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We perform the ab initio no-core shell model (NCSM) calculation to investigate the bound state problem of the
three-body �nn system in chiral next-to-next-to-leading-order NN and chiral leading-order Y N interactions. The
calculations show that no �nn bound state exists, but predict a low-lying �nn resonant state near the threshold
with an energy of Er = 0.124 MeV and a width of about � = 1.161 MeV. In searching for �nn resonances,
we extend the NCSM calculation to the continuum state by employing the J-matrix formalism in the scattering
theory with the hyperspherical oscillator basis.
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I. INTRODUCTION

Microscopic calculations of few- and many-body systems
with strangeness have been a focus in hypernuclear physics
to explore the new dynamical features of the structure of hy-
pernuclei and to improve understanding of hyperon-nucleon
interactions. Indeed, hyperon-nucleon scattering data is very
limited for a full determination of the Y N interactions. The
existing data of few-body hypernuclei could provide an im-
portant constraint on Y N interaction. In hypernuclear physics,
the hypertriton is used as the first testing ground for Y N inter-
action. It is the simplest and most weakly bound hypernuclear
system with � binding energy about ≈ 0.13 MeV [1]. It seems
like a lambda is bound to a deuteron core in the study of
the spin-triplet NN interaction [2]. In the �nn system, two
neutrons interact in the spin-singlet state and its strength is
weaker than that in the spin-triplet state. The strength of �n
is also not sufficient to form a bound system. One expects
that the existence of a neutral bound state of two neutrons
and a hyperon is improbable. But, instead, three-body �nn
resonance may exist and that could be used to constrain the
Y N interaction. If the �nn system were the lightest neutron-
rich bound system, it would provide significant information
of �n interaction and a better understanding of the nature of
�N-�N coupling.

There have been a number of theoretical calculations of the
�nn system as a very unlikely bound state. Nonexistence of
�nn bound state was first revealed by Dalitz and Downs [3]
using a variational approach. Garcilazo [4] investigated the
�nn system by solving Faddeev equations using Y N and NN
interactions derived from a chiral constituent quark model and
revealed that �nn bound system was not found. Later vari-
ous approaches such as hyperspherical harmonics (HH) [5],
Faddeev calculations [2,6–11], variational calculations [12],
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and pionless effective field theory [13–15] with various kinds
of baryon-baryon interactions have been used to analyze the
�nn system and all reported that it is highly unlikely to form a
bound system in the theoretical analysis without a significant
alteration of nuclear and hypernuclear forces.

The 3
�n hypernucleus could not be produced in the earlier

experiments due to absence of charge of its bound state. How-
ever, the HypHI Collaboration at GSI [16] reported the first
evidence of the existence of the 3

�n bound state from analysis
of the observed two- and three-body decays mode without
stating any value of binding energy. Their observation was
inconsistent with the claim of the above theoretical analysis.

In this paper, we analyze the �nn bound state problem
using the ab initio no-core shell model (NCSM) [17–19] tech-
nique. The calculation of the �nn system (Jπ = 1/2+, T =
1) is performed in Jacobi coordinate harmonic oscillator (HO)
basis using the NN and Y N interactions derived from the chi-
ral effective field model. In the extension into the continuum
state, we apply the SS-HORSE [20–25] formalism, which is
a single-state harmonic oscillator representation of scattering
equations, to calculate the low-energy phase shifts and scat-
tering amplitudes at the NCSM eigenenergies by employing a
hyperspherical harmonic oscillator basis. The low-lying �nn
resonance energy and width are extracted from the scattering
amplitude parametrization. The NCSM-SS-HORSE method
[26] has been successfully applied to study a tetraneutron
unbound system, considered a true four-body scattering. Here
we first apply this method to study the three-body system with
strangeness.

II. NCSM-SS-HORSE FORMALISM

The hypernuclear Hamiltonian for two nucleon and a hy-
peron system can be written as

H = −
3∑

i=1

h̄2

2mi

�∇2
i + VNN (�r1, �r2) +

2∑
i=1

VY N (�ri, �r3) + �M,

(1)
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where the coordinates �ri and masses mi are for the two nucle-
ons with i = 1, 2 and the hyperon with i = 3. We work with
nonrelativistic two-body NN and YN potentials, employing
the leading-order chiral hyperon-nucleon interactions [27] and
a family of 42 different nuclear interactions at next-to-next-
to-leading order (also called the chiral NNLOsim family of
NN interactions) [28]. These nuclear interactions were con-
structed by varying the chiral regulator cutoff �NN between
450 and 600 MeV in steps of 25 MeV and the truncation of the
input NN scattering Tlab � T max

lab between 125 and 290 MeV
in six steps, which were obtained from a simultaneous opti-
mization of all 26 low-energy constants (LECs) to different
sets of NN and πN scattering plus bound state observables
[28]. Unlike the NN interaction, it is hard to quantify the
theoretical uncertainties in the Y N interaction. As a result of
poorly constrained Y N interactions by the scarce Y N scatter-
ing data, different Y N interaction models give rather different
results, causing large uncertainties in the predictions of the
hypernuclear observables [18,29,30]. The Y N scattering data
are reasonably reproduced in the Y N interaction with the regu-
lator cutoff ranging from 550 and 700 MeV [27]. In this work,
we use the Y N interactions [27] with �YN = 600 MeV and
NN interactions with �NN = 500 and Tmax = 290 MeV, which
are the rather standard choice in most of the ab initio NCSM
calculations [19,28,31]. The effect of �N-�N coupling is
taken into account [19].

In NCSM, three active particles are considered in the
three-dimensional harmonic oscillator (HO) basis. In the con-
struction of HO basis states for such a few-body �nn system,
it is more effective to use the relative Jacobi coordinates
where the center-of-mass (c.m.) coordinate �ξ0 is separated,
which allows us to perform NCSM calculations in a large
model space. The relative Jacobi coordinates in terms of the
rescaled version of the single-particle coordinates �xi = √

mi�ri

are defined as

�ξ1 =
√

1/2(�x1 − �x2),

�ξ2 =
√

2mN mY /2mN + mY [1/2
√

mN (�x1 + �x2) − 1/
√

mY �x3],
(2)

where mN and mY are the masses of nucleon and hyperon. �ξ1

is the relative coordinate of the two-nucleon pair and �ξ2 is the
relative coordinate of the hyperon with respect to the c.m. of
the two-nucleon pair. Following the general Jacobi coordinate
formulation in Ref. [19], we construct the JT -coupled HO ba-
sis states for the system of a two-nucleon pair and a hyperon,

|(nNN (lNN sNN ) jNNtNN , NYLY JY TY )JT 〉 , (3)

depending on the coordinates �ξ1 and �ξ2 respectively.
nNN , lNN , sNN , jNN , tNN (NY , LY , JY , TY ) are the HO ra-
dial quantum number, orbital angular momentum, spin,
angular momentum, and isospin of the relative two-nucleon
(hyperon) state. J and T are the total angular momentum and
total isospin of the system. The basis (3) is antisymmetrized
with respect to the exchange of two nucleons by restricting
the two-nucleon relative quantum numbers with the condition
(−1)lNN +sNN +tNN = −1. The basis (3) is suitable for evaluating

two-body NN interaction matrix elements but not for evaluat-
ing two-body YN interaction matrix elements.

For a subsystem including a YN pair and a nucleon, another
set of Jacobi coordinates is correspondingly introduced,

�η1 =
√

(mN + mY )mN/2mN + mY [1/
√

mN �x1

− 1/(mN + mY )(
√

mN �x2 + √
mY �x3)],

�η2 =
√

mN mY /mN + mY (1/
√

mN �x2 − 1/
√

mY �x3), (4)

where �η1 is the relative coordinate of a nucleon with respect
to the c.m. of the YN pair and �η2 is the relative coordinate of
the YN pair. By using orthogonal transformation, the antisym-
metrized HO basis (3) can be expanded as

|(nNN (lNN sNN ) jNNtNN , NYLY JY TY )JT 〉
=

∑
LS

L̂2Ŝ2 ĵNY ĴN ĵNN ĴY (−1)sNY +1/2+sNN +1/2+LN +LY

×
⎧⎨
⎩

lNY sNY jNY

LN 1/2 JN

L S J

⎫⎬
⎭

⎧⎨
⎩

lNN sNN jNN

LY 1/2 JY

L S J

⎫⎬
⎭

×
{

1/2 1/2 sNN

1/2 S sNY

}

× (−1)tNY +TN +tNN +TY t̂NY t̂NN

{
1/2 1/2 tNN

JY T tNY

}

× 〈nNY lNY NNLN |nNN lNN NYLY 〉d= 2mN +mY
mY

× |(nNY (lNY sNY ) jNY tNY , NNLN JN )JT 〉 , (5)

in terms of HO basis states

|(nNY (lNY sNY ) jNY tNY , NNLN JN )JT 〉 , (6)

depending on the coordinates �η2 and �η1 respectively. The
general HO bracket 〈nNY lNY NNLN |nNN lNN NYLY 〉d follows
Ref. [32]. Y N interaction matrix elements involving � and
� hyperons are evaluated in the antisymmmetrized basis (3)
through its expansion in the basis (6) as〈

2∑
i=1

VY N (�ri, �r3)

〉
= 2 〈VY N (�η2)〉 , (7)

where the matrix elements on the right-hand side are diagonal
in all quantum numbers of the basis states (6), except for
nNY and lNY . The lowest eigenstates of the �nn system are
calculated by the diagonalization of the truncated Hamiltonian
matrix.

To look for resonances, we extend our study to the con-
tinuum state by employing J-matrix formalism, also known
as the harmonic oscillator representation of scattering equa-
tion (HORSE) formalism, which arms one to study continuum
spectrum using only positive energies obtained from a bound
state approach like NCSM applying the HO basis. The
HORSE method can be used to describe the open channels
in the external subspace while the internal subspace is asso-
ciated with the NCSM approach. For details of the HORSE
formalism, refer to Refs. [22,33].

In the extension into the continuum, the three-body ex-
tension of the J-matrix formalism for all three-body decay
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channels is very complicated. We apply the democratic de-
cay approximation (also known as true three-body scattering
or 3 → 3 scattering) [34] which employs the hyperspherical
harmonic (HH) basis to describe the �nn system decaying
through only the three-body breakup channel and it does not
allow for other possible two-body channels associated with
two-body sub-bound states.

The hyperspherical oscillator basis can be labeled as
|κKγ 〉, where κ is the principal quantum number and K
is the hypermomentum, and γ ≡ {l1, l2, L, s1, s2, S, t1, t2, T }
collects all possible quantum numbers corresponding to the
Jacobi coordinates for a three-body system. The external sub-
space is spanned by hyperspherical oscillator functions with
N ≡ 2κ + K > Nmax, where the Hamiltonian H = T is used.
Here Nmax is the maximum number of excitation quanta defin-
ing the many-body NCSM basis space. Because of the high
centrifugal barrier L(L + 1)/ρ2, the HH states with larger K
can be neglected in the case of no sub-bound �nn system
(ρ is the hyperradius with the mass scaled Jacobi coordinates
and L = K + 3/2 is the effective momentum). It is adequate
to consider a single hyperspherical channel with minimum
hypermomentum Kmin = 0 to describe democratic three-body
decays.

We follow the SS-HORSE approach [21,22,26] to compute
the 3 → 3 scattering phase shifts at the eigenenergies Eν > 0
obtained directly from the NCSM calculation,

tan δ(Eν ) = − SNmax+2,L(Eν )

CNmax+2,L(Eν )
, (8)

where SNL and CNL are regular and irregular solutions of
the free Schrödinger equation in the hyperspherical oscillator
representation, which can be applied in the case of arbitrary
L (both integer and half integer), taking the simple analytical
expressions [21,23,34]

SNL(E ) =

√√√√√√√
(

N − L + 3

2

)
!

λ �

(
N

2
+ L

2
+ 9

4

) qL+1 e− q2

2

× L
L+ 1

2

(N−L+ 3
2 )/2

(q2), (9)

C(±)
NL (E ) = 1

π
√

λ

√(
N − L + 3

2

)
! �

(
N

2
+ L

2
+ 9

4

)

× �

(
N

2
+ L

2
+ 9

4
,L + 3

2
; e∓iπ q2

)

× qL+1 e
q2

2 e∓iπ (L+ 1
2 ), (10)

CNL(E ) = 1
2 (C(+)

NL (E ) + C(−)
NL (E )), (11)

where q =
√

2E
h̄ω

is dimensionless momentum, L
L+ 1

2
κ (x) is the

associated Laguerre polynomial, and λ = √mω
h̄ is the oscilla-

tor radius at �(a, c; x) which is the Tricomi function.

FIG. 1. The eigenenergies of the NCSM Hamiltonian with vari-
ous model space sizes Nmax as a function of oscillator frequency h̄ω.
The numbers at the end of each line represent Nmax. The blue shaded
area shows the selected energies for parametrization of the scattering
amplitude.

The SS-HORSE scattering amplitude for neutral particles
may be calculated in the standard way,

f (Eν )q = 1

cot δ(Eν ) − i
. (12)

We parametrize the scattering amplitude in the method pro-
posed in [35] for the case in which a resonance is not sharp,
but both the potential scattering (nonresonant background)
and resonance contribution are not negligible. The scattering
amplitude may be parametrized as

F (E )q = eiδ0(E ) sin δ0(E ) + −�/2

E − Er + i�/2
e2iδ0(E ), (13)

where δ0(E ) is the potential scattering phase shift, depend-
ing on the energy E . We will fit the SS-HORSE scattering
amplitude by the complex-valued function F (E )q in the next
section to determine the form of δ0(E ) and derive the reso-
nance energy Er and width �.

III. RESULTS AND DISCUSSION

The �nn system is analyzed using the NCSM approach
with chiral NNLOsim NN and LO Y N interactions. The
NCSM computational model space is characterized by a cho-
sen maximal total HO quanta N tot

max, that is,

2nNN + lNN + 2NY + LY � N tot
max ≡ Nmax + N0, (14)

where the minimal possible number of HO quanta is N0 = 0.
In the �nn case, N tot

max = Nmax. We have computed the total
energy of the �nn system in the oscillator basis with model
space truncations Nmax � 36, and in the range of the HO fre-
quencies 1 � h̄ω � 40 MeV. It is found that there is no �nn
bound system. The �nn ground-state energy as a function
of the model space truncation Nmax and HO frequency h̄ω

is presented in Fig. 1. The NCSM energies decrease with
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FIG. 2. 3 → 3 scattering phase shifts obtained directly from the
NCSM eigenstates using Eq. (8).

increasing Nmax and with decreasing h̄ω. Our model used here
can reproduce well the binding energy of the hypertriton [36]
and also those for s-shell hypernuclei, 4

�H and 4
�He, which

will be in a future publication.
The SS-HORSE phase shifts covering all computed NCSM

energies calculated by using Eq. (8) are shown in Fig. 2.
The phase shifts obtained with smaller Nmax lie in a wide en-
ergy region as the obtained �nn ground-state energies spread
widely. With Nmax increasing, however, the obtained �nn
ground-state energies converge to lower values, as shown in
Fig. 1, and hence the corresponding phase shifts shift to the
lower energy region. The first convergence of phase shifts is
achieved at smaller energies with larger Nmax. The phase shifts
become almost the same results at Nmax = 34 and 36 MeV. We
follow the selection procedure of Refs. [21,26,37] and select
a set of eigenvalues Eν from the Nmax = 10–36 model spaces,
which is illustrated by the shaded area in Fig. 1, to produce
a single smooth curve of phase shifts for parametrization.
The SS-HORSE phase shifts corresponding to these selected
smaller eigenvalues are plotted in Fig. 3.

We compute the SS-HORSE low-energy scattering ampli-
tude for the purpose of extracting the resonance parameters
from scattering amplitude parametrization. The function
| f (Eν )q|2 of the scattering amplitude given in Eq. (12) is
shown by symbols in Fig. 4. The fitting to the SS-HORSE
result | f (Eν )q|2 by the function |F (E )q|2 leads to δ0(E ) of
the form

δ0(E ) = a0 + a2(
√

E )2 + a4(
√

E )4, (15)

with the adjustable parameters a0 = 1.856, a2 =
−0.014 MeV−1, a4 = 2.959 × 10−4 MeV−2. The resonance
energy and width are derived as Er = 0.124 MeV and
� = 1.161 MeV. The result is not very consistent with those
in Refs. [11,15] which, by employing simplified contact
interactions, reveal that a resonant state of �nn does not
exist with the standard strength of the �n interaction since
the real part of the resonance energy turns negative. We look
forward to the results of �nn bound and resonance states
from the ongoing experiment (E12-17-003) at Jefferson Lab

FIG. 3. 3 → 3 scattering phase shifts obtained from selected
NCSM eigenstates with Nmax ∈ [10, 36] for scattering amplitude
parametrization.

(JLab) [38]. Such �nn bound and resonance states, if any, are
expected to provide a new perspective on �n interactions.

IV. SUMMARY

We have performed ab initio no-core shell model calcula-
tions for the �nn system (Jπ = 1/2+, T = 1) without tuning
the strength of realistic NN and Y N potentials at various Nmax

and h̄ω values with full inclusion of �N-�N coupling, and
found that no bound state exists. To look for resonance states
of the �nn, we have applied the NCSM-SS-HORSE technique
to calculate the �nn scattering phase shifts, which suggest a
�nn resonant state at energy Er = 0.124 MeV and � = 1.161
MeV. Further theoretical studies and experimental searches
for �nn resonances would be of great benefit for constraining
�n interactions.

FIG. 4. The scattering amplitude | f (E )q|2 using Eq. (12) ob-
tained from NCSM eigenstates (symbol). The solid line shows the
parametrization of scattering amplitude in Eq. (13).
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