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Characterization of the inner edge of the neutron star crust
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The poorly known crustal equation of state plays a critical role in many observational phenomena associated
with a neutron star. Using semiclassical Monte Carlo simulations, we explore the possible configurations of
the inner edge of the neutron star crust for a variety of baryon densities and proton fractions. Applying
the Kirkwood-Buff theory to these two-component systems, we observe how the isothermal compressibility
reaches a maximum when isolated nonsymmetric (or quasispherical) clusters are formed in an extremely dilute
neutron gas. To determine the neutron fraction, we suggest a geometrical model based on the behavior of the
proton-neutron pair correlation function. Accordingly, the equation of state of the inner crust is calculated,
illustrating that the nuclear energy in β equilibrium follows a power-law behavior with baryon density. As a
possible astrophysical outcome of this study, our results could help refine the mass-radius relation. Finally, our
results pave the way towards further investigations of the impact of the proton-neutron pair correlation function
on transport properties within the neutron star crust.
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I. INTRODUCTION

Neutron stars, with maximum masses of about 2M� [1–3],
are unique astronomical objects that probe densities that are
inaccessible in terrestrial laboratories. Given that neutron stars
are assumed to be in hydrostatic equilibrium, their density
ranges from a few times nuclear saturation (ρ0 = 0.16 fm−3)
all the way down to terrestrial densities [4]. Although bound
by gravity and not by the strong force, neutron stars may be
regarded as large spherical nuclei with a density gradient in
the radial direction [5]. It has been argued that the stellar core
is composed of a uniform neutron-rich liquid surrounded by
a nonuniform crust composed of exotic nonspherical clusters
often referred to as “nuclear pasta” phases [6]. These pasta
phases emerge from a competition between the long-ranged
Coulomb repulsion and the short-ranged nuclear attraction. At
baryon densities below ρ0 [7], these length scales are com-
parable, leading to a universal behavior known as Coulomb
frustration. Besides their exotic nature, it has also been shown
that the transport properties of the inner crust strongly depend
on the geometry of the pasta phases [8,9]. Further, the pres-
ence of pasta phases could explain some observations such as
a delay in neutrino signals [10,11], the lack of x-ray-emitting
isolated pulsars with long spin periods (>12 s) [12], and the
slow cooling rate of MXB 1659-29 [13].

Molecular dynamics (MD) and Monte Carlo (MC) simula-
tions provide a suitable platform for studying the emergence
of the various pasta phases without any biases on the initial
shapes [14–17]. Notably, these semi-classical simulations can
accommodate a very large number of particles, resulting in
minimizing the finite size effect that hinders other approaches.
Recently, Schneider et al. studied the formation of multiple

domains and defects in the pasta structures using a simulation
volume containing about 3 × 106 nucleons [18]. As Coulomb
frustration is characterized by the development of a large
number of nearly degenerate ground states, small changes in
certain thermodynamic properties—such as baryon density,
proton fraction, and temperature—have a dramatic impact
on the topology of the pasta phases and ultimately on their
transport properties. Indeed, using quantum MD simulations
at zero temperature, Nandi and Schramm have shown that
the spherical clusters with well-defined surfaces transform
into elongated spaghetti-like shapes by increasing the baryon
density from about 0.017 to 0.034 fm−3 [19]. Further, it
has been illustrated that the nuclear waffle phase, consisting
of a stack of perforated parallel plates, quickly merged by
increasing the temperature from 1 to 1.30 MeV [20]. In con-
trast, as the system got cooled to 0.75 MeV, the position and
shapes of the holes ceased to fluctuate, ultimately forming a
two-dimensional hexagonal lattice [20]. In turn, Piekarewicz
and Toledo-Sánchez have shown that in β equilibrium the
electronic contribution—required to maintain overall charge
neutrality—dominates the total energy of the system, leading
to very small proton fractions at all densities of relevance to
the inner crust [21]. Using a lattice-gas model with nearest-
neighbors attractive interactions together with a long-range
Coulomb repulsion, the charged Ising model revealed how the
heat capacity reaches a maximum as nuclear clusters coexist
with a dilute neutron vapor at a temperature of 3 MeV and for
a baryon density and proton fraction of ≈0.03 fm−3 and 0.3,
respectively [22]. MD simulations have also been performed
to study transport properties in the stellar crust. Horowitz and
Berry have shown that the shear viscosity of the nuclear pasta
increases slightly relative to the lower density phase that is
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dominated by spherical clusters—in contrast to the conven-
tional behavior in complex fluids where the shear viscosity
depends dramatically on the shape of the molecules [23].
Following a similar approach, Caplan, Forsman, and Schnei-
der used “lasagna” and “disordered” configurations to show
that the shear viscosity reaches its minimum at the melting
temperature [24]. Finally, Kycia and collaborators have shown
that algebraic methods that invoke the Euler characteristic and
Betti numbers associated with the different shapes can shed
light on the finer topology of pasta and subpasta phases [25].

In the present work we perform MC simulations for baryon
densities in the range 0.005–0.08 fm−3 (or from about 0.03ρ0

to 0.5ρ0) and proton fractions from 0 to 0.4, albeit for a rela-
tively modest number of nucleons (A = 5000). Although the
number of nucleons is modest, the main virtue of the present
work is the use of the Kirkwood-Buff theory [26] to compute
the isothermal compressibility and density fluctuations. To our
knowledge, no previous attempt has been made to investigate
the presence of possible critical points in the inner crust of
neutron stars. Therefore, the main goal of this paper is to
identify the maximum of the isothermal compressibility as a
function of the baryon density for different proton fractions.
In addition, we suggest a geometrical model based on the
behavior of the proton-neutron pair correlation function to es-
timate the bound neutron fraction. Isolating the bound and free
neutron fractions is relevant because free neutrons contribute
to the pressure support against gravitational collapse. That is,
in addition to providing a clearer picture of the exotic pasta
phases, the free neutron fraction modifies the crustal equation
of state (EoS) which in turn may affect the mass-radius rela-
tion [6,27].

The paper is organized as follows. Sec. II describes the
semiclassical MC simulation, the underpinning theoretical
formalism, and the geometrical model used to estimate the
bound neutron fraction. Section III is devoted to our results,
which focus on the calculation of the isothermal compress-
ibility, the bound neutron fraction, and its impact on the
equation of state. Finally, we offer our conclusions in Sec. IV.

II. FORMALISM

In this section, we describe the theoretical formalism that
will be used to simulate nuclear matter in a region of relevance
to the inner crust. We start with a brief description of the
Monte Carlo simulation and devote the rest of the section to
computing some relevant neutron star observables.

A. Semiclassical Monte Carlo simulation

The MC simulation used in this work follows closely the
approach presented in Ref. [21]. In the interest of clarity,
we provide a concise review of the most important points.
The simulation box consists of A = 5000 nucleons that are
randomly distributed initially throughout the box. To simu-
late baryon densities in the 0.08 to 0.005 fm−3 range, box
lengths (L) ranging from 39.69 to 100 fm were selected to-
gether with proton fractions y = Z/A varying from 0 (pure
neutron matter) to 0.4 (nearly symmetric nuclear matter).
Nucleons were embedded in a uniform electron background

at a density of ρe = Z/L3 to enforce charge neutrality. We
assume that in this density domain relevant to the stellar
crust, where the kinetic energy dominates, the electrons may
be treated as a noninteracting Fermi gas. The total potential
energy of the A-body system consists of nuclear and Coulomb
interactions,

V (r1, . . . , rA) = VNucl(r1, . . . , rA) + VCoul(r1, . . . , rA), (1)

where the nuclear interaction is modeled as a sum of two-body
terms of the following form:

VNucl(r1, . . . , rA) =
A∑

i<j=1

[
ae−r2

ij/� + (b + cτiτj )e
−r2

ij/2�
]
,

(2)
where rij = |ri − rj| denotes the interparticle separation and
τ is the isospin of the nucleon: τ = +1 for a proton
and τ = −1 for a neutron. Although simple, the two-body
interaction encodes the characteristic nucleon-nucleon short-
range repulsion and the intermediate-range attraction between
proton-neutron pairs. The model parameters are given by a =
110 MeV, b = −26 MeV, c = 24 MeV, and � = 1.25 fm2.
The isospin dependence of the two-body potential ensures that
while pure neutron matter is unbound, symmetric nuclear mat-
ter saturates at the correct density. So, this model shows that
the energy per nucleon for symmetric neutron matter versus
baryon density is very flat at ρ ≈ 0.15 fm−3 and energy per
nucleon is close to the target value of −16 MeV. Moreover, the
symmetry energy, for which an easy estimation is simply to
compute the difference between the energy per nucleon of the
pure neutron matter relative to symmetric one, is calculated to
be ≈ 34 MeV[15]. Further details of the calibration procedure
of the short-range nuclear potential and model parameters
may be found in Ref. [15].

Whereas for the short-range nuclear interaction finite-
size effects are minimized by adopting periodic boundary
conditions and implementing the so-called minimum-image
convention, such an approach is not applicable in the case
of the long-range Coulomb interaction. Hence, one can either
introduce a screening length as a result of the polarization of
the electron gas [15] or implement an exact Ewald summation
[28]. The great merit of the century-old Ewald summation is
that the Coulomb contribution can be divided into a short-
range part that can be readily evaluated in configuration space
and a periodic long-range contribution that converges rapidly
in momentum space. Using the Ewald summation for a system
of Z protons immersed in a neutralizing and uniform electron
background, the Coulomb potential may be exactly calculated.
That is,

VCoul(r1, . . . , r) = q2

L

[
U0 + 1

2

∑
i �=j

(usr (sij ) + ulr (sij ))

]
, (3)

where q is the elementary proton charge, sij = rij/L are
scaled (dimensionless) interparticle distances, and L is the
size of the simulation box. In turn, the short- and long-range
components of the potential and the overall constant U0 are
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given by

usr (s) = erfc(s/s0)

s
,

ulr (s) =
∑
l �=0

exp
( − π2s2

0l2
)

π l2
exp (−2π il · s),

U0 = Z

2
ulr (0) − Z√

πs0
− πs2

0Z2

2
, (4)

where l = (L/2π )k and s0 are the dimensionless momentum
and smearing parameter, respectively, and erfc(s/s0) is the
complementary error function, which is a rapidly decreasing
function for s > s0. In principle, the Coulomb potential is
independent of the value of the smearing parameter, but in
practice it should neither be too small nor too large, so we
fixed it here at s0 = 0.12. For more details see the various
appendices of Ref. [21].

The cornerstone of the Monte Carlo simulation is the
Metropolis algorithm [29]. Briefly, the A nucleons were
placed in the simulation box in a random initial configuration,
with the initial potential energy denoted by Vold(r1, . . . , rA).
Then, each nucleon is moved in succession according to the
following prescription: ri → ξ�r, where �r is a constant
displacement and ξ ∈ [−1, 1] is a uniformly generated ran-
dom number. The new potential energy Vnew(r1, . . . , rA) is
then calculated for the new configuration. If the new con-
figuration is energetically favorable, that is, Vnew � Vold, then
the move is accepted. If instead Vnew > Vold, then the move
is accepted with probability exp [ − (Vnew − Vold )/T )]. Note
that the kinetic energy of the nucleons is not included in
the energy budget as it is independent of their positions and
velocities. The kinetic energy is simply given by K = 3AT/2,
where the temperature is introduced to simulate the quantum-
mechanical, zero-point motion of the nucleons [15]. To follow
the “rule of thumb” that the acceptance rate should be in the

vicinity of 50% [30], the displacement �r was adjusted until
the accepted range fell in the 30-to-50% range. Moreover,
we have adopted periodic boundary conditions to compensate
for the limited size of the simulation box. Finally, we start
the MC simulations at an initial temperature of T = 2 MeV
where the pasta phases are recognizable [31,32], and then cool
the system to the final temperature of T = 1 MeV, with a
cooling schedule of 0.1 MeV per 4000 sweeps. We note that
the parameters of the model were calibrated at a temperature
of T = 1 MeV [15]. Once the final temperature is reached,
we use 56 000 additional sweeps to thermalize the system and
finally 1000 sweeps to accumulate statistics on the physical
observables of interest. Note that a single sweep consists of A
individual MC steps in an attempt to move (on average) one
nucleon per sweep.

B. Pair correlation function and isothermal compressibility

A fundamental quantity that can be readily extracted from
the MC simulations is the pair (or two-body) correlation func-
tion (PCF). The PCF provides a measure of spatial ordering by
representing the conditional probability that a pair of particles
be separated by a given distance. That is,

gμν (r) = L3

4πr2NμNν

〈∑
i

∑
j�=i

δ(r− | ri − r j |)
〉
, (5)

where 〈· · · 〉 represents an ensemble average over MC con-
figurations [33] and gμν (r) is assumed to be normalized to
unity as r approached L/2. Moreover, μ and ν represent
nucleon indices, so in total there are three different PCFs of
interest. Considering some general features of the PCF and
following the analysis of Ref. [34], the PCF was fitted with
the following dimensionless functional form with a reduced
chi-square value of � 0.002 and a maximum at the contact
distance d:

g(x) =
⎧⎨
⎩1 + x−m[g(d ) − 1 − λ] +

[
1 + λ − 1

x

]
e−a(x−1) cos [b(x − 1)] for x � 1,

g(d )e−θ (x−1)2
for x < 1,

(6)

where x = r/d and g(d ) are the dimensionless inter-particle
distance and maximum value of the PCF, respectively [34].
Moreover, m � 1, λ, a, b, and θ are fitting parameters. This
functional form is both accurate and helps suppress the noise
in the simulated PCF due to the limited number of particles. In
particular, using the fitted (noise-free) PCF one can compute
thermodynamic observables that could help identify phase
transitions. For example, in a two-component system like the
one that we are interested in here, the isothermal compress-
ibility may be written as [35]

κT = 1 + ρμGμμ + ρνGνν + ρμρν

(
GμμGνν − G2

μν

)
T [ρμ + ρν + ρμρν (Gμμ + Gνν − 2Gμν )]

, (7)

where ρμ and ρν are the number densities of the two species
and Gμν is defined from the Kirkwood-Buff theory as the

angle-averaged integral of the pair correlation function [26]:

Gμν =
∫ ∞

0
[gμν (r) − 1]4πr2dr. (8)

C. Equation of state

The mass-radius relation of neutron stars in hydrostatic
equilibrium, as described by the Tolman-Oppenheimer-
Volkoff equation, is only sensitive to the equation of state,
namely, to the relation between the pressure and the energy
density of the system. The contribution to the energy density
of the system from the stellar crust includes the classical
kinetic energy of the bound clusters, the kinetic energy of the
“free” neutrons, the kinetic energy of the relativistic electron
gas, and the expectation value of the potential energy obtained
from the MC simulation. Ignoring the contribution from the
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nonrelativistic heavy clusters, the total energy per nucleon
may be written as follows [21]:

Etot

A
− mn = Tn

A
+ yp

Te

Z
+ 〈V 〉

A
. (9)

Given that the neutrons bound to the heavy clusters have been
eliminated from the above equation, we have designated as Tn

the kinetic energy of the free and bound neutrons. Notably,
we used a classical kinetic energy for the bound neutrons,
which is the same as protons. Treating the kinetic energy of
the electrons and free neutrons as a noninteracting Fermi gas,
we obtain

TFG = 3m

8x3
F

[
xF

√
1 + x2

F

(
1 + 2x2

F

) − ln
(
xF +

√
1 + x2

F

)]
,

(10)
where m is the fermion (electron or neutron) mass and xF is
the dimensionless Fermi momentum,

xF = kF

m
= (3π2ρ)1/3

m
. (11)

Although the energy per nucleon displayed in Eq. (9) depends
on both the overall baryon density and the proton fraction,
what is relevant to the neutron star is the composition in β

equilibrium, namely, the proton fraction that minimizes E/A
at a fixed baryon density. However, Eq. (9) remains relevant
in connection to a fundamental property of the EoS: the
symmetry energy. Assuming an infinite system of nucleons
interacting exclusively via nuclear forces (i.e., no electromag-
netic interactions) the symmetry energy is defined as [36]

S(ρ) = 1

2

(
∂2ENucl/A

∂α2

)
α=0

. (12)

where α = 1 − 2yp is the neutron-proton asymmetry and
ENucl is the nuclear energy. In particular, in the vicinity of
nuclear matter saturation density, the symmetry energy takes
the following simple form [37]:

S(ρ) = J + L

(
ρ − ρ0

3ρ0

)
, (13)

where J is the symmetry energy and L its slope at saturation
density. The slope L controls the density dependence of the
symmetry energy and, in turn, the neutron-proton asymmetry
of the bound clusters. For example, a large value of L implies
small symmetry energy at the densities of relevance to the
stellar crust, thereby allowing for a larger fraction of bound
neutrons and a corresponding weaker contribution from the
free neutrons to the pressure support. That also can be ex-
plained by the distillation effect, which corresponds to the
formation of clusters of high-density symmetric matter in a
background of a neutron gas possibly with a very small proton
fraction [38]. That is a large value of L will result in a neutron
drip and a smaller surface tension [39].

D. Estimation of the bound neutron fraction

It should be clear that deciding what fraction of the neu-
trons are bound to clusters and what fraction remains in the
vapor is a difficult question that is likely to be model de-
pendent. Nevertheless, we now propose a purely geometrical

model to estimate the bound neutron fraction Nbound/N , and
consequently the fraction of free neutrons that contribute to
the equation of state. To start, we introduce the concept of the
potential of mean force U (r) that is defined in terms of the
proton-neutron correlation function gpn(r) [40,41]. That is,

gpn(r) = exp

(
−Upn(r)

T

)
⇔ Upn(r) = −T ln gpn(r). (14)

Although Upn(r) differs from the two-body potential vpn(r)
introduced in Eq. (2) due to the presence of the medium, the
pair potential vpn(r) provides a good approximation to Upn(r)
in the dilute limit because of the dominance of binary colli-
sions. This suggests that the first peak in the proton-neutron
PCF contains critical information on the binding of the pair.
One can then define a Gaussian function by selecting a length
scale Rpn and full width at half maximum W that optimally fits
the first peak of gpn(r); that is, gpn(r) reaches its maximum
value at Rpn. Finally, we determine that a neutron is bound if
the distance between such neutron located at a position rn and
the nearest proton located at rp satisfies

|rp − rn| � Rpn + W

2
. (15)

In the above equation, W is the shell thickness centered
at Rpn where the nearest neighbors exist; notably, Rpn is
the proton-neutron nearest distance. To obtain a statistically
meaningful quantity, one traces the number of times the po-
sition of the given neutron (say neutron i) satisfies the above
condition in all recorded MC configurations. This results in
a probability Pi that the neutron is bound. This procedure
is repeated for all N neutrons in the system, resulting in a
set of independent probabilities {P1, P2, . . . , PN }. This set of
probabilities is then used to estimate the number of bound
neutrons in the system:

Nbound

N
=

N∑
i=1

Pi. (16)

III. RESULTS AND DISCUSSIONS

The main goal of this section is to present results on the
various physical observables that can be extracted from the
Monte Carlo simulations.

A. Relaxed configurations

We start the section by displaying in Fig. 1 snapshots of the
relaxed (or thermalized) MC configurations for a wide range
of baryon densities and proton fractions. At a proton-poor
environment of yp = 0.02, protons (blue solid circles) are well
separated as well as the formation of small clusters with a
few protons immersed among the neutrons (red solid circles).
We will later show the presence of such small clusters by
calculating the pp PCF and Nbound in the following sections.
By increasing the proton fraction to the range of 0.05 �
yp � 0.2, the uniformity in the system is broken leading to
larger nonsymmetric (or quasi-spherical) clusters immersed
in a uniform neutron vapor with a small protons fraction, in
good agreement with the aforementioned distillation effect
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FIG. 1. Snapshots of various relaxed (or thermalized) nucleon configurations for a variety of baryon densities and proton fractions. To
simulate the quantum zero-point motion of the nucleons, all simulations were carried out at a temperature of T = 1 MeV. Blue and red solid
circles depict protons and neutrons, respectively. Notably, the perspective angles are 12◦ in all the presented snapshots.

[38,42,43]. As the proton fraction is increased all the way to
yp = 0.4, most of the neutrons are now absorbed into clusters
with perhaps only a hint of a dilute neutron gas; note that
yp = 0.4 is approximately equal to the proton fraction of
208Pb. At a density of ρ � 0.01 fm−3, well defined clusters (or
nuclei) are observed, which are consistent with earlier reports
[15,44]. Later, we will explain how the behavior of the relaxed
structures, for yp = 0.4, can be explained by the distillation ef-
fect by calculating Nbound. Moreover, as the density continues
to increase, one notices the emergence of distinct topological
structures, which is a hallmark of “Coulomb frustration.” Un-
der these conditions, the typical distance scale is such that it is
unclear whether it is energetically favorable for protons to join
the clusters in an effort to maximize the nuclear attraction or
to remain well separated to minimize the Coulomb repulsion.
Indeed, at the highest densities of ρ = 0.05 and 0.08 fm−3,
one observe exotic structures such as a waffle-like phase and
crossed-cylindrical holes, respectively [20]. At slightly higher
densities, the uniformity in the system is restored. Given the
different density contrasts in the pasta phases—namely, a
higher than average density within the clusters—one would
expect a dramatic change in the transport properties in the in-
ner crust. To elucidate such behavior, we present the behavior
of the isothermal compressibility and density fluctuations.

B. Isothermal compressibility

One of the simplest—yet fundamental—physical observ-
ables to compute within the Monte Carlo framework is the pair
correlation function. As noted in Eq. (5), the pair correlation
function represents the probability of finding a pair of particles
separated by a distance r. Thus, the PCF may be computed
exclusively in terms of the instantaneous positions of the par-
ticles. Moreover, the static structure factor S(q), obtained from
the Fourier transform of the PCF, provides a particularly use-
ful observable that is associated with the mean-square density
fluctuations of the system. Indeed, the angle-averaged integral
of the pair correlation Gμν , defined in Eq. (8) to compute
the isothermal compressibility, is proportional to the static
structure factor at zero-momentum transfer.

In Fig. 2 we display PCFs for all three possible nucleon
pairs, namely, neutron-neutron (nn), proton-proton (pp), and
proton-neutron (pn), for different baryon densities and proton
fractions. As mentioned earlier, gμν characterizes the spatial
ordering in a many-particle system and can be used to calcu-
late the average value of any two-particle physical observables
[33]. As expected from the strong nucleon-nucleon repulsion
at short distances that produces the hard-core behavior of
the NN interaction—and that is often attributed to the Pauli
exclusion principle at the quark level—gμν vanishes at small
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FIG. 2. (a) pn, (b) nn, and (c) pp PCFs as a function of the dimensionless distance for different baryon densities and proton fractions.

separations. In the opposite limit of large distances, the PCF
goes to one as the probability of finding two nucleons with
a given separation is almost constant. The height of the first
peak is strongly correlated to the number of nearest neighbor
nucleons. Given that in our model only the proton-neutron
interaction is attractive, one expects to find almost all protons
within neutron-rich clusters. This is fairly evident in Fig. 2(a),
as the size of the first peak displayed by the gpn correlation
function is significantly larger than both gnn and gpp, espe-
cially at low densities. Moreover, unlike gnn and gpp, the
proton-neutron PCF display two or three peaks that suggest
the presence of a relatively long-ranged ordering between
protons and neutrons. As depicted in Fig. 2(b), the width of the
first peak of gnn remains nearly constant for ρ � 0.01 fm−3,
suggesting that the system is dominated by the formation
of well-separated individual clusters. Indeed, in the dilute
regime, it is energetically favorable for nucleons to cluster
into “normal” high-density nuclei, which arrange themselves
into a Coulomb crystal. Instead, for ρ � 0.05 fm−3 (or about
one-third of nuclear saturation density), the height of the first
peak decreases, signaling the evolution towards the uniform
phase. The small peak at short distances combined with the
oscillatory behavior at larger distances illustrates the char-
acteristic behavior of a fluid interacting through short-range
forces. Further, as shown in Fig. 2(c), gpp displays a similar

trend as gnn. However, whereas at low density the first peak of
gnn remains nearly constant, we found a much steeper rise in
the size of the first peak of gpp both as a function of density
and proton fraction. Also visible is a relatively large shift in
the position of the first peak value, at low densities and proton
fractions, as well as some oscillations at intermediate dis-
tances due to the long-range repulsive Coulomb interactions.
It should be noted that all the above-mentioned statements are
consistent with the behavior illustrated in Fig. 1 for the relaxed
configurations. For example, Fig. 2(c) reveals the sharp peaks
with the proton-proton nearest distance Rpp, in low baryon
densities and yp = 0.02, almost similar to what is observed for
large clusters in high proton fractions. It implies that protons
were merged, resulting in the formation of small clusters.

Although the above qualitative discussions are insightful
and informative, one would like to apply a quantitatively
robust criterion to identify the onset of a phase transition. A
particularly robust framework in the study of phase transitions
is the fluctuation-dissipation theorem, which relates fluctua-
tions in the system to the response of the system to a suitable
external perturbation. In our particular case, a compelling
connection involves the isothermal compressibility, the static
structure factor, and the fluctuations in the average number of
particles. Although in the present paper we concentrate on the
isothermal compressibility as outlined in Eq. (7), in the future,
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FIG. 3. (a) Isothermal compressibility as a function of proton
fraction for different baryon densities and (b) as a function of baryon
density for different proton fractions. The various lines are added to
guide the eye.

we plan to simulate a system with a much larger number of
particles where the connection between the various indicators
of phase transitions will be made explicit. We display in
Fig. 3(a) the isothermal compressibility κT as a function of
the proton fraction for different baryon densities; Fig. 3(b)
provides the same information but now as a function of the
density for a variety of proton fractions. In the case of proton-
poor environments (yp � 0.1) the thermal compressibility is
nearly constant and small, suggesting that the system behaves
as an incompressible fluid due to the short-range repulsive
core of the nn interaction. However, κT shows a striking
enhancement of about two orders of magnitude at yp � 0.2,
which is likely associated with the onset of a phase transition.
It is obvious that this enhancement cannot originate from the
presence of the clusters since they are formed at much lower
yp ≈ 0.02. So, this could be assigned to the reduction of the
density of the free neutron among the clusters, resulting in
a weaker contribution from the free neutrons to the pressure
support. Additionally, κT decreases when the pasta phases are
formed. It implies that the pasta phases act as pillars keeping
the systems incompressible. The enhancement is driven by
the dominance of Gpn = Gnp over Gpp and Gnn, a fact that
has already been illustrated in Fig. 2. These results show the
critical role that the “mixed” pair correlation function gpn(r)
plays in the thermodynamic properties of the inner crust. To
our knowledge, earlier studies have focused exclusively on

gpp, gnn, and the associated proton and neutron static struc-
ture factors; see Ref. [21] and references contained therein.
Ultimately, κT reaches maximum values of about 2500 (3700)
at yp = 0.2 (0.4) and ρ = 0.01 (0.008) fm−3. This behavior
is highly reminiscent of a critical point associated with a max-
imum in the density fluctuations, a phenomenon that has been
extensively studied in the phase diagram of water [45–47].

In closing this section we want to underscore the close
relationship between various dynamical and thermodynamic
quantities that we plan to simulate in a future work that will
involve a much larger number of particles. It is known that
for a one-component system of, say, N neutrons the following
relations hold:

S(q = 0) = 1

N
(〈N2〉 − 〈N〉2) = NT

V
κT. (17)

That is, in the limit that the momentum transfer to the
system goes to zero (i.e., q → 0), the static structure factor
is related to the fluctuations in the number of particles, or
equivalently, to the density fluctuations. These fluctuations
are themselves related to the isothermal compressibility and
diverge at the critical point [48]. In the particular case of the
neutrino opacity, it has been argued that the divergence in
the density fluctuations near a phase transition may have a
dramatic effect on present models of stellar collapse [16].

C. Bound neutron fraction

Calculating the bound neutron fraction not only provides
a clear picture of the relaxed configurations but could also
have a large impact on the total energy of the system. Indeed,
the fraction of neutrons not bound into clusters, namely, the
“free” neutrons, may provide an efficient source of pressure
support in the bottom layers of the inner crust. In this study,
we implement the geometrical model based on the pn PCF
(see Sec. II D). This geometrical model improves on the sim-
ple assumption adopted in Ref. [21]. Figure 4(a) displays the
calculated proton-neutron nearest distance Rpn as a function
of the proton fraction for the various densities considered in
this work. Our results indicate that the average distance Rpn

is independent of both yp and ρ, giving an average value of
Rpn = 1.97 ± 0.12 fm. This distance is consistent with the
minimum value of the two-body pn potential that is located
at 1.92 fm, with the small difference in the central values
attributed to many-body effects and the small temperature
that is included to simulate the quantum zero-point motion.
Using such a geometrical model, the average number of
bound neutrons Nbound is displayed in Fig. 4(b). As expected,
Nbound depends strongly on the baryon density and increases
monotonically with yp, as adding more protons to the sys-
tem results in the formation of larger neutron-rich clusters.
For example, Nbound is significantly higher at ρ = 0.08 fm−3

than at ρ = 0.005 fm−3. Further, this figure shows formation
of nearly symmetric clusters for low baryon density, i.e.,
ρ � 0.01 fm−3. This observation illustrates the high-density
symmetric matter in a background of a neutron gas for the
crustal baryon density, known as the distillation effect [38].
For the highest proton fraction, i.e., yp = 0.4, proton fractions
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FIG. 4. (a) Proton-neutron nearest distance and (b) number of
bound neutrons versus proton fraction. The various lines are added
to guide the eye.

in the clusters or pasta phases y′
p, i.e.,

y′
p = Z

Nbound + Z
, (18)

are close to symmetric neutron matter, e.g., y′
p = 0.51 for

ρ = 0.01 fm−3. Our estimation unveils that 55% to 9% of
all neutrons are free in the simulated boxes when the baryon
density changes from 0.005 to 0.08 fm−3 for yp = 0.4. So,
Nbound < N , i.e., all neutrons cannot bind to the clusters or
pasta phases, and the distillation effect happens for all ranges
of baryon densities [38,49]. In addition, our model shows
that y′

p (at yp = 0.02) varies from 0.54 to 0.20 for baryon
densities from 0.005 to 0.08 fm−3, respectively. It can be
further evidence that the formation of small neutron-rich clus-
ters in proton-poor environments. As such, the bound neutron
fraction can be fitted to the following analytic form:

Nbound

A
≈ f0(1 − e− f1 ypρ

f2 ), (19)

where f0 = 0.6, f1 = 25.5, and f2 = 0.52.

D. Equation of state of the inner crust

We conclude this section by displaying in Fig. 5 the av-
erage potential energy per nucleon 〈V 〉/A as obtained from

FIG. 5. Potential energy per nucleon as a function of the proton
fraction for a variety of densities. The inset displays the coefficients
obtained from a quadratic fit of the form 〈V 〉/A = V0 + V1yp + V2y2

p.

the MC simulations. In agreement with an earlier work by
Piekarewicz and Toledo-Sánchez [21], the potential energy is
a monotonically decreasing function of yp, given that for small
values of the proton fraction the symmetry energy plays a
critical role. In particular, the y intercept represents the EoS of
pure neutron matter as a function of density. At low densities,
the interparticle separation exceeds the range of the nn poten-
tial so the energy goes to zero. However, as the density reaches
ρ = 0.05 fm−3, the repulsive nn interaction drives the energy
to positive values, in accordance with the accepted notion that
pure neutron matter is uniform and unbound. Further, 〈V 〉/A
declines faster with increasing baryon density because of an
increase in the bound neutron fraction and, consequently, the
number of attractive pn pairs. For example, for yp = 0.4 and
ρ = 0.08 fm−3, the average potential energy per nucleon is
evolving towards the value of the binding energy per nucleon
of symmetric nuclear matter at saturation density. Note that
for each density we have fitted the average potential energy
per nucleon with a quadratic function of yp as follows:

〈V 〉
A

= V0 + V1yp + V2y2
p (20)

where the appropriate constants are shown in the inset of
Fig. 5. Finally, we display in Fig. 6(a) the total energy per
nucleon as a function of the proton fraction for different
baryon densities and different treatments of the neutron con-
tribution to the equation of state; see Eq. (9). Note that the
total energy per nucleon (Etot/A) includes the kinetic energy
of the electrons. The various panels compare our geometrical
model against the quantum and classical limits introduced
in Ref. [21], where either all neutrons are considered as
free in the quantum limit or bound in the classical limits.
All curves show a slight initial decline and then an increase
with proton fraction, with the former due to the attractive pn
interaction and the latter because of the electronic Fermi en-
ergy. For neutron stars in hydrostatic equilibrium, the relevant
T = 0 equation of state is determined from β (or chemical)
equilibrium. That is, the system settles into the lowest en-
ergy configuration by finding the optimal value of the proton
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FIG. 6. (a) Total energy per nucleon versus proton fraction for different baryon densities for our geometrical model (green), the quantum
limit in which all the neutrons are free (red), and the classical limit in which all neutrons are bound to clusters (blue). (b) The corresponding
EoS for our model (green), the quantum limit (red), and the classical limit (blue). (c) and (d) Nuclear energy per nucleon and symmetry energy
vs α and (ρ − ρ0 )/3ρ0, respectively.

fraction: a condition that is equivalent to having the n ↔
p + e in chemical equilibrium. Although the optimal proton
fractions are relatively small, i.e., 0.002 � yp � 0.068 for
densities in the range of ρ = (0.005–0.08) fm−3, the predicted
proton fractions using the geometrical model are still slightly
larger than the values obtained by assuming that all neutrons
are either free or bound [21]. We observe that at very small
densities the assumption that all neutrons are free is in good
agreement with the geometrical model (green lines), but, as
the density increases, it becomes a poor approximation. On
the other hand, the assumption that all neutrons are bound
into clusters is, as expected, a bad approximation at all den-
sities, especially for low proton fractions. We find that our
predictions using the geometrical model are consistent with
earlier results using different methods [50–55]. The nuclear
contribution to the total energy per nucleon in β equilibrium
is displayed in Fig. 6(b). In particular, for the geometrical
model proposed in this work we predict a nuclear EoS with the
power-law behavior Eβ ∝ ρ0.58. This results in P ∝ ρ1.58 ∝
ργ+1, where P and γ = 0.58 are the pressure and a con-
stant, respectively. The obtained γ value is in good agreement
with the range that has recently been noted by Lattimer and
Prakash, i.e. 0.3 � γ � 0.7, for neutron matter [6]. Given
that the solid crust accounts for about 10% of the stellar

radius, our results provide a credible estimate of the EoS of
the inner edge of the neutron star [56,57]. Finally, we have
estimated the nuclear symmetry energy S(ρ) by fitting the
nuclear energy as a function of the neutron-proton asymmetry
α = 1 − 2yp, with the results depicted in Fig. 6(c). In turn,
the extracted value of the symmetry energy at the densities
considered in this work is displayed in Fig. 6(d). Using a
linear fit of the form of Eq. (13). we obtained the following
values for the symmetry energy and its slope at saturation
density:

J = 32.96 ± 3.68 MeV,

L = 100.34 ± 13.29 MeV,
(21)

which are comparable to other methods, e.g., the Lead
Radius EXperiment (PREX-2), used to extract these val-
ues [37,39,58,59]. We further calculate the J and L for the
classical and quantum limits to compare with our proposed
model:

J = 40.72 ± 6.16 MeV,

L = 119.08 ± 22.28 MeV,
(22)
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for the classical limit, and

J = 37.29 ± 6.08 MeV,

L = 109.10 ± 22.00 MeV,
(23)

for the quantum limit. However, the calculated values result-
ing from these models are in the same range compared to the
previous reports, However, they show slightly larger J and
L values and much larger (approximately double) calculation
errors than our model.

IV. CONCLUSIONS

We have used semiclassical Monte Carlo simulations for
a range of baryon densities and proton fractions that are
appropriate for the conditions found in the inner crust of
neutron stars. To simulate the quantum zero-point motion of
the particles, the simulations were carried out at a temperature
T = 1 MeV with a two-body interaction calibrated to repro-
duce some bulk properties of nuclear matter [15]. Snapshots
of the relaxed configurations in a proton-poor environment
display well-separated clusters immersed in a dilute neutron
vapor with a very small proton fraction. Instead, for yp � 0.2,
the relaxed configurations display nonsymmetric clusters of
various topologies that are commonly referred to as pasta
phases. Our results were also demonstrated that the well-
known distillation effect happens for all ranges of baryon
densities. Further, at the highest simulated proton fraction of
yp = 0.4 and densities around ρ = 0.01 fm−3, a significant
number of “voids” have been identified in the space between
the isolated, nonsymmetric clusters. The appearance of voids
results in a highly compressible system as compared with
other emerging structures. In particular, a dramatic increase in
the isothermal compressibility of the two-component system
was observed at a density of ρ = 0.008 fm−3 and a proton
fraction of yp = 0.4. To our knowledge, this is the first time
that the Kirkwood-Buff theory has been used to compute
the isothermal compressibility of the pasta phases. Given the
intimate connection between the isothermal compressibility,
the long-wave limit of the static structure factor, and the
fluctuations in the number of particles [see Eq. (17)], we plan
in a future work with a much larger number of particles to

compute all these three quantities to provide a more robust
diagnosis of the various phase transitions.

Besides the use of the Kirkwood-Buff theory for the first
time in the characterization of the pasta phases, we have
also proposed a geometrical model for calculating the bound
neutron fraction, which is based on the simulation of the
pn pair correlation function. Our results have shown that
the bound neutron fraction increases monotonically with yp

and depends strongly on the overall density of the system.
The geometrical model improves on the simple prescription
adopted in Ref. [21] that assumed two extreme limits: that
either all neutrons are bound or all neutrons are free. The
present results suggest that none of these limits are valid at
high densities. Using the geometrical model, we could com-
pute the contribution of the free and bound neutrons in the
total energy of the system. By following this approach, we
were able to extract the equation of state of cold-catalyzed
neutron star matter in β equilibrium. Because of the large elec-
tronic contribution to the energy, β equilibrium was reached
for small proton fractions, thereby making the contribution
from the free electrons particularly important. In particular,
we obtained a parametrized EoS for the inner crust that could
be parametrized as Eβ ∝ ρ0.58. Given that the stellar crust
contributes by about 10% of the radius of the neutron star,
it would be interesting to find the implications of this finding
on the mass-radius relation. Finally, although we concentrated
exclusively on simulated nonuniform systems, we extracted
some critical parameters of the symmetry energy that are
consistent with some recent reports.
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