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Fast emulation of quantum three-body scattering

Xilin Zhang 1,2,* and R. J. Furnstahl 2,†

1Facility for Rare Isotope Beams, Michigan State University, Michigan 48824, USA
2Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA

(Received 28 October 2021; accepted 16 June 2022; published 28 June 2022)

We develop a class of emulators for solving quantum three-body scattering problems. They are based on
combining the variational method for scattering observables and the recently proposed eigenvector continuation
concept. The emulators are first trained by the exact scattering solutions of the governing Hamiltonian at a
small number of points in its parameter space, and then employed to make interpolations and extrapolations in
that space. Through a schematic nuclear-physics model with finite-range two and three-body interactions, we
demonstrate the emulators to be extremely accurate and efficient. The computing time for emulation is on the
scale of milliseconds (on a laptop), with relative errors ranging from 10−13 to 10−4 depending on the case. The
emulators also require little memory. We argue that these emulators can be generalized to even more challenging
scattering problems. Furthermore, this general strategy may be applicable for building the same type of emulators
in other fields, wherever variational methods can be developed for evaluating physical models.
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I. INTRODUCTION

Methods to solve quantum three-body scattering problems,
e.g., the Faddeev approach [1–4], are well developed but
are complex and computationally expensive in terms of both
time and memory costs. This is a severe barrier to applica-
tions that require many evaluations in the parameter space
of the governing Hamiltonian H , such as Bayesian uncer-
tainty quantification. An alternative to direct solutions of the
three-body equations for each parameter set is to use emu-
lators that exploit an offline-online paradigm [5–7]. These
are models trained offline on the full solutions for a small
number of parameter sets that provide predictions elsewhere
in the parameter space (online) for a small fraction of the
computational time and memory requirements. In this work,
we demonstrate effective emulation of three-body scattering
by generalizing the eigenvector continuation (EC) method
originally proposed for bound-state calculations [8,9].

Emulators based on Gaussian processes (GPs) [10,11] and
on neural networks (e.g., [12,13]) have been widely used in
physics and other fields. A different type of emulator is based
on EC applied to variational calculations. In short, the eigen-
vectors from the training solutions can be used as an extremely
effective basis for variational estimates. In nuclear physics,
fast and accurate EC emulators have been developed recently
for few- and many-body ground states [14–16], excited states
[17], and transitions [16]; for shell-model calculations [18];
and, of particular relevance here, for two-body scattering
[19–21]. They are particularly efficacious for Bayesian sta-
tistical analyses, where extensive sampling in the parameter
space is typically needed for parameter estimation, propaga-
tion of errors to observables, and experimental design.
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An extension of EC emulators to three-body scattering
would have broad impact. Potential applications in nuclear
physics include parameter estimation for chiral effective field
theory [22,23]—which is the foundation for modern ab ini-
tio calculations—and for phenomenological reaction models
needed in analyzing data from rare isotope facilities [24];
analyzing lattice QCD simulations of three-nucleon or hadron
systems [25]; and facilitating the generalization of a new ap-
proach for ab initio scattering calculations [26] to three-cluster
systems.

Considered in a even broader context, three-body scatter-
ing, and particle scattering from a two-particle bound system
in particular, represents a process of one particle probing a
compound target. The EC emulators with proper generaliza-
tion for the compound systems could expedite scattering data
analyses and the extraction of the structure information for
a wide range of targets. This study is the first step towards
constructing EC emulators for general reactions including
inelastic and breakup processes. More generally, as discussed
in the end of this paper, a complete set of EC emulators would
enable a new type of workflow in nuclear physics and beyond.

The variational method for quantum ground states is well
known from introductory courses in quantum mechanics.
Less familiar are the variational approaches for scattering
observables due to Kohn, Schwinger, and others. The Kohn
variational principle (KVP) is based on a stationary functional
at fixed energy. It does not provide bounds to S-matrix ele-
ments but nevertheless has been effectively applied, particular
in atomic physics [27] and nuclear physics [28–32]. As with
any variational approach, the key to success is choosing a
good ansatz or basis for the trial function. The secret of
EC is that the subspace covered by the wave functions of
interest when sweeping through the parameters is a much
smaller space than the full Hilbert space of wave functions.
This subspace is well spanned by a small subset of these
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TABLE I. A summary of the accuracy and the time and memory
costs of the emulators that we have developed for varying the interac-
tion parameters. The values listed here are representative and reflect
their means for test points in the parameter space and for the typical
numbers of trainings we employed in this work. Details can be found
in Sec. IV.

EC emulators S relative error Time Memory

lineara 10−14 to 10−13 ms < MB
nonlinear-1 10−6 to 10−5 ms MB
nonlinear-2 10−4 ms 10s MB

aNote that the dependence of the scattering observable on these
parameters can be highly nonlinear even in the “linear” case.

wave functions (the training points), which comprise the EC
trial function. The effectiveness of EC emulation applying
the KVP has been demonstrated for two-body scattering ob-
servables [19], and for R matrix theory calculations of fusion
observables [33].

Here we extend the EC with KVP to three-body scatter-
ing and give a proof-of-principle demonstration for spin-zero
bosons with separable potentials. The relative errors for emu-
lating S matrix elements and the computing time and memory
costs for each emulation are summarized in Table I for
three different cases. The time cost is generally millisec-
onds on a laptop, and the memory costs are tiny. When the
Hamiltonian’s parametric dependence can be factorized from
individual potential operators (the “linear” or affine case in
the table), e.g., with linear coupling strengths for the po-
tential, the EC emulator works at its full advantage with an
extremely small error. The accuracy deteriorates when vary-
ing the interaction operators (“nonlinear-1”), e.g., the ranges
of interactions, and varying the structure of the subclusters
(“nonlinear-2”), but they are still far better than needed in
most nuclear physics applications. For emulating more com-
plicated realistic calculations, the costs and accuracy might be
similar. This is elaborated further in Sec. V.

In comparison, solving three-body scattering Faddeev
equations is computationally expensive. For example,
in the momentum space calculations, nucleon-deuteron
(N-d) scattering was computed using supercomputers in
Refs. [2,34,35].1 Performing such calculations (in momentum
space [2] or coordinate space [36]) many thousands or even
millions of times, as required in (Bayesian) data analysis and
experimental design, is so expensive that no such calculation
has appeared to date. The emulators developed here can po-
tentially solve this bottleneck issue. It is worth noting that
the previous variational-approach calculations [28–32] con-
structed trial solutions using hyperspherical harmonic basis,
while our emulator uses a sample of scattering solutions as

1In Ref. [35], the run time was of order 103 seconds for a single
calculation on a personal computer. To achieve more complete calcu-
lation by including three-nucleon interactions, it would require tens
of GB up to a TB of memory to simply store the extra interaction
[23]. Note that trained emulators do not need to store these physical
details.

basis. The latter basis is adaptive to a given dynamics, and
thus more efficient in expanding the full solution than the
former basis. This allows the emulator to achieve dramatic
cost reduction during emulation (online evaluation).

In Sec. II, we elaborate on the formulation of emulators
combining EC and KVP for bound-state and two and three-
body scattering calculations and discuss the general origin
of the emulation efficiency. The necessary elements of three-
body scattering and the KVP are reviewed in Sec. III and
exemplary results for the EC emulators are shown in Sec. IV.
Our summary and outlook is in Sec. V. Additional details
on conventions, three-body scattering wave functions, and
EC emulators are given in the appendices and Supplemental
Material (SM) [37]. The self-contained set of codes that can
be used to generate our results will be made public [38].

II. VARIATIONAL-PLUS-EC EMULATION

The general emulator strategy we use starts with a func-
tional Fθ[�] characterizing the physical system of interest.
Here � specifies a state of the system and θ is a vector of
parameters to be varied for emulation. For example, θ could
determine the Hamiltonian and � could be the ground-state
eigenvector or a scattering state solution at a specified energy.2

The functional is stationary at the exact �, but not necessarily
an extremum. The insight from EC, or the reduced basis
method [7,39,40] more generally, is in constructing a trial
basis for � that enables the relevant physical observables to
be calculated more efficiently for many instances of θ than
possible by direct solution.

That is, EC suggests that a very effective way of choosing
a variational trial function �t for solving the problem at θ is
to use

�t =
Nb∑

i=1

ci �
(i), (1)

where the � (i) are exact solutions determined at Nb parameter
vectors θi for i = 1, 2, . . . , Nb. If there are constraints on the
trial state in the form G[�t ] = 0, they can be enforced with
the Lagrange multiplier method; the final functional we need
to work with is Fθ[�t ] + λLG[�t ]. To find the stationary
point with �t , we need to find ci and λL that make the first
derivatives zero, i.e.,

∂
(Fθ[�t ] + λLG[�t ]

)
∂ci

= 0, (2)

G[�t ] = 0. (3)

Knowing the ci, we can compute �t and evaluate the func-
tional to get estimates of quantities of interest, such as the
energy. The efficiency of EC originates from Nb being a small
number in practice to get high accuracy, much smaller than
needed for a typical basis spanning the full Hilbert space.
In this low-Nb-dimensional space, the optimization problem

2It should be emphasized that the � are not limited to wave func-
tions, but can be general objects that are variates for the functionals.
In Ref. [20], the object is the scattering K matrix.
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in Eq. (2) with constraints can be solved extremely fast. For
example, it turns into a Nb-dimensional generalized eigen-
value problem in Sec. II A and a (Nb+1)-dimensional linear
equation system in Sec. II B. In this way, we achieve fast
emulations.

A. Many-body bound-state emulators

In few- and many-body bound-state calculations, the func-
tional for estimating the ground-state energy is

Fθ[�t ] = 〈�t |H (θ)|�t 〉, (4)

G[�t ] = 〈�t |�t 〉 − 1. (5)

The resulting equation for evaluating the EC emulator is a
Nb-dimensional generalized eigenvalue problem, which can
be solved extremely fast and with little memory for small Nb.
In the previous bound-state emulator studies [14,15] treating
chiral potentials and their to-be-fitted low-energy constants
(LECs), the θ dependence of the potential term in H is linear,
i.e., V (θ) = ∑N

n=1 θn On. The coefficients of the resulted lin-
ear equations depend on 〈� (i)|On|� ( j)〉 and 〈� (i)|� ( j)〉. These
matrix elements, even though possibly costly to evaluate, can
be computed and saved at the emulator-training stage (offline)
and tabulated for use in the emulating stage (online). The
resulting emulators are extremely fast and accurate [8,14,15].

B. Emulators for two and three-body scatterings

For the two-body scattering calculation, the KVP func-
tional for estimating the S matrix takes the form (and similarly
for the T or K matrices),

Fθ[�t ] = St − i

C 〈�t |E − H (θ)|�t 〉. (6)

St is the S matrix of the scattering wave function �t , which
can be inferred from the asymptotic behavior of �t at large
separation; i.e., in a particular partial wave � channel,

�t (r) −→
r→∞

1√
v

(−ĥ(−)
� (pr) + St ĥ(+)

� (pr)
)
. (7)

ĥ(±)
� are the outgoing and incoming spherical waves [41],

v is the relative velocity, and the coefficient C = 1 for this
particular normalization of the scattering wave function. In
this case

G[�t ] =
Nb∑

i=1

ci − 1. (8)

The functional with the EC trial wave function becomes

Fθ =
Nb∑

i=1

ciS
(i) −

Nb∑
i, j=1

cic jδŨi, j, (9)

δUi, j ≡ 1

2iC 〈� (i)|H − E |� ( j)〉, (10)

δŨi, j = δUi, j + δUj,i. (11)

1
2

3

r1, q1

R1, P 1

FIG. 1. A schematic layout of a three-body system with a partic-
ular choice of coordinate and momentum variables for describing the
internal dynamics.

S(i) is the S matrix at the ith training point. We then get a
set of linear equations for finding the stationary point of the
functional:

2
Nb∑
j=1

δŨi, jc j + λL = S(i) with i = 1, . . . , Nb, (12)

Nb∑
i=1

ci = 1, (13)

which can be directly solved using a linear equation solver.
The equations can become ill conditioned as Nb increases;
here we precondition them using nugget regularization [19].

To be discussed in Sec. III (in particular in Sec. III C and
see Refs. [28–32]), the variational functional Fθ[�t ] for the
three-body scattering takes the same form as Eq. (6) [also
(34)]. The C is a constant independent of dynamics [defined
in the discussion of Eq. (34)]. Therefore, the three-body emu-
lation again amounts to solving Eqs. (12) and (13), while the
coefficients of the linear system, including δU and S(i), need
to be prepared during the training stage (offline).

As with the bound-state emulators, if the θ dependence in
H (θ) is factorized from individual potential operators, i.e.,
V (θ) = ∑N

n=1 θnOn, the 〈� (i)|On|� ( j)〉 pieces in δUi, j can
be computed and stored at the training stage (offline) and
directly reused when emulating. These emulators can be ex-
tremely fast and need little memory, because the only cost
is solving the low-dimension linear equations. However, this
parameter factorization condition is not met, for example in
the “nonlinear-1” and “nonlinear-2” cases (see Table I). In
Secs. IV B and IV C we explore ways to mitigate this issue
to construct efficient EC emulators in these cases respectively.

III. THREE-BODY SCATTERING

A. Exact solution of Faddeev scattering equations

There are three equivalent sets of kinetic variables describ-
ing a three-body system. In Fig. 1, we consider particles “2”
and “3” a dimer system and particle “1” a spectator. The
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variables r1 and q1 are the relative coordinate and momentum
vectors between “2” and “3”, while R1 and P1 are those be-
tween the spectator and the center-of-mass (CM) of the dimer.
The other two sets of coordinates arise from permutations
of the particle indices. See Appendix A for further details.
The notation conventions in Ref. [1] will be followed here
generally, except that the assignments of momentum variables
are different: P ↔ qRef. [1], q ↔ pRef. [1].

In this work, we focus on the case where there is a
bound state in each of the three dimer systems, and study
the scattering between the spectator and the dimers below the
dimer-breakup thresholds. We further assume for now that the
particles are distinguishable spinless bosons and then consider
the case of identical bosons in the next subsection.

The full Hamiltonian for the three-body system in its CM
frame is

H = H0 +
3∑

α=1

Vα + V4. (14)

H0 is the full kinetic energy operator. In the momentum-space

representation, H0 = P2
β

2μβ + q2
β

2μβ
, with β = 1, 2, or 3, and

with μβ and μβ the reduced masses for the relative motions
described by qβ and Pβ , respectively. Vα is the two-body inter-
action (e.g., V1 is for particle 2 and 3), and V4 the three-body
interaction. The sum of all these potentials is V .

To calculate the transition amplitudes and wave
functions—both are required for training the EC emulators—
one can directly solve the three-body Faddeev equations in
coordinate space at a given scattering energy [42] by treating
them as coupled partial differential equations. The scattering
phase shift [36,43] is then extracted from the scattering wave
function solution.

Here, we take a different route by starting with the tran-
sition amplitudes and working in momentum space. The
transition operators describing particle-dimer scatterings are
usually defined through [1]

Uβα|φα〉 = (V − Vβ )|� (+)
α 〉. (15)

The indices α, β = 1, 2, 3 label the reaction channels in which
spectators α and β scatter from the associated dimer. |φα〉
and |� (+)

α 〉 are the asymptotic and full scattering states in the
α channel, respectively. That is, they are the eigenstates of
H0 + Vα and H0 + V . For example, |φ1〉 = |P1〉|ϕB〉 with |P1〉
the scattering plane wave between 1 and the 23 dimer, and
|ϕB〉 the dimer bound state. The on-shell transition amplitudes
between the α and β channels then take the form 〈φβ |Uβα|φα〉.

For later use, a U4α operator is defined in the same way, i.e.,
with β set to 4 in Eq. (15).

These operators satisfy the so-called AGS [1,44] cou-
pled integral equations (equivalent to the Faddeev equa-
tions [4,42]):

Uβα = δβαG−1
0 + t4 +

3∑
γ=1

(
δβγ + t4G0

)
tγ G0Uγα. (16)

Here G0 ≡ 1/(E + i0+ − H0) is the free Green’s function, tγ
and t4 the full T matrix associated with Vγ and V4 interactions,
and δβγ ≡ 1 − δβγ (i.e., only nonzero when β 	= γ ).

A separable two-body potential is employed in this work to
simplify the full calculation:

Vγ = λγ

∫
dPγ |Pγ , gγ 〉〈Pγ , gγ |, (17)

where 〈qγ |gγ 〉 = gγ (qγ ), usually called form factors, depend
only on the interparticle motions within the corresponding
dimers. The state normalization conventions are detailed in
Appendix A. The asymptotic state in channel γ then has an
analytical form [1,45]:

|φγ 〉 = ξγ G0(E )|Pγ , gγ 〉, (18)

with E = P2
γ

2μγ − Bγ the total on-shell energy and Bγ the dimer
binding energy. The parameter ξγ guarantees the proper nor-
malization of the dimer bound state. The T matrix associated
with Vγ , which showed up in Eq. (16), becomes [1,45]

tγ (E ) =
∫

dPγ τγ

(
E − P2

γ

2μγ

)
|Pγ , gγ 〉〈Pγ , gγ |,

1

τγ (e2)
= 1

λγ

−
∫

dqγ

|gγ (qγ )|2

e2 − q2
γ

2μγ

. (19)

The variable e2 is the energy of the two scattering particles; in
the three-body setting it turns into E − P2

γ /(2μγ ). (Note that
{λγ , τγ , gγ , ξγ } → {λ, τ, g, ξ} when discussing the identical
bosons later.) We also take a separable form for the three-
body interaction [46]: V4 = λ4|g4〉〈g4|. t4 is also separable:
t4 = τ4|g4〉〈g4| with

τ−1
4 = [

λ−1
4 − 〈g4|G0(E )|g4〉

]
. (20)

Based on the separable potentials and Eq. (18), Eq. (16) is
then transformed to the so-called Lovelace equations [1,47]
[Xβα (Pβ, Pα ) ≡ 〈φβ |Uβα|φα〉],

Xβα (Pβ, Pα ) = Zβα (Pβ, Pα ) + Zβ4(Pβ ) τ4(E ) Z4α (Pα )

+
∑

γ

∫
dPγ [Zβγ (Pβ, Pγ ) + Zβ4(Pβ ) τ4(E ) Z4γ (Pγ )] τ̂γ

(
E − P2

γ

2μγ

)
Xγα (Pγ , Pα ), (21)

with

Zβα (Pβ, Pα ) ≡ δβα〈φβ |G−1
0 |φα〉, Zβ4(Pβ ) ≡ 〈ĝβ, Pβ |G0(E )|g4〉, Z4α (Pα ) ≡ 〈g4|G0(E )|ĝα, Pα〉. (22)
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To keep the notation succinct, the following redefinitions have
been made:

|ĝα〉 ≡ ξα|gα〉 and τ̂α (e2) ≡ ξ−2
α τα (e2). (23)

Given the X ’s as the solution of Eq. (21), we can infer the
full scattering wave function |� (+)

α 〉 for an arbitrary incoming
channel α. First, |� (+)

α 〉 is decomposed into three different
Faddeev components (FCs) [1]:

|� (+)
α 〉 = G0

(
V4 +

3∑
μ=1

Vμ

)
|� (+)

α 〉 ≡
∑

μ

|ψα,μ〉. (24)

For separable potentials, the μth FC is then

|ψα,μ〉 = δαμ(1 + G0t4) G0|Pα, ĝα〉
+ (1 + G0t4) G0tμG0UμαG0|Pα, ĝα〉. (25)

Derivations can be found in Appendix B. Also see Ref. [45]
for the case without a three-body interaction.

B. Identical bosons and s-wave scattering

When the particles are distinguishable, for a fixed initial
channel, say 1, there exist three different scattering processes:
one elastic, 1 → 1, and two inelastic (known as rearrange-
ment), 1 → 2 and 1 → 3. For identical particles, however,
only elastic scattering exists below the breakup threshold. To
compute its amplitude, all the transitions in the distinguish-
able case need to be summed coherently (see Sec. (1.7) in
Ref. [48]):

X (Pout, Pin ) ≡ Xd(Pout, Pin ) + 2Xex(Pout, Pin ), (26)

with Xd ≡ X11 labeling all the elastic amplitudes and Xex ≡
X12 labeling all the inelastic ones. Similarly, all the Zαβ with
α 	= β are defined as Zex. Other quantities, such as the two-
body interaction strengths λ and the associated form factors
g, do not have channel dependence either and will not carry
channel indices anymore.

Based on Eq. (21), we can find the equation for X :

X (Pout, Pin ) = Z (Pout, Pin )

+
∫

dP Z (Pout, P)τ̂

(
E − P2

2μ1

)
X (P, Pin ),

(27)

where

Z (P′, P) ≡ 2Zex(P′, P) + 3Z14(P′)τ4(E )Z41(P). (28)

The symmetrized FCs are now

|ψμ〉 =
∑

α

|ψα,μ〉. (29)

Since the particles are identical, it is evident [1] [or cf.
Eq. (25)] that the μ〈P, q|ψμ〉 have the same analytical forms
in terms of the variable P and q for μ = 1, 2, 3 and so do the
μ〈R, r|ψμ〉 in terms of R and r. (The basis states μ〈P, q| and
μ〈R, r| are discussed in Appendix A.) The full scattering wave
function, in the representation of a given coordinate systems

(e.g., with particle 1 as the spectator), can be constructed from
one FC via

〈R1, r1|� (+)
Pin

〉 = 〈R1, r1|ψPin,1〉 + 2〈R2, r2|ψPin,2〉
+ 3〈R3, r3|ψPin,3〉

= 〈R1, r1|ψPin,1〉 + 1〈R2, r2|ψPin,1〉
+ 1〈R3, r3|ψPin,1〉, (30)

with R2,3 and r2,3 determined by R1 and r1 through Eq. (A8).
The first step uses the fact that |Rμ, rμ〉μ with μ = 1, 2, 3
are the same states. The Pin subscripts in the wave function
and FCs are kept to identify the asymptotic momentum. They
should not be confused with the channel index, e.g., α in
Eq. (24).

In particular, we focus on the s-wave particle-dimer scatter-
ing. The dimer bound state is spinless as well. This three-body
configuration has zero total angular momentum and is fully
decoupled from any other states. X ’s, Z’s, and Eq. (27)
can be projected into this subspace by properly averaging
over the angular dependence. We use a simplified notation
such that whenever their momentum or coordinate variables
are reduced to the corresponding magnitudes, they have im-
plicitly been projected to this subspace, e.g., Zex(P′, P) ≡
1/2

∫
d (cos θ ) Zex(P′, P) with θ the relative angle between the

two momenta.
The full wave function and the FCs in both momentum and

coordinate space are discussed in Appendix B. Here we just
note as an example that when R1 becomes much larger than
the interaction range, the first FC in the partial wave basis has
the asymptotic form

〈R1, r1|ψPin,1〉
R1→∞−→ N√

v

uB(r1)

r1R1

(−e−iPinR1 + S eiPinR1
)
, (31)

where v ≡ Pin/μ
1 is the relative velocity and

N ≡
√

v

i2
√

2πPin

, ϕB(r1) = uB(r1)

r1

1√
4π

, (32)

with ϕB the dimer bound-state wave function. In momentum

space, ϕB(q1) = ĝ(q1)/(−B − q2
1

2μ1
), but in coordinate space

ϕB(r1) needs to be computed numerically. The S matrix S =
e2iδ0 is related to X via X (Pin, Pin ) = (−)

4π2μ1
S−1
2iPin

.
Since μ〈R, r|ψPin,μ〉 has the same analytical forms for all

the μ’s, |ψPin,2〉 and |ψPin,3〉 in coordinate space have the same
oscillating behavior as the first FCs shown in Eq. (31) but with
R2,3 → +∞ and r2,3 being fixed respectively. According to
Eq. (A8), with R1 → ∞, R2, r2, R3 and r3 → ∞ as well. Thus,
the other two FCs, 〈R1, r1|ψPin,2〉 and 〈R1, r1|ψPin,3〉 approach
zero, since the ϕB(r2) and ϕB(r3) terms in the two FC asymp-
totic forms behave as exp(−r2

√
2μ1B) and exp(−r3

√
2μ1B)

respectively. Therefore, the full scattering wave function
has three different asymptotic regions, determined by Rμ →
∞ and rμ fixed for μ = 1, 2, 3. In each of these re-
gions, Eq. (31) with {R1, r1} → {Rμ, rμ} is the asymptotic
form.

The oscillating behavior of each FC gives rise to
the singularities in its momentum space representation,
μ〈Pμ, qμ|ψPin,μ〉. All the three sets of singularities are present
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in the full wave function in its momentum space repre-
sentation. To facilitate later discussion, we isolate these

singularities by subtracting the singular pieces from the FCs,
i.e., |ψ sub

Pin,1
〉 ≡ |ψPin,1〉 − |ψasym

Pin,1
〉, with

〈
P1, q1

∣∣ψasym
Pin,1

〉 ≡ 4π ĝ(q1)

E + iε − P2
in

2μ1 − q2
1

2μ1

[
δ(P1 − Pin )

4πP2
in

+ 2μ1

P2
in − P2

1 + i0+
P2

in + �̃2

P2
1 + �̃2

X (Pin, Pin )

]
, (33)

which has singularities at P1 = Pin. The subtracted FC,
|ψ sub

Pin,1
〉, is smooth along the real axis in the P1 complex plane.

The behavior of |ψasym
Pin,1

〉 at large R1 [see Eq. (B13)] is the same

as Eq. (31). However, because the P2
in+�̃2

P2
1 +�̃2 factor regularizes

the large P1 behavior in Eq. (33), |ψasym
Pin,1

〉 is finite at R1 = 0,
satisfying the boundary condition for a physical full wave
function. In contrast, Eq. (31) diverges at R1 = 0.

C. Kohn variational approach

In this section, we show that the functional

F[�t ] ≡ St − i

3N 2
〈�t |E − H |�t 〉 (34)

can be used to estimate the s-wave scattering S matrix at
the functional’s stationary point with a second-order error in
terms of the wave function error. It takes the same form as
Eq. (6) with C = 3N 2, but the overlap integrals in computing
〈�t |E − H |�t 〉 are much more involved. Similar functionals
for the three-body system can also be found in previous stud-
ies, such as [28–32,49].

It is clear that when �t is the exact solution �, the func-
tional returns the exact S matrix because the second term
vanishes. The nontrivial step is to demonstrate that when
�t = �,

δF[�t ]

δ�t
= 0, so that δF[�t ] = O[(δ�t )

2]. (35)

Let us first redefine u(R1, r1) ≡ R1r1〈R1, r1|ψPin,1〉. Its behav-
ior with R1 → +∞ can be inferred from Eq. (31) directly,
while uB(r1 → ∞) = 0. At small particle separations [43],

u(R1 = 0, r1) = u(R1, r1 = 0) = 0. (36)

Now we consider the variation of the FC. At large R1,

δu
R1→∞= NuB(r1)

1√
v
δS eiPinR1 . (37)

Note that the dimer bound-state wave function, uB, is not
varied (in Eq. (5.9) of Ref. [49], the deuteron wave function is
not varied).

The trick of integrating by parts is repeatedly used to com-
pute δ[〈�t |E − H |�t 〉]. For an individual FC, the following
equation holds:

〈ψPin,1|E − H |δψPin,1〉 − 〈δψPin,1|E − H |ψPin,1〉

=
∫

dr1
1

2μ1

(
u
∂δu

∂R1
− δu

∂u

∂R1

)∣∣∣∣
R1=∞

= −iδSN 2. (38)

The contribution of the 1
2μ1

∂2

∂r2
1

piece in the derivation, in
particular the surface term, is zero because u and δu are zero

at r1 = 0 and ∞. Furthermore, we also have

〈ψPin,2|E − H |δψPin,1〉 − 〈δψPin,2|E − H |ψPin,1〉

=
∫

dr1
1

2μ1

(
ũ
∂δu

∂R1
− δũ

∂u

∂R1

)∣∣∣∣
R1=∞

= 0. (39)

Here, ũ(r1, R1) ≡ r1R1
r2R2

u(r2, R2). Similar to the derivation of

Eq. (38), the 1
2μ1

∂2

∂r2
1

piece does not contribute since ũ, δũ = 0
at r1 = 0 and ∞ as well. The important difference between the
two derivations is that when R1 → ∞ with r1 fixed, r1R1

r2R2
∝ r1

R1
and thus the corresponding surface term becomes zero here.

By using (E − H )|� (+)
Pin

〉 = 0 and combining the above
two relationships, which also holds for other FCs, we get

3∑
μ,ν=1

[〈ψPin,μ|E − H |δψPin,ν〉 − 〈δψPin,μ|E − H |ψPin,ν〉]

= 〈� (+)
Pin

|E − H |δ� (+)
Pin

〉 = −3iN 2δS. (40)

This, together with 〈δ� (+)
Pin

|E − H |� (+)
Pin

〉 = 0, gives

δF[�t ]/δ�t = 0 when �t is the exact solution �
(+)
Pin

.
In Eqs. (38) and (39), the Coulomb interactions and the

centrifugal terms, if present in H0, would be canceled out on
their left sides. Therefore, the functional in Eq. (34) applies
to scattering in general partial waves and with the Coulomb
interaction between the projectile and target, just as Eq. (6)
can be used to estimate the scattering S matrix in all these
cases.

The functional in Eq. (34) also works for higher-body
elastic scattering, e.g., a particle scattering off a three-particle
bound state (trimer), with the proper definition of N depend-
ing on the normalization of the wave function. In general,
the asymptotic wave function at large target-projectile sep-
aration will have the same factorized form as Eq. (31) but
with ϕB changed to the product of the projectile and target
bound-state wave functions (e.g., three-particle bound state in
particle-trimer scattering). The derivation follows Eq. (38) and
Eq. (40) and the desired functional takes the form of Eq. (34).
A general proof can be found in Sec. V of Ref. [50].

The construction of emulators for particle-dimer scattering
directly follows the discussion in Sec. II B (also see discus-
sions in Refs. [30,32]). The next section discusses the testing
of the EC emulators. The focus is on s-wave scattering, but we
expect similar results for the other general scattering cases.

IV. THREE-BODY SCATTERING EMULATORS

Gaussian forms are employed for the two- and three-body
potential form factors in this work. A series of analytical
formulas related to these form factors can be found in the SM
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FIG. 2. Particle-dimer s-wave scattering phase shifts vs scattering energy E for different λ4 values (three-body interaction strength). The
two-body interaction has fixed �2 = 200 MeV, and λ is determined by the dimer binding energy B = 2 MeV. �4 is fixed at 300 MeV.

[37]. For the two-body interaction,

g(q) = C

�2
exp

[
− q2

2�2
2

]
with C2 ≡ �2

4π
3
2 μ1

. (41)

Here C is chosen such that at low energy, the scattering length
and effective range terms are related to �2 and the interaction
strength parameter λ [see Eq. (17)] via Eqs. (S2) and (S3) in
the SM [37]. Again, λ and g have no channel indices for a
system of identical particles.

The form factor of the three-body interaction is

〈P1, q1|g4〉 = 1√
M�4

4

exp

[
−ME4

2�2
4

]
, (42)

with E4 ≡ P2
1

2μ1 + q2
1

2μ1
. Evidently,

2〈P2, q2|g4〉 = 3〈P3, q3|g4〉 = 1〈P1, q1|g4〉, (43)

i.e., V4 takes the same form in all the coordinate systems.
We now turn to the EC emulators that we have devel-

oped for three different cases: (1) varying the strength of
only the three-body potential, λ4; (2) varying both �4 and
λ4 but not �2; and (3) varying, λ4, �4, and �2. The two-
body binding energy is fixed throughout, considering that in
most data analysis cases it should be known or measured
separately or determined by examining the threshold loca-
tion in the particle-dimer scattering cross sections. The three
cases will be discussed separately owing to their different

characteristics. Our focus will be on three main aspects: the
emulation accuracy and time and memory costs. A brief dis-
cussion on the computing costs at the training stage (offline)
is provided at the end.

Two distinct parameter sets are explored. The first one,
called the nucleon case, has two-body binding energy B = 2
MeV and the range of interactions of order 1 fm such that �2

and �4 are in the range of several 100 MeV. This set mimics
N-d scattering. The second one, called the nuclear case, has
B = 10 MeV and multiple-fermi interaction ranges with �2

and �4 less than 100 MeV. In all the cases, the particle mass
is fixed to be the nucleon mass, 940 MeV. The nucleon case is
elaborated below, while the nuclear case, as presented in the
SM [37], has similar results in general.

A. Vary λ4: The “linear” case

Figure 2 shows the particle-dimer scattering phase shifts
for the nucleon case, for 12 representative λ4 values with
�2 = 200 and �4 = 300 MeV. The phase shifts are sensitive
to λ4 when |λ4| � 0.1, but beyond that the dependence be-
comes much weaker. This can be understood from Eq. (20);
we can make the estimate

〈g4|G0(E )|g4〉 = − 4π3

3
√

3

(
M

�2
4

)2 ∫ ∞

0
dE4

E2
4 e

− ME4
�2

4

E4 − E+

≈ − 4π3

3
√

3
≈ −20, (44)

064004-7



XILIN ZHANG AND R. J. FURNSTAHL PHYSICAL REVIEW C 105, 064004 (2022)

10−13

10−9

R
el

.
er

r.

λ4 =-0.500 λ4 =-0.096 λ4 =-0.035 λ4 =-0.025

10−13

10−9

R
el

.
er

r.

λ4 =-0.015 λ4 =-0.005 λ4 =0.015 λ4 =0.025

0.0 0.6 1.2 1.8

E(MeV)

10−13

10−9

R
el

.
er

r.

λ4 =0.056

0.0 0.6 1.2 1.8

E(MeV)

λ4 =0.076

0.0 0.6 1.2 1.8

E(MeV)

λ4 =0.116

0.0 0.6 1.2 1.8

E(MeV)

λ4 =0.500

B = 2 MeV, Λ2 = 200 MeV, Λ4 = 300 MeV

-1.0, 0.0, 1.0

-1.0, 0.0, 1.0
||S| − 1|
-0.6, 0.6

-0.6, 0.6
||S| − 1|
0.0, 0.6

0.0, 0.6
||S| − 1|

FIG. 3. The EC emulator errors for various λ4 values (shown at the top of each panel), for which the exact phase shifts have been plotted
in Fig. 2. Three different training sets have been used for constructing the EC emulators. Their λ4 values are shown in the legends. The solid
curves are the relative errors of the S matrix, while the dashed curves plot ||S| − 1|, i.e., the unitarity violation.

which is independent of M and �4. Thus when |λ4| 
 1
20 ,

τ4 becomes independent of λ4. Therefore, we always choose
|λ4| � 0.5 when defining our parameter space.

Three sets of training points have been tried: (1) λ4 =
{−1, 0, 1}, (2) λ4 = {−0.6, 0.6}, and (3) λ4 = {0, 0.6}. The
errors of thus trained emulators at the 12 points from Fig. 2
are shown in Fig. 3, with solid and dashed lines for the relative
errors of S and the unitarity-violation error (||S| − 1|), respec-
tively. The errors are tiny: the S errors are mostly on the order
of 10−13 and increase to 10−10 near the breakup threshold.
For the third training, the test points with λ4 < 0 should be
considered as extrapolations, while the other tests points as
interpolations. The errors are similar for both interpolations
and extrapolations. The unitarity-violation errors are generally
smaller than the S relative errors, which is also true in all the
tests discussed in this work.

Besides the great accuracy, the other benefit of the emulator
is its extreme efficiency. As mentioned in Sec. II, since λ4 is
a linear parameter in V4, the δU matrix can be computed once
for a particular λ4 value and then stored in the training period.
At the emulating stage (online), the stored (low-dimensional)
δU can be rescaled quickly to get the correct δU for the
emulation point. The computational cost of the emulator is
10−3 seconds, which is for solving the Nb-dimensional linear
equations in Eqs. (12) and (13). The memory costs during
emulation are tiny. For example, the memory for storing δU
with Nb = 2 and 3 is negligible (cf. Table I).

Such a scenario applies directly to the fitting of the
low-energy constants in chiral three-nucleon interactions to
measurements of N-d scattering. Thus the EC emulators
could play a key role in a full Bayesian treatment of these

interactions. The generalization of the EC emulator to the
energy region above the breakup threshold, including for both
elastic scattering and breakup reactions, will be desirable as
well for this purpose and perhaps will help to resolve the
long-standing Ay puzzle [23].

B. Vary λ4 and �4

To further challenge the emulators, we now test them in
a two-dimensional parameter space. The (nucleon case) pa-
rameter space is chosen with |λ4| � 0.5 and 200 � �4 � 500
MeV and with �2 = 200 MeV fixed.

In Fig. 4, the emulator errors at eight representative points
in the parameter space are shown. On the top of each panel are
the λ4 and �4 values of the test point. The training points are
chosen using Latin hypercube sampling [51]. The solid and
dashed lines are the S errors and the unitarity violation errors,
respectively. In general, the latter are always smaller than the
former. With six training points, the errors are of the order of
10−6. (Note that in solving the linear equations in Eqs. (12)
and (13), a simple nugget on the order of 10−20 is added to
the coefficient matrix to mitigate the ill-conditioning problem
[19].)

To verify that these errors represent the global emulation
accuracy, 200 test points are uniformly sampled in this two-
dimensional parameter space. The mean values of the S errors
and their unitarity violations of the test samples are plotted in
Fig. 5. The resulting mean values at different Nb are consistent
with what is seen in Fig. 4.

The �4 dependence cannot be factorized from the
three-body potential operator, so the EC emulators require
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FIG. 4. The EC emulator errors for a few test points in the two-dimensional parameter space for the nucleon case. The solid and dashed
curves in the same color are the S matrix relative errors and the unitarity violation errors respectively with a fixed Nb (see the legend). The
errors decrease with increasing Nb; at Nb = 12 and 14, they become similar. Here B = 2 MeV and �2 = 200 MeV. �4 varies between 200 and
500 MeV, with |λ4| � 0.5.

recomputing the δU matrix at all emulation points. The cost is
minimized in the present work because of the use of separable
potentials. In realistic calculations, the cost could be substan-
tial and slows down the EC emulators significantly. To reduce
this cost, our first approach is to decompose the varying po-
tentials into a linear combination of basis potentials. Here,
we work directly with the interaction form factor, g4(P, q), as
a function of two variables in momentum space. (For non-
separable potentials, the potentials need to be decomposed
instead.) The form factor is decomposed into the products
of the Lagrange functions of Legendre polynomials at order

Nproj [52]:

g4(P, q) =
Nproj−1∑
m,n=0

fnmLn(xp)Lm(xq), (45)

fnm = g4(Pn, qm). (46)

In the numerical calculations, P and q are restricted to be
between 0 and a large momentum cutoff �cut. The xp and
xq variables used in the Lagrange functions are simply xp ≡
2P/�cut − 1 and xq ≡ 2q/�cut − 1. The coefficients fm,n are
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FIG. 5. The mean of the EC emulator errors (the left two for S and the right two for the unitarity violation) in the two-dimensional parameter
space for the same five training sets as in Fig. 4 (see legend). In total, 200 points have been sampled and tested. �2 is fixed at 200 MeV. The
number of interpolation points grows with Nb. For Nb = 14, the interpolation and extrapolations have a similar number of points.
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FIG. 6. The mean of the errors of the EC emulators in the two-dimensional parameter space, which uses the Lagrange functions for the
Legendre polynomials at Nproj order to project the three-body interaction. Nproj is fixed at 20. The training sets and the test point sample are the
same as those in Fig. 5.

the values of g(P, q) at the mesh points, defined as the ze-
ros of the Legendre polynomial that generates the Lagrange
functions [52]. For the potential basis, Ln(x) can be other
functions, such as orthogonal polynomials, but inferring fnm

could be more involved and thus increase the emulator time
cost.

Figure 6 shows the mean of the errors of the EC emulator
with the g4 linearization for the same test-point sample as
used in Fig. 5. The relative errors for S have increased to
10−4—still useful for most data analysis—while the unitarity
violation has smaller errors in general. The emulator cost is
about 10−3 to 10−2 s per evaluation on a laptop computer.

Unsurprisingly, by increasing Nproj large enough (up to 50
here), the decomposition error reduces below the error of vari-
ational calculation; the new emulator errors become similar to
the original EC errors in Figs. 5. However, the computational
costs of training emulators grows with N2

proj (although such
training calculations can be easily parallelized). The right
balance between the training cost and the emulation accuracy
has to be determined for each application of this emulator.

A second approach to deal with the nonfactorizable para-
metric dependence is to use Gaussian processes (GPs) based
regression (machine learning) method [10,11] to interpolate
δU (θ) matrix elements in the θ space. A Gaussian processes
is a probability distribution over possible functions that can
potentially fit data points. When interpolating δUi, j (θ) (with
i and j fixed) between a given set of points {θk} (k =
1, 2, . . . , Ngp), we treat those points and the corresponding
values of the matrix element as data and condition the GP
distribution on the data. The regression method then provides
a best function going through the data, which is used as the
interpolant here. We call this a GP-EC emulator (it is also
mentioned as the “nonlinear-1” case in Table I). Even though
the parameter space is two-dimensional, the GP only needs to
be trained in the �4 dimension, while the λ4 dependence in
δU is linear and thus can be interpolated simply by rescaling.
Note the λ4 dependence of the S matrix is still nonlinear. In
short, when interpolating δU instead of the final observables
using the GP, the dimension of the interpolating space can be
reduced by eliminating the dimension with linear dependence.

At the training stage, the GP is trained for each individual
matrix element separately in the current work. The GPy pack-
age [53], which is a GP framework in the Python language,

is utilized; the default model optimization is applied to get
the “best” GP interpolants. It is worth noting that principle
component analysis can be used in the GP training [54] when
the number of δU matrix elements becomes large.

In Fig. 7, different combinations of the number of EC
training points Nb and the number of the GP training points
Ngp are explored; the emulator errors for the eight different test
points—the same as in Fig. 4—are shown there. With Nb = 9
and Ngp = 30, the errors are on the order of 10−5 (and the
unitarity violation errors are even smaller). Figure 8 shows
the mean values of these errors with increasing Ngp, for the
same test point sample as used in Fig. 5. The left two and right
two panels show the S errors and the unitarity violation errors,
respectively, while the top and bottom panels have Nb = 6 and
9 separately. The interpolation and extrapolation errors are
similar and below 10−5 when Ngp ≈ 20; increasing Ngp further
does not further reduce the errors. This indicates that the
GP-EC emulator errors are dominated by the GP interpolation
errors. New ways to reduce GP errors will be explored in the
future.

Meanwhile, the computational costs at the emulating stage
(online) include those for the trained GP to make predictions
for δU matrix elements and for solving the EC emulator linear
equations. The total time cost is still only milliseconds. The
memory costs for storing the trained GP emulators are a few
MBs (cf. Table I), while those for solving Eqs. (12) and (13)
are much smaller. The costs for training the emulators are
detailed in Sec. IV D.

The emulators studied in this section are suitable for
fitting three-body interactions in three-cluster models that de-
scribe nuclear elastic scattering and reactions. The potential-
linearization trick is not restricted to the Lagrange function
basis. If the variation of the interaction range in the parameter
space is small, other forms of basis may be available for
reducing Nproj. The GP-EC emulator method can be applied
as well. It will be interesting to compare them in realistic data
fittings.

C. Vary both V4 and V1,2,3: The “nonlinear-2” case

There exist situations where constraining two-body in-
teractions between reactions subsystems requires input
from three-body systems. For example, neutron-nucleus
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FIG. 7. The GP-EC emulator errors for a few test points (the same as those in Fig. 4) in the two-dimensional parameter space. The emulators
implement GP interpolation within the EC emulators. The solid and dashed curves in the same color (opacity) are the S errors and the unitarity
violation errors, respectively, with a pair of fixed Nb and Ngp (see the legend).

interactions are typically inferred from d-nucleus scatterings,
because the direct experimental measurements of neutron-
nucleus interactions are difficult. With this possibility in mind,

we construct emulators for varying λ4, �4, and �2 at the
same time. The two-body binding energy B is always fixed
(λ depends on �2 as a result), as explained earlier.
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panel has Nb = 6 (9). Four different sizes of GP training sets from 15 to 30 are used in all the panels.
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FIG. 9. The EC emulator errors for a few test points in the three-dimensional parameter space with increasing Nb. The solid and dashed
curves in the same color (opacity) are the S matrix’s relative errors and the unitarity violation errors respectively with a fixed Nb (see legend).

Simply generalizing the EC emulators, however, faces a
difficulty: the scattering wave functions of the training points
and emulation points generally have different dimer bound-
state wave functions. On the other hand, the functional in
Eq. (34) requires the dimer bound-state wave function to be
fixed while varying the trial wave function [see Eq. (37)].

To solve this problem, the dimer bound-state wave function
within the training wave function in the asymptotic region is
substituted by the dimer bound state of the emulation point.
Meanwhile, in the interaction region the training wave func-
tions are kept intact. The trial wave function built out of the
linear combination of the new training wave functions (now
labeled as �̃ (i)) can be directly plugged into the functional in
Eq. (34). Each modified training wave function is now

�̃ (i) ≡
∑

μ

(
ψ(i),μ − ψ

asym
(i),μ + ψ̃

asym
(i),μ

)
, (47)

with the asymptotic FC ψ
asym
(i),μ defined in Eq. (33) (in mo-

mentum space) and Eq. (B13) (in coordinate space) and the
modified asymptotic FC ψ̃

asym
(i),μ defined in the same way.

The difference between ψ
asym
(i),μ and ψ̃

asym
(i),μ is in their dimer

bound-state wave functions: ϕ(i),B determined by the two-
body potential of the training point and ϕB determined by the
emulation point.

Meanwhile, at small Rμ the full wave functions �(i) and the
two asymptotic wave functions

∑
i ψ

asym
(i),μ and

∑
i ψ̃

asym
(i),μ have

the correct behavior, as shown in Eq. (36). Thus, the modified
training wave functions �̃ (i) have the correct behavior as well.

In short, the �̃ (i) now satisfy the requirements for the trial
wave functions in the variational calculations (cf. Sec. III C),
even though they are not eigenstates of the training Hamilto-
nian anymore. Based on these satisfied boundary conditions,
we get an interesting and useful corollary, by repeating the
derivations leading to Eq. (40):〈

�̃
(i)
Pin

∣∣E − H
∣∣�̃ ( j)

Pin

〉 − (i ↔ j) = 3iN 2(S(i) − S( j) ). (48)

This property guarantees that the EC emulator errors are ex-
actly zero for the emulation point that is the same as one of
the training points. Note that the corollary is also valid in the
previous two emulator cases.

Equation (C1) provides the working formula for computing
δU . When the two-body interactions are not varied, the matrix
element in Eq. (C1) becomes a linear combination of the ma-
trix elements of V ( j)

4 and V4 at the emulation point. When vary-
ing V1,2,3, a significant number of extra steps need to be taken
(see the SM [37] for more details). The numerical violation
of Eq. (48) is used here to check the accuracy of the numer-
ical overlap integrals in computing δU . Interestingly, all the
overlap integrals are only nonzero at finite range. The range is
determined by the ranges of the interactions as well as the size
of the dimer bound state, which is consistent with the physical
intuition for a particle scattering off a compound system.

Similar to Fig. 4, Fig. 9 shows the errors of the EC emulator
for 8 different test points but now in the three-dimensional
parameter space. The space is defined by 200 � {�2,�4} �
500 MeV and |λ4| � 0.5. With only Nb = 8, the S errors
are no worse than 1%; the unitarity violation errors are
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FIG. 10. The mean of the EC emulator errors in the three-dimensional parameter space with the same training sets as in Fig. 9 (see legend).

even smaller. When Nb = 17, the S errors are reduced to at
most 10−5.

In Fig. 10, 1000 test points in the three-dimensional pa-
rameter space are sampled uniformly. The test points enclosed
by the training points are again considered as interpolations,
while the others are extrapolations. The plot shows the mean
of the errors for both samples, which are consistent with those
seen for the eight test points in Fig. 9. The interpolation
and extrapolation errors are similar when Nb becomes large
enough.

It turns out that the emulator errors are dictated by our
current numerical error in computing the overlap integrals in
Eq. (C1), which are more difficult than the calculations in the
previous sections. By using Eq. (48), we found the integral
errors and the emulator errors have similar magnitudes.

Even though these EC emulators have excellent accuracy,
the calculation of δU needs to be performed at each emulation
point because of the extra modification applied to the training
wave functions. This slows down the emulators dramatically.
Therefore, the GP-EC emulator approach is employed here.
For the GP-based emulation—again by using the GPy pack-
age [53]—of the δU , the effective dimension of the parameter
space is reduced to either 1 or 2, by taking advantage of the
presence of the linear parameter dependencies in δU .

Similar to Fig. 4, Figs. 11 and 12 show the errors of the GP-
EC emulator with four different combinations of Nb and Ngp

for the same eight test points as shown in Fig. 9. By comparing
Figs. 11 and 9, we can see that the GP-EC emulator errors are
dominated by those of the GP emulations. Therefore, the most
significant accuracy improvement comes from increasing Ngp,
not from increasing Nb with fixed Ngp. Another important
observation can be made: the errors for the test points near the
edge of the parameter space (called “edge test points”), such
as the one for panel (2), are significantly larger than those for
the interior points. This is due to the large extrapolation errors
of the GP emulation.

Figures 13 and 14 show the mean of the errors for Nb = 14
and Nb = 17, respectively. The interpolation and extrapolation
points are defined in the same way as in Sec. IV B. Increasing
Ngp from 40 to 60 reduces the errors from 10−3 (10−2) to
10−4 (10−3) for the interpolation (extrapolation) points. We
further exclude the edge test points by restricting �2 and �4

to a narrower range, [230, 470] MeV. The mean of the errors
for the interpolations are not changed, but for the extrapola-
tions the mean gets reduced to a similar level as that of the

interpolation points, which is consistent with the observation
we made for Fig. 11. It also suggests that, to improve the
emulation accuracy, the parameter space for training should
be chosen larger than for emulation.

By employing the GP emulation of δU , the full time cost
of the GP-EC emulator for this case is on the order of mil-
liseconds. In comparison, the original EC emulator takes 103

seconds for each evaluation. The memory costs are larger—
from tens up to 100 MB—than the GP-EC costs in Sec. IV B,
caused by the larger Nb and Ngp here.

D. Training costs

The computing costs for training the emulators are another
important factor to be considered. Since they are highly de-
pendent on the complexity of the three-body problem, we
concentrate on their scaling with the training parameters and
potential parallelizations of the training computations.

The cost budget—at a single scattering energy—for the
“nonlinear-2” emulator has three main parts: the first for di-
rectly solving the scattering problem at Nb EC training points,
the second for computing δU at Ngp GP training points, and
the last for training the GPs using the GPy package. The first
costs are proportional to Nb—on the order of 10 for the em-
ulation in the three-dimensional space. These Nb calculations
are mutually independent and can be readily parallelized.

The second costs scale as N2
b Ngp. They could also be

significant but can be easily parallelized as well into N2
b Ngp

independent calculations. The procedure of correcting the
training wave functions’ asymptotic behavior does not in-
crease the second costs in any significant way. The two-body
bound-state problem can be either fully solved quickly—as
implemented in this work—or by using a bound-state EC em-
ulator [14,15]. The GP training costs scale as N2

b N3
gp; however,

the calculations can be parallelized into N2
b independent ones.

The “nonlinear-1” emulator has the same training budget
structure, but the training calculations are simpler. The “lin-
ear” emulator costs the least without using GP.

V. SUMMARY AND OUTLOOK

In this work, we have developed fast emulators for
quantum three-body scattering by combining the variational
method and the EC concept. Different variants of the em-
ulators are studied in anticipation of different application
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FIG. 11. The GP-EC emulator relative errors for the same test points as in Fig. 9, in the three-dimensional parameter space. Four different
combinations of Nb and Ngp are explored (see the legend).
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FIG. 12. The same as Fig. 11, but for the unitarity violation errors of the GP-EC emulators.
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FIG. 13. The mean of the GP-EC emulator errors vs E in the three-dimensional parameter space, with Nb = 14 and different Ngp. Two
different calculations are performed: the first based on the same 1000 test point sample as used in Fig. 10 with �2 and �4 in [200, 500] MeV
(318 interpolation and 682 extrapolation points) and the second with �2 and �4 in a smaller [230, 470] MeV range (312 interpolation and 325
extrapolation points). As can be seen, reducing the number of the edge test points reduces the errors in the extrapolation sample to a similar
level as those in the interpolation sample.

scenarios. Their accuracy and computing costs are summa-
rized in Table I, and discussed in detail in Sec. IV: the
emulator errors in Figs. 3, 8, 13, and 14 (and Figs. S2, S6, S7,
S12, and S13 for the nuclear case), the emulator computing
costs in the discussions of these figures, and their training
costs in Sec. IV D. (The codes to generate the results presented
in this paper will be made public [38].)

In Sec. IV B, two different solutions are explored to ex-
pedite the EC emulators that get slowed down due to the
nonfactorizable parametric dependence of the varying inter-
actions within the Hamiltonian. One uses Lagrange functions
to linearly decompose the interaction operators (see Eq. (45)),
while the other—called a GP-EC emulator—employs GP em-
ulation of the δU matrix. The GP-EC emulators are again
applied in Sec. IV C to achieve fast emulation. The sec-
tion also demonstrates a working procedure to correct the

asymptotic behavior of the trial wave functions when building
the emulators.

Now, we comment on a few important and interesting
generalizations and their potential impact in nuclear physics
and beyond.

To emulate N-d and d-nucleus scattering, as well as any
processes that can be modeled as three-cluster systems, the
current emulators need to be extended to include spin and
isospin degrees of freedom, fermion statistics, and higher
partial waves (or even full scattering amplitude without
partial wave decomposition). It will also be useful to gen-
eralize the emulators for the energy region above the dimer
breakup threshold and to include scattering, nuclear excita-
tion, and dimer breakup channels. Constructing EC emulators
for four- and higher-body scatterings is another interesting
topic.
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FIG. 14. The same as Fig. 13, but with Nb = 17. For the full (smaller) sample, there are 322 (302) interpolation and 678 (335) extrapolation
points. Similar to Fig. 13, reducing the number of the edge test points reduces the errors in the extrapolation sample to the same level as those
in the interpolation sample.
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FIG. 15. The emulator’s role in the workflow for nuclear physics
and other research areas. The dashed arrows indicate desirable con-
nections enabled by the emulators.

Our current estimates of the emulation accuracy and costs,
as outlined in Table I, should be good guides for the fu-
ture emulations of the realistic calculations mentioned above.
There, the extra complexities due to different partial waves
and discrete quantum numbers in the intermediate states in-
crease the complexity of the δU calculations (and therefore
the training costs; see Sec. IV D), but not the complexity of
the emulation [i.e., the linear equation system in Eqs. (12) and
(13)] for a given scattering channel. The latter is controlled
by its dimension, ≈ Nb. Therefore, the essential question is
how the numbers of trainings (Nb)—determining both accu-
racy and costs—extrapolate from the present work to realistic
calculations. This can only be quantitatively answered in in-
dividual studies. For now, we try to get hint from elsewhere.
In the EC emulation of the many-body nuclear structure cal-
culation in Ref. [15], Nb ≈ 60 trainings were employed in a
16-dimensional parameter space of the chiral nucleon interac-
tion theory to achieve percent-level emulation accuracy. For
such Nb, which are only a few times of the largest Nb = 17
used here (in the “nonlinear-2” case), we expect the estimates
in Table I to hold within an order of magnitude.

Such emulators have the potential to create a new workflow
in nuclear physics research and in other fields, as implied by
the diagram in Fig. 15.3 Although our focus is the three-body
quantum scattering problem, the workflow diagram and its
discussion could apply in other situations, such as higher-body
scattering and many-body bound-state studies.

Calculations starting from more microscopic physics gen-
erally promise physics modeling with great predictive power,
less model dependence, and more complete uncertainty quan-
tification. These advantages are desirable, but their expensive
computational costs have frequently kept their interactions
with other sectors (the other two blocks in Fig. 15) from

3We acknowledge discussions about potential broader impact of
emulators at the INT Program 21-1b held online between April 19
and May 7, 2021 [55].

growing stronger. This means a loss of novel research
opportunities.

Developing efficient and accurate emulators will funda-
mentally change this situation. As the proxy of the expensive
calculations, they can be coupled to data analysis and other
applications, thanks to their low computational costs. Novel
studies could emerge with the fostering of new interactions
between different research areas. For example, three-body em-
ulators will enable direct applications of Faddeev scattering
equations in experimental data analysis, experimental design,
and the efficient calibration of theory.

The “other applications” in Fig. 15 include collabora-
tions with other theoretical approaches, either more or less
microscopic than the “expensive calculations.” For the three-
nucleon emulators, they could be Lattice-QCD calculations or
a two-body study that treats the deuteron as a single particle
degrees of freedom.

In collaborations, “expensive calculations” provide robust
models for other approaches to compare with, and in return
extend the range of their own applications. An important part
of working with different approaches is in fact data analy-
sis, i.e., constraining the macroscopic theories and models
with the information from more microscopic ones. The three-
nucleon emulators can be applied to extract three-nucleon
interactions from lattice-QCD calculations, an approach4

that is different from current generalizations of the Lüscher
method [56]. Similarly, matching three-cluster theories and
many-body structure calculations can create a new method of
ab initio nuclear scattering calculation, a desirable generaliza-
tion of the recent two-cluster study [26].

Through the emulators of the “expensive calculations”, the
“experiments” and “other applications” are efficiently coupled
as well. This allows the assimilation of experimental data into
theoretical studies, which in return could create new experi-
mental proposals. The three-nucleon emulators could provide
a robust connection between N-d scattering measurements
and the three-nucleon energy levels computed in lattice-QCD.

By merging variational methods with the EC principle,
a new way to construct emulators is opened up. This strat-
egy is fundamentally different from those based on GPs
or neural networks, as used in machine learning. The EC
emulators take into account the physics involved through
variational methods, while the others learn the physics based
on statistical methods. The new strategy may not have as
broad applications, but whenever applicable, the EC emulators
could have much better accuracy for both interpolations and
extrapolations.

Note added. Recently another type of three-nucleon scat-
tering emulator was proposed in Ref. [57]. The emulator is
based on a lowest-order perturbative treatment of the varying
potential operators, in particular the contact three-nucleon in-
teractions. The application scenario is the same as the “linear”
case in Table I. The emulation accuracy is on the percent level
and the time costs are seconds on a personal computer.

4This approach is similar to that in Ref. [25]. However instead of an
emulator, the so-called stochastic variational method was used there
to solve the few-body problem.
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APPENDIX A: CONVENTIONS FOR STATES

Single-particles states in coordinate and momentum space
satisfy

〈p′|p〉 = δ(p − p′), (A1)

〈r′|r〉 = δ(r − r′), (A2)

〈r|p〉 = eipr√
(2π )3

. (A3)

The partial wave bases are defined through

〈p′|p, �, m〉 = δ(p′ − p)

p2
Y�m( p̂′), (A4)

〈r′|r, �, m〉 = δ(r′ − r)

r2
Y�m(r̂′). (A5)

It can be verified that

〈p′, �′, m′|p, �, m〉 = δ(p′ − p)

p2
δ��′δmm′ , (A6)

〈r|p, �, m〉 =
√

2

π
i�Y�m(r̂) j�(pr). (A7)

Let us turn to the states in the three-body system. The
CM degree of freedom, which is always factorized from
the full state, is kept implicit in the states. The states are
now labeled by two kinematic variables—either coordinate
or momentum—for the relative motions, as shown in Fig. 1
and discussed in the beginning of Sec. III A. There are three
equivalent sets of kinematic variables describing the same
system. The variables are linearly related. For the case with
the same mass for all particles, they are [1]

R2 = −1

2
R1 + 3

4
r1, r2 = −R1 − 1

2
r1,

R3 = −1

2
R1 − 3

4
r1, r3 = R1 − 1

2
r1. (A8)

Importantly, for R1 (or r1) approaching +∞, the other vari-
ables approach +∞ as well.

The index outside of a state, such as i in |〉i, identifies the
particular choice of coordinate system. Thus, |R1, r1〉1 means
using the coordinate system with particle 1 as spectator, with
r1 and R1 for the relative coordinates between particle 2 and 3
and between 1 and the CM of 2 and 3, respectively. In contrast,
|R2, r2〉1 has r2 and R2 for the relative coordinates between
particle 2 and 3 and between 1 and the CM of 2 and 3 (not
between particle 1 and 3 and between 2 and the CM of 1 and

3). Of course, |Rμ, rμ〉μ with μ = 1, 2, 3 are the same state.
The momentum space states are defined in the same way. In
order to simplify the notation, the |R1, r1〉1 basis state will
have index 1 omitted, and the other states, such as |Pγ , gγ 〉,
rely on the index γ to label the coordinate system, whenever
doing so does not cause confusion.

APPENDIX B: THREE-BODY SCATTERING WAVE
FUNCTIONS

Detailed discussions of the Faddeev equations can be found
in Ref. [1]. Here we focus on computing scattering wave
functions based on half-off-shell transition amplitudes, X , and
the asymptotic behavior of the wave functions in coordinate
space.

We start with the V4 = 0 case. The Faddeev components
are defined as

|ψα,μ〉 ≡ G0Vμ|� (+)
α 〉, (B1)

∑
μ

|ψα,μ〉 = G0

(∑
μ

Vμ

)
|� (+)

α 〉 = |� (+)
α 〉, (B2)

with μ = 1, 2, 3. To get the expressions for ψα,μ, we can now
multiply Eq. (16) by G0 from the left. For α = 1, we have

|ψ1,1〉 = 1

2
G0(U21 + U31 − U11)|φ1〉

= G0|P1, ĝ1〉 + G0t1G0U11G0|P1, ĝ1〉, (B3)

|ψ1,2〉 = 1

2
G0(U11 + U31 − U21)|φ1〉

= G0t2G0U21G0|P1, ĝ1〉, (B4)

|ψ1,3〉 = 1

2
G0(U11 + U21 − U31)|φ1〉

= G0t3G0U31G0|P1, ĝ1〉. (B5)

These expressions can be generalized to [45]

|ψα,μ〉 = δαμG0|Pα, ĝα〉 + G0tμG0UμαG0|Pα, ĝα〉. (B6)

When V4 	= 0, the aforementioned FCs cannot be summed
to get the full wave function. A fourth FC |ψ1,4〉 ≡
G0V4|� (+)

1 〉 can be temporarily introduced. By repeating the
derivations that lead to Eq. (B3), (B4) and (B5), we get the
same expressions for ψ1,μ for μ = 1, 2, 3 and in addition,

|ψ1,4〉 = 1

3
G0(U11 + U21 + U31 − 2U41)|φ1〉

= G0t4G0U41G0|P1, ĝ1〉

=
(

G0t4 + G0t4
∑

β

G0tβG0Uβ1

)
G0|P1, ĝ1〉. (B7)

In the last step, the following identity is invoked [1]:

U4α = G−1
0 +

∑
γ

tγ G0Uγα. (B8)

This suggests a new way to represent the full wave function,
by adding all the pieces of |ψ1,4〉 to the other three FCs. We
finally have Eq. (25) for general channel α.
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For identical bosons, the symmetrized FC is (see Sec. III B)

|ψμ〉 =
∑

α

|ψα,μ〉 = (1 + G0t4) G0|Pμ, ĝμ〉 +
∑

α

(1 + G0t4) G0tμG0UμαG0|Pα, ĝα〉. (B9)

In momentum space with e.g., μ = 1,

〈P1, q1|ψPin,1〉 = Z̃d (P1, q1)δ(P1 − Pin ) + Z̃14(P1, q1) τ4(E ) Z41(Pin ) + Z̃d (P1, q1) τ̂

(
E − P2

1

2μ1

)
X (P1, Pin )

+ Z̃14(P1, q1) τ4(E )
∫

dP Z41(P) τ̂

(
E − P2

2μ1

)
X (P, Pin ), (B10)

with

Z̃d (P1, q1) ≡ ĝ(q1)

E + iε − P2
1

2μ1 − q2
1

2μ1

, (B11)

Z̃14(P1, q1) ≡ 〈P1, q1|G0(E )|g4〉. (B12)

Other quantities, including Z41 and τ4, are defined in
Sec. III A.

The asymptotic behavior of the FCs at large particle-dimer
separation, as shown in Eq. (31), is determined by their sin-
gularities in momentum space in Eq. (B10), including the
δ(P1 − Pin ) term and the pole of τ̂ (E − P2

1 /2μ1) in the third
term when P1 = Pin. The other terms proportional to τ4 de-
crease exponentially with R1 and thus do not contribute to the
asymptotic behavior, below the breakup threshold.

We can isolate these singularities by subtracting the FC
with the asymptotic piece defined in Eq. (33). Within ψasym,
the large P1 dependence of the P1 = Pin pole term is further
regularized using the �̃ parameter. In coordinate space, the
subtraction projected to s waves is

〈
R1, r1

∣∣ψasym
Pin,1

〉 = N√
v

uB(r1)

r1R1

( − e−iPinR1 + e2iδ0 eiPinR1

− 2i sin δ0eiδ0 e−�̃R1
)
. (B13)

As can be seen, ψ̃asym approaches to the FC’s asympototic
behavior at large R1, but meanwhile becomes finite when
R1 → 0, a boundary condition for a physical solution, thanks
to the �̃-dependent regularization.

APPENDIX C: EMULATORS

The following formula is used to compute δU in construct-
ing the EC emulators with varying V1,2,3 and V4:

〈�̃ (i)|E − H |�̃ ( j)〉
= 〈

�sub
(i)

∣∣V ( j) − V
∣∣�sub

( j)

〉
+ 3

〈
�sub

(i)

∣∣V ( j)
2 + V ( j)

3 + V ( j)
4

∣∣ψasym
( j),1

〉
− 3

〈
�sub

(i)

∣∣V2 + V3 + V4

∣∣ψ̃asym
( j),1

〉
− 3

P2
in + �̃2

2μ1

〈
�sub

(i)

∣∣�ψ
asym
( j),1 − �ψ̃

asym
( j),1

〉
+ 〈

�̃
asym
(i)

∣∣V ( j) − V
∣∣�sub

( j)

〉
+ 3

〈
�̃

asym
(i)

∣∣V ( j)
2 + V ( j)

3 + V ( j)
4

∣∣ψasym
( j),1

〉

− 3
〈
�̃

asym
(i)

∣∣V2 + V3 + V4

∣∣ψ̃asym
( j),1

〉
− 3

P2
in + �̃2

2μ1

〈
�̃

asym
(i)

∣∣�ψ
asym
( j),1 − �ψ̃

asym
( j),1

〉
. (C1)

�̃ (i) is defined in Eq. (47). V and V ( j) are the full potential
including both two and three-body interactions for the emula-
tion point and the jth training point [labelled by ( j) in sub-
or superscripts] respectively. And �ψ

asym
( j),1 is the difference

between the regularized asymptotic FC in Eq. (33) and the
nonregularized one (i.e., the regularized one but with �̃ →
+∞):

〈
P1, q1

∣∣�ψ
asym
( j),1

〉 ≡ ϕB,( j)(q1)
8πμ1

P2
1 + �̃2

X( j)(Pin, Pin ), (C2)

〈
P1, q1

∣∣�ψ̃
asym
( j),1

〉 ≡ ϕB(q1)
8πμ1

P2
1 + �̃2

X( j)(Pin, Pin ), (C3)

with ϕB,( j)(q1) ≡ ĝ( j)(q)

−B − q2

2μ1

, ϕB(q1) ≡ ĝ(q)

−B − q2

2μ1

. (C4)

In coordinate space, they become

〈
R1, r1

∣∣�ψ
asym
( j),1

〉 = −ϕB,( j)(r1)eiδ(i) sin δ(i)

√
2

π

e−�̃R1

PinR1
, (C5)

〈
R1, r1

∣∣�ψ̃
asym
( j),1

〉 = −ϕB(r1)eiδ(i) sin δ(i)

√
2

π

e−�̃R1

PinR1
. (C6)

Note ϕB(q1) and ϕB(r1), for example, are the dimer bound-
state wave function in momentum and coordinate space.

To derive Eq. (C1), we make use of Eq. (47) and

(E − H )|�̃ ( j)〉 = (E − H )|� ( j)〉 − (E − H )
∣∣�asym

( j)

〉
+ (E − H )

∣∣�̃asym
( j)

〉
= (V ( j) − V )

(∣∣�sub
( j)

〉 + ∣∣�asym
( j)

〉)
− (E − H )

(∣∣�asym
( j)

〉 − ∣∣�̃asym
( j)

〉)
. (C7)

Because

(
E − H0 − V ( j)

1

)∣∣ψasym
( j),1

〉 = P2
in + �̃2

2μ1

∣∣�ψ
asym
( j),1

〉
, (C8)

(E − H0 − V1)
∣∣ψ̃asym

( j),1

〉 = P2
in + �̃2

2μ1

∣∣�ψ̃
asym
( j),1

〉
, (C9)
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we have

(E − H0)
∣∣�asym

( j)

〉 = (E − H0)
∑

μ

∣∣ψasym
( j)

〉

=
∑

μ

V ( j)
μ

∣∣ψasym
( j),μ

〉

+ P2
in + �̃2

2μ1

∑
μ

�ψ
asym
( j),μ, (C10)

(E − H0)
∣∣�̃asym

( j)

〉 = (E − H0)
∑

μ

∣∣ψ̃asym
( j)

〉

=
∑

μ

Vμ

∣∣ψ̃asym
( j),μ

〉

+ P2
in + �̃2

2μ1

∑
μ

�ψ̃
asym
( j),μ. (C11)

Plugging the above formula into Eq. (C7) gives Eq. (C1).
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