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Three-body resonances in pionless effective field theory
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We investigate the appearance of resonances in three-body systems using pionless effective field theory
at leading order with two complementary methods. The Faddeev equation is analytically continued to the
unphysical sheet adjacent to the positive real energy axis using a contour rotation. We consider both the
three-boson system and the three-neutron system. For the former, we calculate the trajectory of Borromean
three-body Efimov states turning into resonances as they cross the three-body threshold. For the latter, we find
no sign of three-body resonances or virtual states at leading order. This result is validated by exploring the level
structure of three-body states in a finite volume approach.

DOI: 10.1103/PhysRevC.105.064002

I. INTRODUCTION

The search for few-neutron resonances and bound states
has a long history with ambiguous results [1,2]. In this work
we focus on the topic of three-neutron resonances, motivated
by a controversial discussion of this topic in the recent litera-
ture [3–10].

The first theoretical studies based on the analytical con-
tinuation of the Faddeev equation in the 1970s using a
Yamaguchi-type two-neutron (nn) interaction in the 1S0 chan-
nel found no evidence for a three-neutron resonance [11,12].
Further experiments [13–16] and theoretical investigations
[17,18] did not satisfactorily resolve the situation. Theoreti-
cal studies using the complex scaling method (CSM) in the
1990s indicated a possible three-neutron resonance with an
unphysically large width [19,20]. These results were sup-
ported by Ref. [21], extending Glöckle’s earlier work [11] to
more partial-wave channels for the nn interaction. However,
subsequent theoretical investigations based on the CSM and
analytical continuation in the coupling constant (ACC), again
excluded a possible three-neutron resonance [22].

The interest in few-neutron resonances was revived in
2016, when experimental evidence for a four-neutron res-
onance was presented by Kisamori et al. [23]. A recent
experiment even suggested that the tetraneutron could be
bound [24]. A theoretical study of 3n and 4n systems
suggested that these problems are connected and a three-
neutron resonance might exist below a four-neutron resonance
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[3], which was subsequently supported by other work [7].
However, these results were criticized and led to a con-
troversial discussion [4,6,25]. Further studies based on the
Alt-Grassberger-Sandhas (AGS) equations for transition op-
erators [5] and response functions [8] found no evidence of a
three-neutron resonance. Higgins et al. [9,10] confirmed this
further with calculations in a hyperspherical framework. They
pointed out that there is significant attraction compared to free
neutrons. However, because of the Pauli repulsion it does not
lead to a resonance but shows up as a clear enhancement in the
Wigner-Smith time delay. Other recent studies investigated
the spectral properties of three-body systems near unitarity by
mapping to Gaussian potentials [26], and of nuclear systems
with A = 3–6, 16 using two- and three-body contact interac-
tions [27]. An overview of the theoretical and experimental
situation regarding few-neutron resonances was recently given
in Ref. [28].

This overall situation is our motivation to investigate here
the problem of three-neutron resonances using pionless effec-
tive field theory (EFT) [29–32]. Because of the relevance for
Efimov states in ultracold atomic gases [33,34], we also apply
our method to three-boson resonances. Pionless EFT provides
a controlled, model-independent description of few-body sys-
tems with large two-body S-wave scattering length, based on
an expansion in the ratio of short- and long-distance scales
(see Refs. [35–38] for reviews). This description breaks down
for momenta of the order of the pion mass, but is ideally suited
to investigate the properties of low-energy neutron systems. It
allows for a model-independent assessment of the resonance
question which can be systematically improved by calculating
higher orders. In the scope of pionless EFT, all higher-order
corrections, including attractive P-wave channels, are pertur-
bative. Thus we do not expect higher-order corrections to alter
the low-energy resonance structure of the system. Finally,
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pionless EFT describes the low-energy properties of neutron
matter very well (see, e.g., Ref. [39]) and is thus ideally suited
for our purpose.

In addition to an EFT framework, we need a method to
investigate the resonance spectrum in this theory. The various
methods for studying few-body resonances can be separated
into two classes: approaches which perform calculations on
the physical sheet for some form of unphysical modification
of the system (altered interaction strength, adding an artifi-
cial trap), and approaches which perform calculations directly
on the unphysical sheet. Both types of approaches have ad-
vantages as well as disadvantages. While the calculation on
the physical sheet is simpler, the analytical continuation to
the unphysical sheet can be delicate or even questionable.
Direct searches of resonance poles on the unphysical sheet
are much more complex, both numerically and conceptually,
but generally lead to more robust results. This work uses a
combination of both approaches, with a primary focus on
direct calculations.

For the latter, we use the well-known Faddeev formal-
ism [40], formulated in momentum space. Already in 1964,
Lovelace proposed the method of contour rotation to an-
alytically continue the Faddeev equation to the unphysical
sheets [41]. This formalism was extended independently to
general integration contours by Glöckle [11], as well as by
Möller [42–46]. Furthermore, these works introduced a modi-
fied equation structure that is simpler to use. The basic idea
by Lovelace of a rotated contour was extended by Pearce
and Afnan and applied to several systems [47–51]. We apply
this formalism in this work and note that it is conceptually
equivalent to the CSM [52–56], which performs a rotation in
coordinate space.1

We complement our direct searches for complex resonance
energies by an alternative approach that falls somewhere
in between the two classes of methods mentioned above.
Expanding upon early work for two-body systems [59–62],
Ref. [63] established that energy spectra in a periodic finite
volume can be used to identify few-body resonance states as
avoided crossings of energy levels as the size of the volume
is varied. This method is based on the Lüscher formalism
[64–66], the key insight of which is that the infinite volume S
matrix governs the spectrum of a system in finite volume. An
attractive feature of this method is that it does not require any
contour rotation or modification of the interaction (although
the finite volume bears some similarity to adding an artificial
trap to confine the system). It is therefore straightforward
to apply, and Ref. [63] developed an efficient discrete vari-
able representation (DVR) to numerically calculate few-body
systems in periodic boxes. A drawback of the method is
that currently only resonance energies can be readily inferred
from the finite-volume spectrum, while extracting information
about widths requires further formal work. For our use of the
method here, however, this is not a concern.

1An alternative formulation of resonances is given by the Berggren
basis, which includes discretized resonance states explicitly in the
completeness relation [57,58].

This work is structured in the following way. In Sec. II,
we derive a Faddeev equation in partial-wave basis for the
three-boson and three-neutron system in pionless EFT at
leading order. The equation is then analytically continued
to the unphysical sheet adjacent to the positive real axis
in Sec. III, using a rotation of the contour of integration.
Section IV applies this formalism to the three-boson and
three-neutron system. For the three-boson system, we cal-
culate the resonance energy and width for a broad range
of negative scattering length and compare to results in the
literature. We show that no three-neutron bound state is pos-
sible and calculate the pole trajectory on the unphysical sheet
for a bound two-neutron subsystem. Searching for resonance
poles and virtual states for an unbound subsystem up to the
physical nn scattering length, no indications for resonances
or virtual states in the Jπ = 1

2
−

, 3
2

−
, and 1

2
+

channels are
found. In Sec. V, we discuss the complementary finite-volume
formalism to extract resonance properties from avoided level
crossings in finite volume energy spectra. No evidence of
avoided level crossings for the negative parity states is found,
confirming the Faddeev results for the Jπ = 1

2
−

and 3
2

−
chan-

nels. Finally, a summary and outlook are given in Sec. VI.
We emphasize that the novel aspect of our work lies in the

use of a model-independent pionless EFT approach, which is
systematic and transparent. Moreover, our study is carried out
using two complementary methods with different systematics:
resonance trajectories in the complex plane and finite-volume
calculations.

II. FADDEEV FORMALISM

Since we work in the Faddeev formalism, we follow
Refs. [67,68] and use pionless EFT [29–32] to construct an
effective interaction potential,

Veff =
∞∑

n=2

Vn, (1)

where the index n specifies an n-body potential. In gen-
eral, interaction terms up to n = N contribute in a N-body
problem, but at low energies higher-body terms are typically
suppressed. The potentials Vn are constrained by Galilean in-
variance and thus depend only on the relative momenta. They
can be expressed in a momentum expansion, e.g.,

〈k′|V2|k〉 = C0 + C2(k′2 + k2)/2 + · · · (2)

for S-wave two-body interactions, where k and k′ are the
relative momenta in the initial and final states and regula-
tor functions have been suppressed. Similar expressions can
be derived for three- and higher-body interactions. At lead-
ing order in pionless EFT, only a momentum-independent
two-body contact interaction in the 1S0 channel contributes
for the three-neutron system [69,70]. In the three-boson
system, in contrast, an additional momentum-independent
three-body contact interaction has to be included to properly
renormalize the system [71,72]. Assuming typical momenta
of order 1/a, the uncertainty of a leading-order pionless
EFT calculation can be estimated as |r/a|, where r is
the effective range and a the scattering length. For the
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three-neutron system, we have a ≈ −18.9 fm and r ≈ 2.7 fm
[73], such that a leading-order calculation has an uncertainty
of about 15%. Thus the higher-order corrections are not ex-
pected to change the resonance structure of the system. The
exact form of the effective potential depends on the spe-
cific regularization scheme used. The low-energy observables,
however, are independent of the regularization scheme (up to
higher-order corrections) and one can choose a convenient
scheme for practical calculations. Explicit forms for the ef-
fective potentials will be given below. (For a more detailed
discussion of pionless EFT including a more formal discus-
sion of the power counting, we refer to the reviews [35–38].)

Our starting point for deriving the Faddeev equations is
the full relative three-body wave function |�〉, defined as a
solution of the stationary Schrödinger equation. This wave
function is decomposed into the three so-called Faddeev com-
ponents |ψi〉 according to

|�〉 =
3∑

i=1

|ψi〉 ≡ G0

(
3∑

i=1

V (i)
2 + V3

)
|�〉, (3)

where i = 1, 2, 3 labels the three different pairs in the three-
body system. The above definition includes the free Green’s
function

G0(z) = 1

z − H0
, (4)

where z is an arbitrary (in principle complex) energy. H0

represents the relative kinetic part of the Hamiltonian and
the two-body pair interactions are given by V (i)

2 . Moreover, a
three-body force V3 is included here as well to keep the equa-
tion sufficiently general for the three-boson and three-neutron
systems.

Introducing the permutation operator

P = P12P23 + P13P23, (5)

we are able to express the full state by only one component,

|�〉 = (1 + P)|ψ1〉. (6)

The index 1 is dropped in the following.
Altogether, the leading-order representation of the Faddeev

equation is given by [74]

|ψ〉 = G0tP|ψ〉 + 1
3 (G0 + G0tG0)V3(1 + P)|ψ〉. (7)

The S-wave two-body interaction V2 is chosen as

〈k′|V2|k〉 = C0〈k′|g〉〈g|k〉, (8)

with strength C0, k = |k|, and k′ = |k′|. It is included via the
two-body T matrix t which satisfies the Lippmann-Schwinger
equation. We use a Gaussian type regulator function

〈p|g〉 = g(p) = exp(−p2/�2), (9)

where � is the cutoff scale. This form is particularly conve-
nient for the analytic continuation of the formalism into the
complex plane. For the finite-volume calculations discussed

in Sec. V, we will also consider super-Gaussian regulators,
which fall off faster at large momenta, to improve the conver-
gence.

The three-body potential is parametrized as

V3 = D0|ξ 〉〈ξ |, (10)

with the interaction strength D0 and the three-body regulator
|ξ 〉. We again choose a (separable) Gaussian regulator func-
tion, connected to the two-body regulator by

〈u1u2|ξ 〉 = ξ (u1, u2) = g(u1)g

(√
3

2
u2

)
, (11)

where

u1 = 1
2 (k1 − k2),

u2 = 2
3

[
k3 − 1

2 (k1 + k2)
]

(12)

are three-body Jacobi momenta. Here, u1 represents the rel-
ative momentum between the first two particles, while the
relative momentum between the third particle and the center
of mass of the first two particles is given by u2. The relative
kinetic energy of the three-body system is given by

H0|u1u2〉 = (
u2

1 + 3
4 u2

2

)|u1u2〉. (13)

Here and in the following, we set m = 1 such that energy and
momentum squared have the same units. Together with the
appropriate angular momentum, spin, and isospin quantum
numbers, which are summarized in the multi-index |i〉, we
define our basis as |u1u2i〉.

This work uses a j j coupling scheme, for which the set of
quantum numbers is given by

|i〉 = |(ls) j(λs3)IJ〉, (14)

with the relative orbital angular momentum l between the first
two particles and the orbital angular momentum λ relative to
the third particle. s is the coupled spin of the first two particles,
which couples with l to j. Similarly, the spin of the third
particle s3 couples with λ to I , which itself is coupled with
j to the total angular momentum J .

We now derive the equations for both the three-neutron and
three-boson systems in parallel. For definiteness, we consider
a system of three spinless bosons, where

|i〉 = |(00)0(00)00〉. (15)

In the case of the three-neutron system, we suppress the
isospin quantum number 3/2, while the three-body force is
absent because the Pauli principle precludes a momentum-
independent contact three-neutron force.2 To leading order in
pionless EFT, only S-wave two-body interactions contribute.
We consider the basis states

|i〉 = ∣∣(00)0
(
1 1

2

)
3
2

3
2

〉
, (16)

which correspond to Jπ = 3
2

−
, and

|i〉 = ∣∣(00)0
(
λ 1

2

)
1
2

1
2

〉
, (17)

2Three-neutron forces including derivatives would be permitted,
but they only enter at higher orders in the EFT power counting.
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for the cases λ = 0, 1, which correspond to Jπ = 1
2

+
, 1

2
−

.
As will be shown below, the Faddeev equations for λ = 1
are the same and will be investigated simultaneously. In all
cases, the Faddeev equations reduce to a single channel, and
consequently the index i will be dropped in the following.

Now we are able to derive the three-body partial-wave
projected Faddeev equation by projecting (7) onto the single-
channel basis. We exploit the fact that the free Green’s
function G0 is diagonal in all variables,

〈u′
1u′

2|G0(E )|u1u2〉

= G0(E ; u1, u2)
δ(u′

1 − u1)

u′
1u1

δ(u′
2 − u2)

u′
2u2

, (18)

with

G0(E ; u1, u2) = (
E − u2

1 − 3
4 u2

2

)−1
. (19)

The two-body t-matrix can be written as

〈u′
1u′

2|t (E )|u1u2〉

= g(u′
1)τ (z)g(u1)

δ(u′
2 − u2)

u′
2u2

, (20)

with the energy of the first pair of particles z = E − 3
4 u′2

2 .
Within the EFT formalism τ describes the propagation of
an interacting two-particle state, commonly called a “dimer.”
Following this convention, we refer to τ as the dimer propaga-
tor. Together with the explicit representation of the three-body
interaction (10), the Faddeev equation can be written as

ψ (u1u2) = G0(E ; u1, u2)

[ ∫ +1

−1
dx

∫
du′

2u′2
2 g(u1)τ

(
E − 3

4
u2

2

)
g(π1)G(u2u′

2x)〈π2u′
2|ψ〉

+ D0

∫
du′

1u′2
1

∫
du′

2u′2
2 ξ (u′

1, u′
2)〈u′

1u′
2|ψ〉

{
ξ (u1, u2) + g(u1)τ

(
E − 3

4
u2

2

)

×
∫

du′′
1u′′2

1 ξ (u′′
1, u2)G0(E ; u′′

1, u2)g(u′′
1 )

}]
. (21)

Note that the factor 1 + P within Eq. (7) cancels against the
factor 1/3. Here we have used the matrix element of the
permutation operator

〈u′
1u2|P|u′′

1u′′
2〉

=
∫ +1

−1
dx

δ(u′
1 − π1)

u′2
1

δ(u′′
1 − π2)

u′′2
1

G(u2u′′
2x), (22)

with

π1 =
√

u′′2
2 + 1

4
u2

2 + u2u′′
2x, (23)

π2 =
√

1

4
u′′2

2 + u2
2 + u2u′′

2x. (24)

In general, the recoupling function G(u2u′′
2x) depends on both

momenta and angular quantum numbers. Besides the two-
body t-matrix, it is this term that mainly incorporates the
information about the quantum numbers of the system. It
reduces to the Legendre polynomial P0 for the three-boson
system,

G3b(u2u′′
2x) = P0(x) = 1, (25)

and to a constant times a Legendre polynomial for the three-
neutron system,

Gλ
3n(u2u′′

2x) = − 1
2 Pλ(x), (26)

for λ = 0, 1. Finally, the dimer propagator τ can be written as

τ (z) =
[

1

C0
− I (z)

]−1

, with

I (z) = 〈g|G0(z)|g〉 =
∫ ∞

0
dq q2 g(q)g(q)

z + iε − q2
. (27)

Solving the integral I (z) analytically results in

τ (z) = 2

π

[
γ exp

(
2

γ 2

�2

)
erfc

(√
2|γ |
�

)

+ i
√

z exp

(
− 2

z2

�2

)
erfc

(
∓ i

√
2z

�

)]−1

= 2

π
[γ + i

√
z + O(�−1)]−1. (28)

The upper (lower) sign corresponds to the case Im z > 0
(Im z < 0), while erfc(z) represents the complementary error
function,

erfc(z) = 1 − erf (z) = 2√
π

∫ ∞

z
dt e−t2

. (29)

The representation in the first line of Eq. (28) includes
finite-range contributions induced by the finite cutoff �. The
expressions in the first and second line are equivalent in the
limit � −→ ∞. Within this work we use the representation
in the second line because it provides a simpler analytic con-
tinuation to complex resonance energies. We renormalize the
dimer propagator by choosing C0 to reproduce a pole in the
two-body subsystem at

√
z = iγ . For positive γ , we repro-

duce a two-body bound state at E2 = −γ 2 = −1/a2, with the
two-body binding momentum γ and the scattering length a.
For negative γ , we reproduce the corresponding virtual state.

Finally, since we are working with separable interactions, it
is convenient to transform the Faddeev equations by defining

ψ (u1, u2) = G0(E ; u1, u2)g(u1)τ
(
E − 3

4 u2
2

)
F (u2), (30)

where F (u2) is the so-called reduced Faddeev compo-
nent. Instead of the full Faddeev component the reduced
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component only depends on one momentum variable, reduc-
ing the numerical effort to solve the problem.

A. Three-boson equation

Combining all contributions presented above, the Faddeev
equation representing the three-boson system is given by

F (u2) =
∫

du′
2 u′2

2 τ (z)(Z2 + Z3)F (u′
2). (31)

In analogy to the Lippmann-Schwinger equation, we define a
two-body interaction kernel

Z2 =
∫ +1

−1
dx g(π1)G0(E ; π2, u′

2)g(π2) (32)

with z = E − 3
4 u′2

2 and three-body interaction kernel

Z3 = D0

C0
g

(√
3

2
u2

)
g

(√
3

2
u′

2

)
I

(
E − 3

4
u′2

2

)
. (33)

While Z3 arises from the three-body force, Z2 is the contribu-
tion from the one-particle exchange.

B. Three-neutron equation

Finally, we adapt the equation to the three-neutron system.
Due to the Pauli principle only an S-wave nn interaction in the
1S0 channel is possible. The exact value of the nn scattering
length is still debated, but the currently accepted value is
(−18.9 ± 0.4) fm [73]. The third neutron is to be assumed in
a relative P wave (λ = 1) in accordance with previous studies.
This results in the possible states Jπ = 1

2
−

and 3
2

−
, which are

degenerate in leading-order pionless EFT. These are the most
likely channels for three-neutron resonances to occur [28].
The corresponding Faddeev equation reads

F (u2) = −1

2

∫
du′

2u′2
2

∫ +1

−1
dx g(π1)G0(E ; π2, u′

2)

× g(π2)P1(x)τ

(
E − 3

4
u′2

2

)
F (u′

2). (34)

Moreover, we consider the case of the third neutron in a
relative S wave (λ = 0), corresponding to Jπ = 1

2
+

. The re-
sulting Faddeev equation is derived from Eq. (34) by replacing
P1(x) by P0(x) = 1. In contrast to the three-boson system,
the three-neutron equations feature no three-body forces since
such terms are highly suppressed for identical fermions. This
is taken into account by setting D0 to zero.

III. ANALYTICAL CONTINUATION: METHOD

Due to the square root connection between the energy and
the momentum variables, two points in the complex momen-
tum plane are mapped onto a single point in the complex
energy plane. This mapping is made unique by introducing
a two-sheet structure for the energy variable. Solving the Fad-
deev equations for the three-body system, it is straightforward
to search for bound states located on the first (or “physical”)
sheet of the complex energy plane. In this work, however, we
are interested in resonances and virtual states, which live on
the second (“unphysical”) sheet.

The procedure described in the following assumes a three-
body system of identical particles, for which the two-body
subsystems are not bound. It can easily be extended to bound
subsystems by considering the complex energy and momen-
tum planes relative to the two-body threshold. We note that
the formalism can also be applied to systems of nonidentical
particles. This leads to a more complicated sheet structure due
to further thresholds. In this work, however, we need not deal
with this complication.

We start at a three-body bound state E (0) for an (un-
physical) scattering length a(0) > 0 and investigate the pole
trajectory in the complex momentum plane as a function of
the scattering length. In systems of ultracold atoms, these
trajectories can be followed experimentally using Feshbach
resonances [75]. Figure 1 shows a sketch of such a trajectory
in the relevant region of the complex momentum plane.

A characteristic point of this trajectory is the origin, which
corresponds to a so-called branch point. Two sheets are
connected by a branch cut, which is spanned between two
branch points. The first method used in this paper to search
for resonances is to analytically continue the Faddeev equa-
tions derived in the previous chapter through this cut onto the
adjacent unphysical sheet.

In the Faddeev equations a cut can originate from either
of two characteristic structures in the kernel: On the one
hand, there is the dimer propagator, Eq. (28). This square-root
branch cut is not relevant for this work as it is only present
for bound two-body subsystems. On the other hand, the ker-
nel includes the one-particle exchange contribution given in
Eq. (32). The relevant structure is the free Green’s function

G0(E ; π2, u′
2) = [

E − u2
2 − u′2

2 − u2u′
2x

]−1
. (35)

It generates a branch cut, the so-called three-body cut, be-
tween the branch point at the origin (u2 = u′

2 = 0) and the
second branch point at infinity in the limit u2, u′

2 −→ ∞.
Applying the partial-wave projection by integrating over x
results in a logarithmic structure. Similarly to the square root,
the complex logarithm is a multivalued function: it does not
change if an integer multiple of 2π i is added to its argument.
Therefore, this branch cut leads to an infinite number of un-
physical sheets. Physically, only the one adjacent to the lower
rim of the physical sheet is relevant as it affects measurable
quantities such as the cross section.3

Assuming the pole moves through the cut onto the phys-
ically relevant unphysical sheet, we have to analytically
continue the Faddeev equations to momenta with a negative
imaginary part and a positive real part, i.e., to complex mo-
menta in the lower right quadrant of the complex plane. The
analytical continuation is based on the general idea of writing
down a Faddeev-like equation with a contour of integration
on the unphysical sheet. This procedure moves the location of
the cut and thereby makes part of the second sheet accessible
via the standard Faddeev equation, i.e., an equation that is

3Note that the regulator can generate also an artificial cut. However,
the contact interaction with separable Gaussian regulator used here
does not generate any singularities.
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FIG. 1. The structure of the complex momentum and energy plane for three particles defined by the energy-momentum relation E =
3
4 k2 − B2, where B2 is the two-body binding energy. Energies on the physical sheet (upper right plot) translate to momenta on the physical
part of the momentum plane with Im(k) > 0 (shading ). Energies on the unphysical sheets (lower right plot) are mapped to the region
of the complex momentum plane with Im(k) < 0 (shading ). The physical and unphysical sheets are connected by two branch cuts; the
three-body cut starting at the origin and following the positive real axis and the two-body cut starting at the two-body binding energy B2 ( )
and following the real axis, too. The complex energy plane shows two unphysical sheets: the one accessible through the cut starting at the
two-body threshold (2-body sheet, darker shaded) and the one accessible through the three-body threshold (3-body sheet, lighter shaded). Both
unphysical sheets extend further than sketched here. While bound states are located on the physical sheet, virtual states and resonances p̄/Ē live
on the unphysical sheets. This is also true for the corresponding areas on the complex momentum plane. The pole trajectories as a function of
the two-body interaction strength of the three-boson system (a < 0, dashed lines) and three-neutron system using the Yamaguchi model (solid
lines) are sketched. Starting at a given bound state and decreasing the two-body interaction strength the three-boson system moves through the
three-body branch point, as the two-boson system is unbound, and evolves into a resonance. The Yamaguchi model allows to create a bound
two-neutron subsystem, of which the binding energy decreases slower than the three-neutron binding energy. At some point both values are
equivalent and the pole trajectory moves through the two-body cut onto the unphysical sheet. Finally, the two as well as the three-neutron pole
trajectory meet again at the origin. Note that the position of the two-body branch point depends on the two-body interaction strength. So its
position is different for every point along the pole trajectory.

formally the same as before except that the integral runs along
the contour in the complex plane. Using this equation, all
poles, which are located between the rotated contour (which
coincides with the rotated branch cut) and the positive real
axis can be identified. Generally, there are an infinite number
of possible contours. However, it is sufficient in practice (and
convenient) to use just one particular type of contour, which
was first applied to this problem by Pearce and Afnan [47].
The contour is constructed by rotating the integral from the
positive real axis, [0,∞), into the lower right quadrant,

u′
2 −→ u′

2 e−iϕ, ϕ > 0. (36)

The benefit of this contour is that it is rather simple and
characterized by only one parameter, the rotation angle ϕ.4

This angle has to be chosen such that the cut is rotated beyond

4In principle this contour should be constructed by rotating a finite
interval (say, [0, �]) and then closing it towards the real axis at the
end point. However, we assume here that the contribution from the
arc becomes irrelevant in the limit � → ∞.

the position of the state of interest (cf. Fig. 2). This statement
is equivalent to the condition

ϕ >  = arctan

∣∣∣∣ Im p̄

Re p̄

∣∣∣∣. (37)

Re(k)

Im(k)

p̄

Re p̄

Im p̄

Φ ϕ

FIG. 2. The part of the unphysical region adjacent to the three-
body cut, which is available if the angle of rotation is chosen to be ϕ.
The angle has to be larger than the angle  of a possible state p̄ on
that sheet.
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The key requirement of this formalism is that the kernel
of the Faddeev equation is analytic within the momentum
region covered by the contour rotation. First, we have to show
that these type of contours can be used without encountering
a singularity. As explained before, we here need only take
into account poles of the one-particle exchange contribution.
Considering the momentum plane of the integration variable
u′

2, we choose momenta u2 along the contour of integration
for a fixed energy E . This results in two areas in which the
kernel is not analytic in [11]. The general procedure is to start
with an energy on the physical sheet and show that the contour
of integration can be deformed in such a way that eventually
the interesting part of the unphysical sheet becomes accessible
without hitting any one of the singular areas. This process
takes place in repeated steps. First, the contour is rotated as
far as possible. Then, the energy is moved as far as possible,
too. These steps are repeated as often as necessary.

Further, we have to require that the momentum of the first
pair of particles k is continuous within the momentum plane.
Again, we start at a bound state E (0) < 0 on the physical
sheet. So, we apply the three-boson or three-neutron Faddeev
equation with the integration contour along the positive real
axis (u′2

2 ∈ R+). Here, k is defined by

k = √
z =

√
E − 3

4
u′2

2 + iε

= i

√
−E + 3

4
u′2

2 − iε. (38)

Both representations of the square root are equivalent and the
iε term is explicitly needed to determine the correct branch.

Now, we move to the unphysical sheet of interest with
E , u′2

2 ∈ C and Im E , Im u′
2 < 0. Here, the iε is not necessary

anymore and we drop it. So, also the two representations
are no longer equivalent. Choosing u′

2 along the contour of
integration and E within the fourth quadrant of the complex
energy plane where the resonances live, we have to check
that k does not cross any cut. This is only the case for one
of the two representations. Choosing ϕ =  the argument of
both representations crosses the real axis at the origin. As
mentioned above, we choose ϕ > . So, the argument of the
first representation crosses the real axis at positive real parts,
while the second representation crosses the axis at negative
imaginary parts. The complex square root is a two-branched
function. Both branches are connect at the negative real axis.
The second representation would cross the square-root branch
cut, while the first does not. So, for energies in the fourth
quadrant we have to use the first representation. A similar
investigation shows that also for energies in the third quadrant
the first representation is the one to use. Note that these state-
ments are only correct for an unbound two-body subsystem. If
the subsystem is bound we have to consider the energy plane
which is shifted by the two-body binding energy. This results
in a dependence of the rotation angle on the two-body binding
energy.

Altogether, the analytically continued Faddeev equa-
tion for the three-boson system is given by Eq. (31) with τ

given by Eq. (28) and the contour rotation Eq. (36),

F (u2e−iϕ ) =
∫

du′
2 u′2

2 e−3iϕ τ (z)

× (Z2 + Z3)F (u′
2e−iϕ ). (39)

Applying the same modifications to Eq. (34), the analytically
continued three-neutron equation for λ = 1 is given by

F (u2e−iϕ ) = −1

2

∫
du′

2 u′2
2 e−3iϕF (u′

2e−iϕ )

×
∫ +1

−1
dx g(π1e−iϕ )g(π2e−iϕ )P1(x)

× G0(E ; π2e−iϕ, u′
2e−iϕ )τ (z). (40)

The corresponding equation for λ = 0 is obtained by substi-
tuting P1(x) → 1 in Eq. (40).

Finally, let us add a remark on the solution of the Faddeev
equations. The mathematical structure of the inhomogeneous
Faddeev equation for the T matrix is given by a so-called
Fredholm equation of the second kind. On the physical sheet
the kernel is Hermitian and it can be shown that the T matrix
can be expanded in a basis given by the reduced Faddeev com-
ponents. The coefficients of the expansion are proportional
to 1 over 1 − λn, with the eigenvalues of the homogeneous
Faddeev equation λn. This expansion was extended to non-
Hermitian kernels by Afnan [48]. So, to find poles on the
unphysical sheet we have to search for eigenvalues equal to
one of the Faddeev equations for the reduced Faddeev compo-
nents along the rotated contour. The first step of the procedure
is now similar to the search for a bound state on the physical
sheet. We expand the kernel in a momentum space basis
derived by a Gauss-Legendre mesh. Now, these momenta are
substituted by the rotated momenta. Here, also the weight in
the integral has to be transformed correctly. Following the
expansion, the next step would be to search for eigenvalues
equal to one as a function of the complex energy. However,
mathematically equivalent but numerically easier and faster
is the search for zeros of the characteristic polynomial for
eigenvalues equal to 1. In comparison to the search for a
bound-state pole this corresponds to two-dimensional root
finding. Mathematically, this is much more advanced and it
cannot be guaranteed that the corresponding numerical rou-
tines will find all poles. So, before applying the root-finding
routines it is recommended to plot the absolute value of the
characteristic polynomial as a function of the complex energy.
This plot largely depends on the numerical parameters used
within the derivation of the kernel matrix. The only physically
relevant part are the zeros, which are used as starting values
for the root-finding routines.

IV. ANALYTICAL CONTINUATION: RESULTS

We now discuss our results from the analytical continua-
tion, first for the three-boson case, where we can compare to
previous studies of resonances to benchmark our method, and
then for the three-neutron case.
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−

FIG. 3. The so-called Efimov plot presenting the Efimov effect.
The x axis presents the inverse scattering length, while the y axis
shows the square root of the real part of the energy multiplied by
its sign. The dashed-blue line indicates the binding energy of the
dimer B2 = 1/a2. In the area right to the dashed blue line the three-
body system is unbound, while the dimer is bound. Crossing the line,
the three-body system becomes bound too until a negative scattering
length a(n)

− is reached. Here, the pole moves from the physical sheet
(light shaded) to the unphysical sheet adjacent the positive real axis
(dark shaded) becoming a resonance.

A. Three-boson system

The three-boson system for large scattering length exhibits
the so-called Efimov effect [33,76]. It leads to a universal
spectrum of three-body bound states which is illustrated in
Fig. 3. There is a more general discrete scaling symmetry
which relates the trajectory of any three-body bound state to
all other states via the transformation

a −→ νna,

E −→ ν−2nE , (41)

where n is an integer and ν ≈ 22.7 is the discrete scaling
factor. In the unitary limit (a −→ ±∞) the binding energies
of two consecutive states are connected by

En+1 = ν2En. (42)

Here, the counting starts at the deepest bound state accessible
within the EFT. These discrete scaling symmetries are evident
in Fig. 3. Similarly, it is possible to connect the scattering
lengths at which the pole trajectory moves from the physical
to the unphysical sheet by

a(n)
− = νa(n+1)

− . (43)

Further, the symmetry manifests itself in a log-periodic
behavior of the three-body observables. For convenience
we introduce a dimensionless coupling H (�) = D0/�

4. We
renormalize H (�) at γ = 0 such that the energy of the shal-
lowest three-body bound state keeps fixed when varying the
regulator scale �. This work uses two different renormaliza-
tion prescriptions for H (�). On the one hand, we choose a
natural value for � and determine H (�) to reproduce some
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−1.5

−1.0

−0.5

0.0
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E
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FIG. 4. The absolute value of the characteristic polynomial for
a scattering length a = −2.47 fm (chosen arbitrarily) on the un-
physical sheet adjacent to the three-body cut. The calculation is
performed using a rotation angle ϕ = 0.8 rad (45.84◦). As a conse-
quence the three-body cut (dashed line) appears at an angle 2ϕ =
1.6 rad (91.67◦), close to the negative imaginary axis. The value
where the characteristic polynomial becomes zero is indicated by
a star, which corresponds to a three-boson resonance. Similar plots
can be created for the other scattering length values along the pole
trajectory.

three-body observable. On the other hand, we choose � such
that H (�) = 0 [77].

The numerical procedure is as described above. Figure 4
shows a contour plot of the characteristic polynomial for an
arbitrary scattering length along the contour. The resonance
is identified by the zero in the fourth quadrant. Based on
the Efimov structure of the pole trajectories, we present our
results in units of a−. Except for small �, where we cut off
physically relevant momenta, or for large �, where our theory
is no longer valid, all Efimov states are located on top of each
other using this unit scheme.

This work is compared to the results by Bringas et al. [78]
and Deltuva [79]. Similarly to this work, Bringas et al. use
a Faddeev equation for a renormalized zero-range model and
analytically continue it applying the rotation of the contour
of integration. Deltuva solved the Faddeev equations for the
transition operators for several short-range force models on
the physical sheet and matched it to an expansion of the transi-
tion operator into a power series near the resonance pole. The
derived pole trajectory is fitted by a lowest- and a higher-order
approximation. The results of Bringas et al. and Deltuva are
shown together with the pole trajectory derived within this
work in Fig. 5. We only present one pole trajectory as both
renormalization prescriptions result in indistinguishable tra-
jectories. All results agree very well with our EFT calculation.

A further qualitative comparison is possible with the re-
sults by Jonsell [80], who investigates the three-boson system
using a hyperspherical formalism together with the CSM, and
with the work of Hyodo et al. [81], who calculate the pole
trajectories using a contour rotation. The behavior of our pole
trajectory is consistent with both these calculations.
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FIG. 5. Trajectories for the real (upper) and imaginary (lower)
part of the three-boson pole energies. The trajectories are presented
in units of a− such that the transition from the physical to the unphys-
ical sheet takes places at |a−|/a = −1. The results derived in this
work are compared to a calculation using the formalism by Bringas
et al. [78] and two fits by Deltuva [79]. The latter ones are only
present on the unphysical sheet. The pole trajectories presented here
are equivalent to the trajectory sketched in Fig. 1 (dashed trajectory)
as well as Fig. 3.

B. Three-neutron system

After benchmarking our method for the three-boson sys-
tem, we focus on the three-neutron system. The easiest way to
analytically continue the Faddeev equation would be to start
with a bound-state pole on the physical sheet for an unphys-
ical value of the nn scattering length as for the three-boson
system. However, this method cannot be applied for the three-
neutron system in leading-order pionless EFT because there
is no three-body bound state for any value of the scattering
length a.

This statement is based on the following argument: The
structure of Eq. (34) in the limit � → ∞ implies that if there
is no three-body bound state for a particular value a of the
neutron-neutron scattering length, then there is no bound state
for any other value of a with the same sign. This argument
relies on the fact that, for � → ∞, a is the only dimensionful
parameter in the equation and can be scaled out. The resulting
dimensionless equation then applies for any finite value of a
with the same sign. In the case of finite �, one can still exclude
all physical bound states with energies well below the cutoff
scale |E |  �2. Finite range or other higher-order effects
cannot change this conclusion as long as they are perturbative

as stipulated by the power counting of pionless EFT. Based on
this argument, we have excluded three-neutron bound states
for λ = 1 and λ = 0.5

Since there are no bound states, we use a different ansatz.
Glöckle used the same Faddeev equation for the degenerate
channels Jπ = 1

2
−

and Jπ = 3
2

−
, together with a Yamaguchi

model V2(p, k) = −κg(p)g(k), where

g(p) = 1

p2 + β2
(44)

is a form factor [11]. Beside the interaction strength κ , this
form factor implements a further scale β which induces a
finite range. Using both parameters together it is possible to
reproduce not only the scattering length, but also the effective
range re which is included nonperturbatively. Keeping β fixed
and increasing the interaction strength κ , this allows us to cre-
ate a three-neutron bound state. Now, we are able to perform
a calculation analogous to the three-boson system. Starting
at a three-neutron bound state and reducing the two-neutron
interaction strength κ while keeping β fixed (increasing the
positive neutron-neutron scattering length) the pole trajectory
moves through the two-body cut onto the unphysical sheet in
the third quadrant of the complex energy plane. Decreasing
κ further, the three- as well as the two-neutron poles finally
arrive at zero. Following the pionless EFT power counting,
we are able to reproduce this trajectory next to the origin for
a going to infinity.

Figure 6 shows the part of this trajectory close to the origin
together with LO EFT errors in comparison to the results
derived using the Yamaguchi model. Along both trajectories
the values of the scattering length (in fm) for selected points
are indicated.

Now, we arrive at the interesting part of the pole trajectory:
an unbound two-neutron subsystem. Within Ref. [11], the pole
trajectory continues on an unphysical sheet which is different
from the relevant unphysical sheet next to the lower rim of the
physical sheet. So, the pole at the physical set of parameters
is too far away from the physical sheet and has no effect on
observables.

To see if this is different using the Gaussian regulator,
we follow the explanation above and investigate the absolute
value of the determinant of 1 minus the kernel of Eq. (40)
in the complex momentum plane. A zero within this plot
would indicate a possible pole. This investigation is performed
for negative values of a starting at 0 fm up to the physical
value a ≈ −18.9 fm. Figure 7 shows an example of what
these contour plots look like. Beside the expected discretized
cut structures resulting from the structure of the equation, no
behavior that can be connected to a pole is visible. So, using
a Gaussian regulator we recover the results of Ref. [11]. This
outcome is also supported by the power counting, predicting
that we should be able to recover the results of the Yamaguchi
type regulator for large negative scattering lengths.

Similarly to the negative parity channels discussed above,
we have investigated the analytically continued Faddeev

5Higher values of λ were not considered explicitly, but we do not
expect any bound states there, either.
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FIG. 6. The pole trajectory of the three-neutron system (Jπ =
1
2

−
and Jπ = 3

2

−
) for positive scattering length for a pionless EFT

interaction together with the LO error bands in comparison to a
calculation using the Yamaguchi model. The values of the scattering
length in fm for selected points are given by the numbers and arrows.
The pole trajectory calculated using the Yamaguchi model is equiv-
alent to the trajectory sketched in Fig. 1 (solid trajectory). While
the pionless EFT calculation only includes the scattering length, the
Yamaguchi model incorporates higher order effective range effects.
The results are presented in the complex energy plane. The lower
half-plane shows the unphysical sheet accessed through the two-body
cut. Within the region where EFT(/π ) is valid, both trajectories agree
within the EFT error indicated by the LO circles.

equation for the Jπ = 1
2

+
channel (λ = 0) in the complex

momentum plane in the vicinity of the physical nn scattering
length. We found no evidence of a three-neutron resonance in
the Jπ = 1

2
+

channel, either.

V. FINITE VOLUME

Finite-volume calculations were established in Ref. [63] as
a tool to identify few-body resonance states. This approach
goes back to the pioneering work of Lüscher [65,66], who
first showed that properties of the infinite-volume S matrix,
and therefore observables like bound states and scattering
parameters, are encoded in how the discrete energy levels
in a finite periodic box change as the size L of the box
is varied. Resonance states are manifest as avoided cross-
ings of energy levels, which is well established for two-body
systems [59–61] and routinely used to extract resonance prop-
erties from lattice QCD calculations [82]. In Ref. [63], it
was demonstrated that this signature carries over to the few-
body sector. We use here these findings, and in particular
the discrete variable representation (DVR), as an additional,
independent tool to search for three-neutron resonances.
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FIG. 7. A contour plot presenting the absolute value of the de-
terminant of one minus the kernel of Eq. (40) on the unphysical
sheet adjacent the three-body cut. This calculation was performed for
a = −18.77 fm and a rotation angle ϕ = 0.8 rad. Similarly to Fig. 4,
the three-body cut is visible at an angle 2ϕ = 1.6 rad (91.67◦) next
to the negative imaginary axis. A zero within this plot is equivalent
to an eigenvalue equal to 1 of Eq. (40), which itself corresponds
to a possible physical state. So, this plot presents no evidence for
a possible three-neutron resonance in the degenerate Jπ = 1

2

−
and

Jπ = 3
2

−
channels.

A. Basic setup

The starting point for the DVR construction of states in a
periodic box with edge length L are plane-wave states φ j (x)
with j = −n/2, . . . , n/2 − 1 for even n > 2, where x denotes
the relative coordinate describing a two-body (N = 2) system
in one dimension (d = 1). Any periodic solution of the one-
dimensional (1D) Schrödinger equation can be expanded in
terms of the states φ j (x), yielding a discrete Fourier transform
(DFT). Given a set of equidistant points xk ∈ [−L/2, L/2)
and weights wk = L/n (independent of k), DVR states are
constructed as [83]

ψk (x) =
n/2−1∑

i=−n/2

U∗
kiφi(x), (45)

with Uki = √
wkφi(xk ) defining a unitary matrix. The DVR is

convenient for two main reasons:

(1) For a local interaction, the potential operator V reduces
(approximately) to a diagonal matrix, 〈ψk|V |ψl〉 ≈
V (xk )δkl , where the quality of this approximation is
determined by the number n of discretization points.
This holds for any number d of spatial dimensions and
N interacting particles.

(2) The kinetic energy K is not diagonal, but its form is
known analytically:

〈ψk|K|ψl〉 =
⎧⎨
⎩

π2N2

6μL2

(
1 + 2

n2

)
for k = l,

(−1)k−l π2

μL2 sin2[π (k−l )/n]
otherwise.

(46)
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For d > 1 or N > 2 the DVR representation of K
becomes a sparse matrix that can be calculated very
efficiently based only on the d = 1, N = 2 elements.
Alternatively, as pointed out in Ref. [84], one can
exploit the relation of the plane-wave based DVR to
the DFT and evaluate the kinetic energy in momentum
space, but we find the direct calculation more efficient
for large-scale calculations.

The construction is straightforward to generalize to the
case of an arbitrary number of particles N and spatial di-
mensions d , starting from product states of (N − 1) × d plane
waves, one for each relative-coordinate component. The trans-
formation matrices and DVR basis functions are defined via
tensor products, and DVR states are labeled by a collection of
(N − 1) × d indices. Using the shorthand notation |ψk〉 = |k〉,
a general state is written as

|s〉=|(k1,1, . . ., k1,d ), . . ., (kN−1,1, . . ., kN−1,d ); (σ1, . . ., σN )〉,
(47)

where the σi denote the spin degrees of freedom. The space
spanned by all these states |s〉 is denoted by B. For spinless
bosons, σi = 0 for all i, whereas in general, for particles with
spin S, σi = −S, . . . , S. Specifically, we have here S = 1/2,
d = 3, and N = 3 for the three-neutron system we study.

Fore more details regarding the DVR setup we refer to
Refs. [63,85] and further references cited therein, and merely
recall here that the overall strategy with this method is to rep-
resent the N-body finite-volume Hamiltonian H = H0 + V ,
where H0 = K̂ is the relative kinetic energy operator and V
denotes the sum of all interactions among the particles, as a
matrix in the space spanned by the DVR states. Energy levels
in the box are then obtained by calculating the spectrum (or
more specifically the lowest lying states in the spectrum) via
Lanczos/Arnoldi iteration.

B. Separable interactions

The DVR as described above is set up only to work with
local potentials. In order to study in finite volume the same
separable potentials as used for the momentum-space calcula-
tion, we discuss in the following the appropriate extension of
the DVR formalism. We start from the definition of a general
DVR state, Eq. (47), and neglect for the moment the spin
degrees of freedom.

Recall that projected onto coordinate space a state |s〉 is a
product of one-dimensional DVR wave functions,

ψs(x) = 〈x|s〉 =
∏

i=1,...,N−1
c=1,...,d

ψki,c (xi,c), (48)

where x is used to denote the collection of all relative coor-
dinates. Furthermore, let ψ (x) be a generic state expanded in
the DVR basis B,

ψ (x) =
∑
s∈B

csψs(x). (49)

This could be an actual eigenstate of the Hamiltonian, or
any intermediate state vector that is encountered during the
Lanczos-based diagonalization of the Hamiltonian. Either

way, the {cs} is a finite vector of coefficients with entries as
introduced in Eq. (47).

Let us now consider a (rank-1) separable two-body poten-
tial, generically written in coordinate space as

V2(x, x′) = C g(x)g(x′), (50)

where C is the strength and |g〉 with 〈x|g〉 = g(x) is the “form
factor.” For simplicity we restrict the following discussion to
one spatial dimension since everything carries over to d > 1
in a straightforward way. For a two-body state, we have x =
x1 ≡ x and |s〉 = |k〉 (a single index describes the spinless 1D
state), so that applying V is straightforward:

〈s|V2|ψ〉 =
∫

dx
∫

dx′ ψ∗
s (x′)V2(x, x′)

∑
s′∈B

cs′ψs′ (x′)

= C g(xs)
∑
s′∈B

cs′ g(xs′ ). (51)

We have used here the DVR property of the states, and xs = xk

is the location of the lattice point characterizing the state |s〉.
It follows that, for this case, applying a separable potential
to a generic DVR state is very simple, and the factorization
property of the potential is directly reflected in the end result.

For more than two particles one (in general) needs to con-
sider the separable potential (50) between all pairs of particles.
Since for each pairwise interaction the potential only involves
the relative coordinate of that pair, appropriate delta functions
need to be included for all “spectator” particles that do not
take part in the particular interaction. The way to do this
consistently across all pairs is to express these delta functions
such that they fix the position of the spectators relative to the
center of mass of the interacting pair (which amounts to a
partial transformation to a particular set of Jacobi coordinates,
similar to what is used in the Faddeev formalism discussed in
the main text).

A minor complication arises from the fact that in a periodic
finite volume the center of mass of a cluster of particles is not
uniquely defined. This can already be seen for two particles in
one dimension: consider these particles on a periodic interval
from 0 to L residing at positions x = 1 and x = L − 1; then
both x = 0 and x = L/2 are valid candidates for the particle’s
center of mass. Visualizing the periodic interval as a circle,
these two possibilities correspond to the middle points of the
two arcs that connect the particles. With increasing number
of dimensions and number of particles, the set of candidates
for the center of mass becomes larger. Which one is chosen
is arbitrary, but the choice has to be consistent. To that end,
for a configuration of A coordinates C = {xi}A

i=1 we define
the center of mass to be that point that minimizes the sum of
distances of all particles measured with respect to the center
of mass:

Rcm = arg min
R∈Scm(C)

(
A∑

j=1

dL(R, x j )
2

)
, (52)

where Scm(C) is the set of all possible center-of-mass coor-
dinates for the given configuration C and dL measures the
distance between two points as the shortest path between them
while accounting for the periodic boundary condition.
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Taking into account the spatial lattice nature of the plane-
wave DVR basis and noting that for an A-body state on a
lattice of extent n the center of mass falls onto a lattice with
extent nA [86], it becomes straightforward to express the
center-of-mass coordinate as an index in an enlarged DVR
space. For each given pair interaction Vi j , denoting a potential
of the form (50) acting between particles i and j, such an
index is considered for each spectator particle in order to
include appropriate Kronecker deltas. Schematically, Eq. (51)
becomes

〈s|Vi j |ψ〉 = N × C g(xs;i j )
∑
s′∈B

rs′ ;k,i j=rs;k,i j∀k �=i, j

cs′ g(xs′;i j ). (53)

Here xs;i j denotes the relative distance (modulo the periodic
boundary) between particles i and j in configuration |s〉 and
rs;k,i j is the coordinate of particle k relative to the center of
mass of particles i and j as defined in Eq. (52), for A = 2. The
generalization to d > 1 is trivial, and only a minor technical
complication arises from the fact that the DVR states are
expressed in relative coordinates. For j = N one can directly
work with the xi (or xi,c in d > 1), whereas for other pairs
one considers appropriate differences of the xi that give the
desired coordinate vector. The factor N = 2d (L/N )d/2 arises
as normalization from the integral over spectator coordinates.

Since the plane-wave DVR states we consider are closely
related to a DFT [84,85], this is naturally the tool to use for
calculating matrix elements 〈s|Vi j |ψ〉 when the Vi j are given
in momentum space. To that end, one considers two-body
momentum modes

p j = 2π j

L
(54)

and, for the appropriate coordinate xs;i j as introduced above,
evaluates

〈s|g〉 =
n/2∑

k=−n/2

g(pk ) exp(ipkxs;i j ). (55)

This equation is written for the one-dimensional case, but
it straightforwardly generalizes to d > 1. The considerations
about including appropriate delta functions to fix the coor-
dinates of the spectator particles relative to the interacting
pair’s center of mass remain exactly the same and need not
be carried out in momentum space.

The momentum-space implementation also makes it par-
ticularly convenient to consider interactions that act only in a
single partial wave. The following considerations can easily
be generalized to arbitrary d , but we consider here only the
most relevant case d = 3. For spinless particles, the projec-
tion is achieved by merely including a factor |pk|lYlm(p̂k ) in
the three-dimensional generalization of Eq. (55), where pk
is a momentum mode in 3D and Ylm denotes the spherical
harmonic for angular momentum l and projection m.6 Note
that since the DVR uses a full three-dimensional model space

6Note that |pk|lYlm(p̂k ) really is a solid harmonic in momentum
space.

(not decomposed into partial waves), a potential term needs
to be included for each m = −l, . . . , l . To include spin, one
can directly utilize the projection indices σk included in the
states (47). If the interaction is meant to act in a two-body
channel 2s+1l j , written in spectroscopic notation, one includes
a Clebsch-Gordan coefficient that couples the individual par-
ticles spins to s (where the total projection is fixed to be
σi + σ j), and then another Clebsch-Gordan coefficient that
couples l and s to total angular momentum j. For this case,
one has a potential for each mj = − j, . . . , j, and all projec-
tion quantum numbers in the Clebsch-Gordan coefficients are
fully determined by this, the spin projection, and the standard
Clebsch-Gordan selection rules. This means that there are no
extra sums required to carry out the partial-wave projection.
In essence, this sum is the one appearing already in Eq. (53).

For practical implementations it is desirable to avoid com-
plex arithmetic as much as possible. To achieve that, it is
convenient to work with real spherical harmonics instead of
the Ylm and replace in Eq. (55) the exponential function with a
cosine or sine for even and odd l , respectively.

C. Results

For EFT applications it is convenient to express the sepa-
rable potential (50) in momentum space as

V2(q, q′) = C g(q)g(q′), (56)

where g(q) is the Fourier transform of g(r), indicated only
by the argument for simplicity. In typical applications the
potential is often given directly in the form (56). We pick here
specifically a super-Gaussian form:

g(q) = exp(−q2n/�2n). (57)

The Faddeev calculations discussed in Sec. II use this form
with n = 1. To ensure that our finite-volume implementation
of separable interactions is correct, we have run bound-state
benchmark calculations with such simple Gaussian form fac-
tors for some selected potentials. For the three-neutron results
discussed in the following, however, we chose to work with
n = 2 because this regulator form provides a stronger sup-
pression of high-momentum modes, which helps to achieve
converged calculations in large boxes. We moreover chose a
rather soft cutoff scale � = 250 MeV for these calculations.

Results are shown in Figs. 8–10 for total spin S = 1/2
and negative parity. A projection on the representations of the
cubic symmetry group of the box shows that these energy
levels correspond to the degenerate Jπ = 1

2
−

and Jπ = 3
2

−

channels we are primarily interested in. We start with the
physical neutron-neutron scattering length (Fig. 8) and then
gradually adjust the interaction to become more attractive.
In particular, for a = +18.9 fm (Fig. 9) and a = +10.0 fm
(Fig. 10) the interaction supports shallow dineutron bound
states with energy E2 = 1/(Mna2). In the three-body spectrum
we can see the effect of the increasing attraction directly re-
flected in the fact that all energy levels get shifted downwards
in going from Figs. 8 to 10. The comparison of different DVR
basis size (solid and dashed lines in the figures) shows that we
can achieve sufficiently converged calculations in the energy
range where three-neutron resonances have been speculated to
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FIG. 8. Finite-volume energy levels for three neutrons with total
spin S = 1/2 and negative parity, calculated assuming a separable
n = 2 super-Gaussian interaction tuned to reproduce a neutron-
neutron scattering length a = −18.9 fm. The solid (dashed) lines
were obtained using N = 26 (28) mesh points to construct the three-
neutron DVR basis.

exist. However, for the values of the scattering length consid-
ered, we do not see avoided level crossings in the spectrum or
plateau shapes in individual energy levels. Thus, we see none
of the signatures of a resonance discussed in Ref. [63]. Our
finite-volume results thus confirm the findings of our Faddeev
calculations that there are no resonances in the degenerate
Jπ = 1

2
−

and Jπ = 3
2

−
channels, and we conclude that even

with increased attraction in the neutron-neutron S-wave inter-
action there is no support for a three-neutron resonance state
in the most likely channel. For the physical neutron-neutron
scattering length we have furthermore calculated a positive-
parity spectrum (not shown as an explicit figure), in which we
see no indications for a three-neutron resonance either.
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FIG. 9. Same as Fig. 8, except with the interaction tuned to a
neutron-neutron scattering length a = +18.9 fm.
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FIG. 10. Same as Fig. 8, except with the interaction tuned to a
neutron-neutron scattering length a = +10.0 fm.

VI. CONCLUSION AND OUTLOOK

In this work, we have presented a rigorous study of the
appearance of resonances in three-body systems using two
complementary methods. We first use pionless effective field
theory at leading order to write down an effective interaction
potential which may include a three-body interaction. In the
second step, we analytically continue the Faddeev equation in
momentum space to the unphysical sheet adjacent to the posi-
tive real energy axis using a rotation of the integration contour.
On the unphysical sheet, we search for poles corresponding to
resonances and virtual states. This direct search for resonance
poles is complemented by an alternative finite-volume method
based on identifying avoided crossings of energy levels as
the size of the volume is varied. The two methods have very
different systematics and ideally complement each other, al-
though the latter method is not suitable for virtual states.

We apply our framework to two types of systems: (i) three
bosons with large negative scattering length a and (ii) the
three-neutron system. Our study of the three-boson system
also serves as a test case of our method. It is well known
that three-body Efimov states for a < 0 turn into resonances
as they cross the three-particle threshold. We confirm the
previous calculations by Bringas et al. [78] and Deltuva [79]
both qualitatively and quantitatively. Moreover, our results are
qualitatively consistent with the pole trajectories of Jonsell
[80] and Hyodo et al. [81]. The trajectories of the Efimov res-
onances can be used to explain the behavior of the three-body
recombination rate of three spinless bosons at low tempera-
tures [80,87].

The main motivation for our work is the suggestion of a
low-energy resonance or virtual state in the three-neutron sys-
tem [3,7]. We can reproduce earlier calculations by Glöckle
for a three-neutron Yamaguchi model system with a strong at-
traction [11]. However, we do not find any resonances for the
physical case in the relevant λ = 1 and λ = 0 orbital angular
momentum channels corresponding to the Jπ = 1

2
−

, 3
2

−
, and

1
2

+
channels in the analytical continuation framework. Low-
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energy resonances in the negative parity channels are also
excluded in the finite-volume framework. Using the analytical
continuation method, we also exclude a three-neutron virtual
state. Our model-independent result agrees with several other
recent theoretical studies [5,8–10] and rules out the possibility
of a three-neutron resonance or virtual state at low energy.
Although we use pionless EFT at leading order, we expect our
result to hold also in the presence of higher-order interactions.
In pionless EFT the higher-order terms, including the effec-
tive range r0 and P-wave interactions, are purely perturbative
and cannot produce any new poles. Thus the existence of
a low-energy three-neutron resonance would also imply the
breakdown of pionless EFT in the three-neutron system.

Obviously, our study does not address the question of
four-neutron resonances. Experimental evidence for such a
four-neutron resonance was recently presented in [23]; see
also Ref. [28] for a current review of the field. We leave this
question for future work.

Finally, we stress that multineutron energy spectra contain
much interesting physics, even if multineutron resonances are
not observed in experiment. In Ref. [88], e.g., it was pointed
out that the multineutron spectra for center-of-mass ener-
gies E in the range 1/(ma2) ≈ 0.1 MeV  E  1/(mr2

0 ) ≈
5 MeV are determined by conformal symmetry up an overall
normalization. Conformal symmetry implies that the multi-

neutron correlation functions have only cuts but no poles,
which is consistent with our results for the three-neutron
system. The neutron spectra show power-law behavior with,
in general, fractional exponents determined by the scaling
dimension of the corresponding conformal field operators.
This is markedly different from weakly interacting particles.
Neutron resonance experiments are ideally suited to confirm
this prediction.
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