

where
←−
∂ q means the partial derivative of q acting on the left

side and similar for
←−
∂ p. This condition can be seen as a kind

of the canonical commutation relation.
Of course, this conjugate condition has to be supplemented

by some boundary condition to determine the dynamical path.
For example, we can construct the dynamical path |q, p〉 that
satisfies the condition [34]

|q, p〉 = eipQ̂|q〉 (7)

with the constrained condition, 〈q|Q̂|q〉 = q, where Q̂ is some
Hermitian operator related to a collective motion. Since there
are innumerable states satisfying the condition 〈q|Q̂|q〉 = q,
the state |q〉 must be uniquely determined in some way.
When calculating |q〉 in the mean-field theory, one often uses
a constrained variational method. Therefore, we shall use
this method in this paper as well. Considering the DGCM
constructed in this way, one can show that under certain
conditions the collective subspace defined with the DGCM
has good properties [36]. As a result, an unexpected quantum
entanglement is less likely to occur in the states obtained
as solutions of the Hill-Wheeler equation. See Ref. [36] for
details.

It should be noted that the condition (7) assumes the exis-
tence of the operator Q̂. Identifying Q̂ for a given collective
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motion is a difficult problem in general and this remains so
even with the DGCM. Therefore, we choose Q̂ empirically in
the rest of this paper.

C. Dynamical path

In performing numerical calculations with the DGCM,
we need to consider specifically how to construct eipQ̂|q〉.
We first make an assumption that Q̂ is a one-body operator.
We then expand Q̂ using some representation of creation and
annihilation operators {ĉ†

i , ĉi}∞i=1 as

Q̂ =
∞∑

i, j=1

Qc
i j ĉ

†
i ĉ j . (8)

Here, Qc
i j must be a Hermitian matrix because of Hermicity of

Q̂. Using the Campbell-Baker-Hausdorff formula, we obtain

eipQ̂ĉ†
ke−ipQ̂ =

∞∑
l=1

(eipQc
)lk ĉ†

l , (9)

eipQ̂ĉke−ipQ̂ =
∞∑

l=1

(e−ipQc
)lk ĉl . (10)

Let us consider the case where |q〉 is given in the Hartree-Fock
approximation as

|q〉 =
A∏

i=1

ĉ†
i |0〉, (11)

where A is the number of nucleons and |0〉 is the vacuum state.
Note that we choose the representation of {ĉ†

i , ĉi}∞i=1 so that |q〉
can be written as Eq. (11). In this case, the dynamical path is
calculated as

eipQ̂|q〉 =
A∏

i=1

(∑
ji

(
eipQc)

ji i
ĉ†

ji

)
|0〉. (12)

Thus, the only thing which we have to do for preparing the
dynamical path is to evaluate a unitary matrix

X †
lk := (

eipQc)
lk . (13)

The largest advantage of using the Hartree-Fock approxima-
tion is that Eq. (12) remains a Slater determinant since X is
a unitary matrix. This implies that the conventional numerical
technique of the GCM, i.e., the generalized Wick theorem, can
be used also for the DGCM calculation. The same statement
can be applied also to the Hartree-Fock-Bogoliubov approxi-
mation.

An extension to a more general case of |q〉 is trivial given
that any state belonging to the Fock space is written by

|�〉 = f
({ĉ†

i , ĉi}∞i=1

)|0〉, (14)

where f is any polynomial function. We can calculate the dy-
namical path as in the case of the Hartree-Fock approximation

eipQ̂|�〉 = f

⎛
⎝

{∑
j

ĉ†
j X

†
ji,

∑
j

Xi j ĉ j

}∞

i=1

⎞
⎠|0〉. (15)

In general, it is important to note that even when the original
|�〉 has a simple form it may not be so after the operator eipQ̂ is
multiplied to |�〉. Therefore, even if we can evaluate eipQ̂|�〉,
it is another issue whether the DGCM can be executed numer-
ically. In this regard, the scheme (11) and (12) based on the
mean-field theory has the great advantage to implement the
DGCM numerically.

In numerical cases, the full Fock space cannot be consid-
ered in practice. Thus we must limit the Fock space to some
model space. We define the model space using a set of M ∈ N
creation and annihilation operators, {b̂†

i , b̂i}M
i=1 and expand the

operator ĉi as

ĉi =
M∑

j=1

Ci j b̂ j, (16)

where C is a M × M unitary matrix. Then, we can determine
the dynamical path using the operators

d̂i =
M∑

j,k=1

Xi jCjkb̂k =:
M∑

k=1

Dikb̂k . (17)

When we take the limit M → ∞, the matrix D becomes a uni-
tary matrix. However, if M is finite, D is not a unitary matrix in
general. In such cases, we can not apply the generalized Wick
theorem to the dynamical path, and the advantage of using the
mean field theory is lost.

There are several approximate ways to resolve this prob-
lem. From a numerical point of view, the best way is to project
the dynamical path onto the Slater determinant type wave
functions. Such projected state is obtained by maximizing the
overlap

max
|ψ〉

|〈q, p|ψ〉|, (18)

where |ψ〉 spans the entire Slater determinant type wave
functions inside the Fock space constructed by {b̂†

i , b̂i}M
i=1.

However, this method is computationally expensive and
it is difficult to evaluate X in many cases. It would be
easier to introduce a cutoff to Eq. (8) for the one body operator
Q̂ as

Q̂cut :=
M∑

i, j=1

Qc
i j ĉ

†
i ĉ j =

M∑
i, j,k,l=1

C†
kiQ

c
i jCjl b̂

†
kb̂l (19)

=:
M∑

i, j=1

Qb
i j b̂

†
i b̂ j . (20)

Then, the dynamical path is calculated as

X cut †
i j = (

eipQc)cut

i j , (21)

where (A)cut means that the matrix A is evaluated as a M × M
matrix. In this way, X cut

i j is a M × M unitary matrix, and we
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can treat the dynamical path as a Slater determinant type wave
function.

Using this simple cut-off method, we can calculate the
dynamical path in the following steps. At first, we diagonalize
matrix Qb in Eq. (20),

Qb = U�QU †, (22)

where �Q is a diagonal matrix with the eigenvalues of Qb.
Note that all the matrices in this equation depend only on the
basis representation {b̂†

i , b̂i}M
i=1 and the constraint operator Q̂.

Next, we calculate the matrix X cut as

(X cut )† = CUeip�Q
U †C†. (23)

Finally, we get

D = CUe−ip�Q
U †. (24)

In this way, the dynamical path is entirely determined by the
matrix D and one can only store D in numerical calculations.

III. NUMERICAL APPLICATIONS OF THE DGCM
TO THE QUADRUPOLE EXCITATION

A. Numerical details

In this section, we apply the DGCM to the dynamical path
specified by the quadrupole operator, which is often used in
conventional GCM calculations. This operator is defined as

Q̂20 =
∫

d3r r2Y20(θ, φ)
∑
σ,τ

ψ̂†(r, σ, τ )ψ̂ (r, σ, τ ), (25)

where ψ̂ (r, σ, τ ) is a nuclear field operator with spin σ and
isospin τ . Since this operator has the dimension of the square
of the length, we introduce a dimensionless variable in a
conventional way

β̂ =
√

20π

3r2
0A5/3

Q̂20, (26)

where r0 = 1.2 fm and A is the number of nucleons. We use
β̂ for the collective operator Q̂ in Eq. (8) in Sec. II. In the
following, we use the notation (β, pβ ) for (q, p).

We prepare the many-body state |β〉 using the constrained
Hartree-Fock method, i.e.,

δ{〈Ĥ〉 − λ(〈β̂〉 − β )} = 0, (27)

where the expectation value is defined as

〈 · 〉 := 〈�| · |�〉
〈�|�〉 (28)

with the Slater determinant type wave function |�〉. Here,
λ is a Lagrange multiplier. Solving this equation, we obtain
the normalized DGCM (GCM) basis function |β〉 satisfying
〈β|β̂|β〉 = β. For the Hamiltonian Ĥ , we use the Gogny in-
teraction with the D1S parameter set [37,38].1 The Coulomb
interaction is treated without any approximation, and the

1Note that the sign of the spin-orbit force parameter is wrong in the
original D1S paper [38].

center-of-mass correction is evaluated by subtracting the
energy of the center-of-mass motion from Ĥ beforehand.
Therefore, the Hamiltonian Ĥ used in this paper reads

Ĥ =
A∑

i=1

p̂2
i

2m
+ 1

2

∑
i �= j

V̂ (i, j) − 1

2mA

(
A∑

i=1

p̂i

)2

, (29)

where p̂i is the momentum operator of the ith particle with
mass m, and V̂ (i, j) means a sum of the Gogny and the
Coulomb interactions between the ith and the jth particles.
Since both the Gogny and the Coulomb interactions are finite
range interactions, the basis expansion method is effective.
To this end, we use the three-dimensional spherical harmonic
oscillator basis,

φHO
nx,ny,nz

(r) = Hnx

(
x

b

)
Hny

(
y

b

)
Hnz

(
z

b

)

× exp

(
− r2

2b2

)
× normalization, (30)

where b is the harmonic oscillator length and Hn is a Her-
mitian polynomial with the quantum number n ∈ N ∪ {0}.
The basis functions are truncated at N = nx + ny + nz � N0,
which leads to (N0 + 1)(N0 + 2)(N0 + 3)/6 bases. The spin
wave function is introduced in the form of a direct product
with the harmonic oscillator basis, while the isospin mixing
is not considered. Taking into account the spin degree of free-
dom, the total number of bases is (N0 + 1)(N0 + 2)(N0 + 3)/3
for protons and neutrons, respectively. Note that we use the
Hartree-Fock approximation in this paper, ignoring the pairing
effect.

The dynamical path |β, pβ〉 = eipβ β̂ |β〉 is prepared accord-
ing to Sec. II. Notice that |β, 0〉 so constructed is equal to
|β〉. In this case, the cut-off dimension M in Sec. II C is
the same as (N0 + 1)(N0 + 2)(N0 + 3)/3 for neutrons and
protons, respectively. We evaluate the Hamiltonian kernel in
the DGCM (GCM) using the generalized Wick theorem [39].
Notice that the Gogny D1S interaction is the effective one
and has the density dependent term proportional to the 1/3
power of the nucleon number density. Since the generalized
Wick theorem cannot be treated rigorously in this class of
effective interaction, we use an ansatz of substituting the local
transition density in the density-dependent part [40].

Finally, we mention the issue of overcompleteness. In
general, {|β〉}β or {|β, pβ〉}β,pβ

are not linearly independent
to each other. This linear dependence implies that the Hill-
Wheeler equation has solutions with indefinite energy. This
is referred to as the overcompleteness problem. We can re-
solve it by artificially removing the zero eigenvalue modes
of the norm kernel. However, in numerical calculations, the
problem of overcompleteness becomes more serious. This
is because small eigenvalues of the norm kernel may cause
numerical problems due to numerical errors, even when the
eigenvalues are not exactly zero. Therefore, we must remove
the small eigenvalue modes by hand to achieve stable numer-
ical calculations. In this paper, we remove those modes with
eigenvalues less than 10−5.
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FIG. 1. The energy surface of the dynamical path E (β, pβ ) for
the quadrupole motion of 16O, in units of MeV. The Gogny D1S inter-
action is used to draw this figure. The minimum of the energy surface
is E (0, 0) = −129.569 MeV, which is the same as the Hartree-Fock
result without the constraint condition. Because of the time reversal
symmetry of |β, 0〉, the energy surface is symmetric about the pβ

axis.

B. Results

We now apply the GCM and the DGCM to the quadrupole
excitations of 16O. To this end, we include the harmonic
oscillator basis up to N0 = 10 with the oscillator length of
b = 1.457433 fm, which is the optimized value in the mean-
field approximation with HFBTHO [41]. We first generate the
coordinate β in increments of 0.02 in the range of −0.24 to
0.24. The range of β is chosen so that a level crossing does
not occur, as we do not include the pairing correlation. We
then generate the conjugate momentum pβ/2π from −0.6 to
0.6 in increments of 0.05 for each β.

Figure 1 shows the energy surface defined as E (β, pβ ) :=
〈β, pβ |Ĥ |β, pβ〉. As we can see, we determine the range of
pβ from the condition that E (±0.24, 0) and E (0,±0.6 × 2π )
are similar to each other. Since |β〉 = |β, 0〉 is an eigenstate of
the time reversal operator in our method, |β, pβ〉 and |β,−pβ〉
are paired for the time reversal operation. This leads to the
inverted symmetry of the energy surface with respect to the
vertical direction in Fig. 1.

Figure 2 shows the root-mean-square (rms) radius
rms(β, pβ ) for each basis, which is defined as

rrms(β, pβ ) =
√

〈β, pβ |
∫

d3r r2ρ̂(r)|β, pβ〉/A, (31)

where ρ̂(r) is the particle number density operator of nucle-
ons. Notice that rrms(β, pβ ) is almost independent of pβ . This
means that the operator eipβ β̂ does not significantly change
the rms radius. This result is not surprising, given that β̂

and
∫

d3r r2ρ̂(r) are commutative in the full space. However,
rigorously speaking, they are not commutative, since we now
restrict the model space to a finite space. Figure 2 implies that
our model space is large enough and this noncommutativity

−0.2 −0.1 0.0 0.1 0.2

β

−0.6

−0.3

0.0

0.3

0.6

p β
/2

π

2.66

2.68

2.70

2.72

2.74

2.76

2.78

2.80

2.82

FIG. 2. The root-mean-square (rms) radius for the dynamical
path rrms(β, pβ ), in units of fm. The rms radius increases as the
deformation β increases, while it is flat in the direction of pβ .

is practically negligible. Notice that, as in the rms radius, the
operator eipβ β̂ in |β, pβ〉 keeps the expectation value of any
local deformation operator,

Q̂ =
∑

σ,τ,σ ′,τ ′

∫
d3r Q(r, σ, τ, σ ′, τ ′)ψ̂†(r, σ, τ )ψ̂ (r, σ ′, τ ′),

(32)
invariant in the full space. This implies that dealing with the
dynamical path in the DGCM allows us to introduce the effect
of internal excitations for each 〈Q̂〉. That is, |β, pβ〉 all have
the same expectation value of Q̂ for each β, while the energy
expectation value is different. This effect cannot be captured
by the conventional GCM with |β〉.

In performing the DGCM, it is computationally
expensive to include all of the 625 points in the (β, pβ )
plane. We thus select 25 points, SDGCM

25 = {(β, pβ ) | β ∈
{−0.2,−0.1, 0, 0.1, 0.2}, pβ/2π ∈{−0.6,−0.3, 0, 0.3, 0.6}},
to carry out the DGCM calculations. On the other hand, for the
GCM calculations, we use 25 points of SGCM

25 = {(β, 0) | β ∈
{−0.24,−0.22, . . . , 0.24}}, to compare the DGCM to the
GCM under the same conditions as much as possible.

Table I shows the results of the GCM and the DGCM
energies with these point sets, obtained with the cut-off for the
norm kernel of 10−5. We can see that the energies are lower for

TABLE I. The GCM and the DGCM energy for the quadrupole
excitations of 16O with the point sets SGCM

25 and SDGCM
25 , respectively.

The cut-off for the norm kernel is taken as 10−5.

state GCM (MeV) DGCM (MeV)

1 −129.682 −129.765
2 −107.993 −108.140
3 −92.260 −104.475
4 −77.911 −87.019
5 −64.097 −83.059
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FIG. 3. The square of the collective wave functions for the ground (the left panel) and the first excited (the right panel) states. The black
solid and the red dashed lines represent the collective wave functions for the GCM and the DGCM, respectively. For the DGCM wave function,
pβ is set to be 0.

the DGCM for all the states shown in the table, even though
we use the same number of basis functions. This tendency
does not change even when the cutoff is decreased to 10−10.

The better performance of the DGCM can be understood
by investigating the eigenvalue distributions of the norm ker-
nel. In the DGCM, the smallest eigenvalue is O(10−8). On the
other hand, in the GCM, there are ten eigenvalues which are
less than 10−13. This implies that the DGCM contains many
more relevant states that are orthogonal to each other.

Figures 3 and 4 show the square of the GCM collective
wave function |g(β )|2 and that of the DGCM |g(β, pβ )|2. The
left and the right panels in each figure show the collective
wave functions for the ground and the first excited states,
respectively. In the GCM case, the collective wave function
is defined as

g(β ) =
∫

dβ ′ I1/2(β, β ′) f (β ′), (33)

where I1/2 is the square root of the norm kernel. In this case,
the collective wave functions for different GCM eigenstates
are orthogonal to each other. The corresponding collective
wave function for the DGCM, g(β, pβ ), is defined in a sim-
ilar way. We can see that the collective wave functions are
harmonic oscillator-like in both the GCM and the DGCM
cases. As is evidenced in the collective wave functions of the
DGCM, which are spread over both β and pβ , the conjugate
momentum is an important degree of freedom.

Finally, we discuss the results of the sum rule. The sum
rule in the GCM is already known and can be formulated
as in the usual case [42]. See Eqs. (A11) and (A12) in the
Appendix for the explicit forms of the sum rules for the
monopole operator, Q̂0 = ∑A

i=1 r̂2
i and the quadrupole oper-

ator Q̂20 = ∑A
i=1(2ẑ2

i − x̂2
i − ŷ2

i ), respectively. Note that the
validity of the usual sum rule depends on the structure of
the subspace (see Appendix). This fact is known numerically
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FIG. 4. The square of the collective wave functions for the ground (the left panel) and the first excited (the right panel) states of the DGCM
in the two-dimensional (β, pβ ) plane.
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TABLE II. Results of the sum rule calculations for the
quadrupole and the monopole operators. The values in this table
show the ratios of the left-hand side to the right-hand side of
Eqs. (A11) and (A12).

state quadrupole monopole

i GCM DGCM GCM DGCM

1 1.0005 1.0047 0.3855 0.9176
2 0.6287 1.0162 0.6533 0.9926
3 0.7309 1.0512 0.6184 −0.0066
4 0.6370 0.9414 0.5818 0.6449
5 −0.5878 0.6352 −0.8390 −0.0981

[43], and it can be seen also with the DGCM and the GCM.
Table II shows the sum rule results for the quadrupole and the
monopole operators based on the GCM and the DGCM.

The values in this table are the ratios of the left-hand side
to the right-hand side of Eqs. (A11) and (A12), which should
ideally be 1 if the sum rules are perfectly satisfied. The label
i denotes the DGCM (or the GCM) states corresponding to
those in Table I. For the quadrupole operator, both the GCM
and the DGCM are close to unity for the ground state (i = 1).
In the DGCM, this is the case also for the excited states up
to the third excited state (i = 4). In contrast, the sum rule is
satisfied much less satisfactory in the GCM. It can thus be
concluded that the DGCM is more likely to include relevant
states than the GCM for the quadrupole oscillation. This ten-
dency does not change even when we use a smaller cut-off for
the eigenvalues of the norm kernel. For example, if we take
the cut-off of 10−10, the sum rule for the excited states remain
unsatisfactory in the GCM, whereas that in the DGCM is good
up to the seventh excited state. This is related to the fact that
under certain ansatze the collective subspace in the DGCM
can be represented as a tensor product of the collective and
the noncollective degrees of freedom [36].

Similarly, the results for the monopole operator indicate
that the DGCM is more superior than the GCM. Therefore,
the DGCM can prepare different states more efficiently than
the GCM. However, we find that smaller cutoffs do not im-
prove the results much, both for the GCM and the DGCM.
This fact indicates that the collective subspace in this calcu-
lation does not contain enough degrees of freedom relevant
to the monopole operator. This is a natural consequence of the
fact that the collective subspace is prepared in this calculations
primarily for the quadrupole motion, without caring about the
monopole motion.

IV. SUMMARY AND FUTURE PERSPECTIVES

In this paper, we have discussed how to perform ac-
tual numerical calculations for the DGCM, which is an
extension of the GCM by including the conjugate momentum.
We have provided a concrete scheme to construct the dynami-
cal path approximately for general one-body operators. Using
this scheme, we have applied the DGCM to the quadrupole
oscillation of 16O and have compared the results with those

of the conventional GCM. We have found that the DGCM
leads to more consistent results than the GCM both for the
energies and the sum rules. This suggests that, at least for the
quadrupole oscillations, it is essential to take into account the
conjugate momentum.

In this paper, we have neglected the pairing correlation
and used the Hartree-Fock approximation. An obvious future
extention of our work is to use the Hartree-Fock-Bogoliubov
(HFB) approximation, with which the pairing effect can be
fully considered. Such extension will be important to discuss
large amplitude collective motions, especially a nuclear fis-
sion. Since the HFB breaks the U(1) symmetry with respect
to the particle number, we should perform a particle number
projection to restore the symmetry. The methods in this paper
can be applied immediately to this case. It will be interesting
to see how the conjugate momentum alters the results of the
conventional calculation of the nuclear fission with the WKB
approximation.

Theoretical aspects of the DGCM themselves are also
interesting topics to explore. Many conventional GCM calcu-
lations are based on microscopic degrees of freedom, but have
a strong phenomenological factor. The main reason for this is
that one does not have good information on a collective sub-
space. It is expected that the DGCM is relatively easy to grasp
the structure of the space. This is one of the largest advantages
of the DGCM, which allows us to discuss new aspects for the
collective motion, such as entanglement entropy.

ACKNOWLEDGMENTS

The authors thank Y. Hashimoto for numerical advice and
N. Shimizu for useful discussions. This work was supported
by JSPS KAKENHI (Grants No. 21J22348, No. JP19K03824,
No. JP19K03861, and No. JP19K03872).

APPENDIX: SUM RULES IN A TRUNCATED SPACE

1. A general consideration

Let us consider a Hilbert space Htot and introduce linear
operators Â and B̂ which map from Htot to itself, Htot, that is,
Htot → Htot. We assume that Â and B̂ are Hermitian operators.
We then consider an orthonormal subset {|i〉}i∈X ⊂ Htot that
satisfies

〈i|Â| j〉 = ai〈i| j〉 = aiδi j, i, j ∈ X . (A1)

Because Â is a Hermite operator, ai is a real number. Note
that this equation does not necessarily mean that |i〉 is an
eigenstate of Â in the full space. That is, because of a trun-
cation, the subspace Hsub spanned by {|i〉}i∈X is smaller than
Htot, Hsub ⊆ Htot. Equation (A1) is simply interpreted as a
diagonalization of Â within a restricted space. The projection
operator onto Hsub can then be constructed as

π̂sub =
∑
i∈X

|i〉〈i|. (A2)

This is an identity operator of Hsub.
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We consider the following variable:

SAB(i) :=
∑
j∈X

(a j − ai )|〈 j|B̂|i〉|2. (A3)

When Â is the Hamiltonian Ĥ , this is nothing but the energy
weighted sum rule. If we assume [B̂, π̂sub] = 0, we find

SAB(i) =
∑
j∈X

(〈 j|a jB̂|i〉 − 〈 j|B̂ai|i〉)〈i|B̂| j〉 (A4)

= 〈i|B̂[Â, B̂]|i〉. (A5)

Since SAB(i) is real, this can also be written as

SAB(i) = 1
2 (SAB(i) + SAB(i)∗) (A6)

= 1
2 〈i|[B̂, [Â, B̂]]|i〉. (A7)

Note that Eq. (A7) is trivially satisfied under the assumption
[Â, π̂sub] = 0. Of course, in this case, [B̂, π̂sub] does not have
to be zero.

2. Explicit form for the quadrupole and the monopole fields

We here consider the case in which the operator Â is a
Hamiltonian Ĥ and the operator B̂ is a local one-body operator∑

i∈Y f (r̂i ) with some Y ⊆ {1, 2, . . . , A}. Since the Hamil-
tonian Ĥ usually contains only up to the second order of
the single particle momentum operator p̂α , we can evaluate
Eq. (A7) explicitly. Notice that the canonical commutation
relation leads to a useful formula

[ p̂α, f (r̂i )] = −ih̄∇ f (r̂i )δi,α. (A8)

We then obtain

[ f (r̂i ), [ p̂α · p̂β, f (r̂k )]] = h̄2∇ f (r̂i ) · ∇ f (r̂k )δi,αδk,β

+ h̄2∇ f (r̂k ) · ∇ f (r̂i )δi,βδk,α.

(A9)

Using these equations, one finally obtains

[B̂, [Ĥ , B̂]] = h̄2

m

(
1 − 1

A

)∑
i∈Y

(∇ f (r̂i ))
2

− h̄2

mA

∑
i,k∈Y

i �=k

∇ f (r̂k ) · ∇ f (r̂i ). (A10)

The first term in this equation is due to the contributions of
the kinetic energy term and the one-body part of the center-of-
mas correction, while the two-body part of the center-of-mass
correction yields the second term.

In this paper, we consider the monopole operator Q̂0 =∑A
i=1 r̂2

i and the quadrupole operator Q̂20 = ∑A
i=1(2ẑ2

i − x̂2
i −

ŷ2
i ) for concrete examples of B̂. Note that their normalization

factors need not be taken into account. Therefore, we obtain
the sum rules

SH,Q0 (i) = 2h̄2

m

(
1 − 1

A

)
〈i|Q̂0|i〉 − 2h̄2

mA
〈i|

A∑
i,k=1
i �=k

r̂i · r̂k|i〉,

(A11)

SH,Q20 (i) = 2h̄2

m

(
1 − 1

A

)
〈i|Q̂a|i〉 − 2h̄2

mA
〈i|Q̂b|i〉, (A12)

where the operators Q̂a and Q̂b are defined as

Q̂a =
A∑

i=1

(
4ẑ2

i + x̂2
i + ŷ2

i

)
(A13)

and

Q̂b =
A∑

i,k=1
i �=k

(4ẑi ẑk + x̂ix̂k + ŷiŷk ), (A14)

respectively.
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