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Benchmark calculations of infinite neutron matter with realistic two- and three-nucleon potentials
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We present the equation of state of infinite neutron matter as obtained from highly realistic Hamiltonians
that include nucleon-nucleon and three-nucleon coordinate-space potentials. We benchmark three indepen-
dent many-body methods: Brueckner-Bethe-Goldstone (BBG), Fermi hypernetted chain/single-operator chain
(FHNC/SOC), and auxiliary-field diffusion Monte Carlo (AFDMC). We find them to provide similar equa-
tions of state when the Argonne v18 and the Argonne v′

6 nucleon-nucleon potentials are used in combination
with the Urbana IX three-body force. Only at densities larger than about 1.5 the nuclear saturation density
(ρ0 = 0.16 fm−3) the FHNC/SOC energies are appreciably lower than the other two approaches. The AFDMC
calculations carried out with all of the Norfolk potentials fitted to reproduce the experimental trinucleon
ground-state energies and nd doublet scattering length yield unphysically bound neutron matter, associated with
the formation of neutron droplets. Including tritium β decay in the fitting procedure, as in the second family
of Norfolk potentials, mitigates but does not completely resolve this problem. An excellent agreement between
the BBG and AFDMC results is found for the subset of Norfolk interactions that do not make neutron-matter
collapse, while the FHNC/SOC equations of state are moderately softer.
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I. INTRODUCTION

Connecting properties of atomic nuclei to the equation of
state (EOS) of infinite nucleonic matter within a microscopic
perspective, in which nuclear systems are described in terms
of nucleon-nucleon (NN) and three-nucleon (3N) forces, as
well as consistent electroweak currents, is a long-standing
challenge for nuclear physics. Addressing it has become
extremely timely as neutron stars, which contain the uni-
verse’s most dense nuclear materials, can now be probed in
whole new ways from gravitational waves to satellite x-ray
telescopes, providing an opportunity to test the high-density
and low-temperature regime of matter that is not currently
accessible by terrestrial experiments [1,2]. Indeed, the first
observation of gravitational waves, GW170817, from a binary
neutron star merger [3], in conjunction with its electromag-
netic counterpart [4], has ushered in a new era in our quest
to address some of the most fundamental questions driving
nuclear physics today. The gravitational wave signal emitted
during binary neutron star inspirals is strongly influenced by
the tidal deformability of the participating stars, which is in
turn largely determined by the nuclear matter EOS [5]. Using
GW170817 data, the LIGO-Virgo Collaboration has been able
to constrain the value of the adimensional tidal deformability
�1.4, for a neutron star with a mass M = 1.4 M�, to be in the

range [6] �1.4 = 190+390
−120. This implies small stellar radii in

the range R1.4 = 11.9 ± 1.4 km which points to a soft EOS
at densities of about 2–3 times the nuclear matter saturation
density ρ0 = 0.16 fm−3.

Additional observational constraints on the nuclear EOS
comes from measured neutron star masses. Particularly three
neutron stars with masses close to M = 2 M� have been
reliably established since the early 2010s. Indeed, pulsar-
timing observations of the millisecond pulsar J0740+6620
have yielded the most massive neutron star yet observed:
M = 2.14+0.10

−0.09 M� [7]. The existence of neutron stars with
masses M ∼ 2 M� distinctly indicates a stiff EOS at ρ � 3ρ0

to support them. There are several EOS models (e.g., Wiringa-
Fiks-Fabrocini (WFF) [8], Akmal-Pandharipande-Ravenhall
(APR) [9], and Bombaci-Logoteta (BL) [10]) that can recon-
cile a soft EOS at ρ ∼ (2–3) ρ0, as suggested by GW170817,
with a stiff EOS at ρ � 3ρ0 to support massive neutron stars
against gravitational collapse to black holes.

The recent simultaneous determination of the mass and
radius of a few neutron stars by the Neutron star Inte-
rior Composition Explorer (NICER) aboard the International
Space Station is providing new and significant informa-
tion to constrain the nuclear EOS. In the case of the
neutron star J0030+0451 the NICER collaboration applied
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different analyses on the observational data and obtained
values of (all at 68% credibility) R = 12.71+1.14

−1.19 km and
M = 1.34+0.15

−0.16 M� [11] and R = 13.02+1.24
−1.06 km and M =

1.44+0.15
−0.14 M� [12], which are consistent with the constraints

on the stellar radius derived from GW170817 data. Another
recent measurement by the NICER team was of the pulsar
PSR J0740+6620, which is of major interest to nuclear physi-
cists due to its much heavier mass, M = 2.08+0.07

−0.07 M� [13]
(this is an update from the original value reported in Ref. [7]).
Two independent analyses found the radius to be R =
12.39+1.3

−1.06 km [14] and R = 13.71+2.61
−1.50 km [15] at 68% credi-

bility.
In addition to the above astrophysics implications, precise

calculations of pure neutron matter (PNM) EOS have be-
come relevant for the construction of nuclear energy density
functionals (EDFs). Traditional EDFs are able to reproduce
a myriad of nuclear observables but are biased toward experi-
mentally well-known regions, e.g., nuclei close to the stability
valley [16]. Novel strategies to constrain the EDF on micro-
scopic calculations of PNM have been developed [16–21] to
accompany the growing experimental research efforts devoted
to unstable nuclei at the limits of the nuclear chart. Their
success however, relies on accurate microscopic calculations
of the EOS, supplemented by reliable estimates of theoretical
uncertainties.

Despite recent remarkable progress, it is still unclear
whether there exist microscopic nuclear potentials that accu-
rately describe light nuclear systems—e.g., nucleon-nucleon
scattering, light nuclear spectra, densities, structure functions,
transitions, and responses—and the EOS of infinite neutron
matter. For example, the phenomenological Argonne v18 [22]
plus Illinois 7 [23] (AV18+IL7) Hamiltonian can reproduce
the experimental energies of nuclei with up to A = 12 with
high precision [24], but it fails to provide sufficient repulsion
in pure neutron matter [25]. On the other hand, the Argonne
v18 plus Urbana IX [26] model (AV18+UIX), which provides
a good description of nuclear-matter properties and the basis
for the highly cited APR beta-stable EOS for neutron stars [9],
does not give as satisfactory a reproduction of the spectrum
of light nuclei [27]. These interactions being largely phe-
nomenological, no clear prescriptions are currently available
to properly assess their uncertainties and to systematically
improve them, especially as far as three-nucleon forces are
concerned [28]. Over the last decades, chiral effective field
theory (χEFT) has been extensively employed to systemat-
ically derive high-quality NN and 3N interactions [29–32].
Local, coordinate-space versions of χEFT 3N forces were
first included in quantum Monte Carlo methods in Ref. [33], in
combination with phenomenological Argonne v′

6 (AV6P) NN
potential. Local χEFT NN potentials were first implemented
in quantum Monte Carlo methods by the authors of Ref. [34].
As a major breakthrough, the results presented in Ref. [34,35]
also include consistent coordinate-space χEFT 3N forces that
were fit to reproduce the binding energy of 4He and low-
energy neutron-4He scattering. These interactions have been
subsequently employed to carry out quantum Monte Carlo
calculation of the equation of state of symmetric nuclear
matter [36] and have proven to reproduce empirical satura-
tion density and energy well within statistical and systematic

uncertainties. It has to be noted that even state-of-the-art
χEFT interactions do not fully solve the tension between
light systems and infinite matter. For instance, the potentials
developed in Ref. [37] yield binding energies and radii for
a wide range of nuclei that are compatible with experiments
together with an accurate nuclear matter EOS but fail to repro-
duce proton-proton scattering data below 100 MeV laboratory
energy [38].

In this work, we employ the first and second generation
of χEFT Norfolk NN and 3N interactions that provide ac-
curate description of the spectra and low-energy transitions
of light nuclei [39,40]. These two generations differ in the
strategy adopted to determine the low-energy constants en-
tering the 3N force. The first one uses the experimental
trinucleon ground-state energies and nd doublet scattering
length, while the second includes in the fitting procedure the
empirical value of the Gamow-Teller matrix element of tri-
tium β decay. We test their predictions in neutron matter using
three many-body approaches: the Brueckner-Bethe-Goldstone
(BBG) [41,42], the Fermi hypernetted chain/single-operator
chain (FHNC/SOC) [43,44], and the auxiliary-field diffu-
sion Monte Carlo (AFDMC) [45]. In our analysis we also
consider the widely used AV18+UIX and its simplification
AV6P+UIX. In the same spirit as our previous work [46],
which only included NN potentials, by performing these
benchmark calculations we aim at better assessing the sys-
tematic error associated with the method used for solving
the many-body Schrödinger equation and quantifying its rel-
ative importance compared to the uncertainties inherent to
the nuclear Hamiltonian. While benchmarks of the various
many-body methods have been regularly undertaken for nu-
clei [47–49], with the exception of Ref. [46,50], they have not
been as frequently carried out for PNM.

This work is organized as follows. In Sec. II, we introduce
the nuclear Hamiltonians with particular emphasis on the 3N
force. The many-body methods employed for calculating the
EOS of PNM are summarized in Sec. III. The benchmark
calculations obtained within three different many-body meth-
ods are discussed in Sec. IV. Finally, in Sec. V we draw our
conclusions and provide some perspective on future research
directions.

II. NUCLEAR HAMILTONIANS

Our PNM calculations are based on the well-known
AV18+UIX [22,26] model as well as the Norfolk NN and
3N interactions developed in Ref. [40,51,52]. The latter are
referred to in the literature as NV2+3. The NV2+3 potentials
are formulated in coordinate space and derived from χEFT
in which pions, nucleons, and �’s are retained as fundamen-
tal degrees of freedom. They include long-range components
mediated by one- and two-pion exchange, as well as con-
tact terms characterized by unknown low-energy constants
(LECs). Specifically, the two-body component (NV2) is con-
structed up to N3LO in the chiral expansion, retaining only
contact terms at this order, and the three-body force (NV3)
includes corrections up to N2LO.

The LECs that enter the NV2 contact interactions are con-
strained to reproduce NN scattering data from the most recent
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database collected by the Granada group [53,54]. The contact
terms are regularized via a Gaussian cutoff function with RS

as the Gaussian parameter [40,51,52],

CRS (r) = 1

π3/2 R3
S

e−(r/RS )2
, (1)

while the divergences appearing at high values of momentum
transfer in the pion-range operators are removed via a special
radial function characterized by the cutoff RL [40,51,52],

CRL (r) = 1 − 1

(r/RL )6 e(r−RL )/aL + 1
, (2)

with the diffuseness aL being fixed at aL = RL/2. There are
two classes of NV2 potentials. Class I (II) has been fitted
to NN data up to 125 MeV (200 MeV). For each class, two
combinations of short- and long-range regulators have been
used, namely (RS , RL)=(0.8, 1.2) fm (models NV2-Ia and
NV2-IIa) and (RS , RL)=(0.7, 1.0) fm (models NV2-Ib and
NV2-IIb). Class I (II) fits about 2700 (3700) data points with
a χ2/datum � 1.1 (�1.4) [51,52].

The NV3 3N potentials [39] are the sum of three contribu-
tions

V =
∑

i< j<k

∑
cyc

[V �(i jk) + V 2π (i jk) + V CT(i jk)], (3)

where “cyc” denotes the cyclic permutations of particles i,
j, and k. The terms V �(i jk) and V 2π (i jk) represent the
long-range piece of the 3N force mediated by the two-pion
exchange (TPE) diagrams with and without �’s, respectively,
and V CT(i jk) is the short-range piece, which is parametrized
by contact terms.

Considering that the isospin operator τ i · τ j = 1 in PNM,
the expressions for V �(i jk), V 2π (i jk), and V CT(i jk) relevant
for this work are as follows:

V �(i jk) = − g2
Ah2

A

72 · 144 π2

m6
π

m�N f 4
π

2 {X̃i j, X̃ jk}, (4)

V 2π (i jk) = g2
A

256 π2

m6
π

f 4
π

[
− 16 c1 Z̃π (ri j ) Z̃π (r jk )

×σ i · r̂i j σk · r̂ jk + 4

9
c3

{
X̃i j, X̃ jk

}]
, (5)

V CT(i jk) = gA cD

96 π

m3
π

�χ f 4
π

X̃ik [CRS (ri j ) + CRS (r jk )]

+ cE

�χ f 4
π

CRS (ri j )CRS (r jk ), (6)

In the above equations, gA and hA are the axial and the N-to-�
axial coupling constants, respectively, mπ and m�N are the
pion and � − N mass difference, respectively, fπ is the decay
amplitude, and �χ = 1 GeV is the chiral-symmetry-breaking
scale. Their values are reported in Table I and II of Ref. [52].
The operator X̃i j is defined as

X̃i j = T̃π (ri j ) Si j + Ỹπ (ri j ) σ i · σ j, (7)

where the regularized functions are

Ỹπ (r) = e−mπ r

mπ r
CRL (r), (8)

TABLE I. Adimensional cD and cE values of the contact terms in
the NV3 interactions obtained from fits to (i) the nd scattering length
and trinucleon binding energies [39] and (ii) the central value of the
3H GT matrix element and the trinucleon binding energies (starred
values) [40].

Ia (Ia*) Ib (Ib*) IIa (IIa*) IIb (IIb*)

cD 3.666 (–0.635) –2.061 (–4.71) 1.278 (–0.61) –4.480 (–5.25)
cE –1.638 (–0.090) –0.982(0.55) –1.029 (–0.35) –0.412 (0.05)

T̃π (r) =
(

1 + 3

mπ r
+ 3

m2
π r2

)
Ỹπ (r), (9)

Z̃π (r) = −
(

1 + 1

mπ r

)
Ỹπ (r). (10)

The TPE contribution in Eq. (5) depends on the pion-
nucleon LECs c1, c3, and c4, that already appear in the NN
sector, and their values are listed in Table I of Ref. [52]. The
short-range component, instead, is parametrized in terms of
two unknown LECs, cD and cE . In the first generation of
Norfolk potentials (NV2+3-Ia/b and NV2+3-IIa/b), these
LECs have been determined by simultaneously reproducing
the experimental trinucleon ground-state energies and nd dou-
blet scattering length [39]. Within the χEFT framework, cD

is related to the LEC entering the axial two-body contact
current [55–57], allowing one to adopt a different strategy to
constrain cD and cE . In particular, in Ref. [40], they have been
determined to reproduce the trinucleon binding energies and
the empirical value of the Gamow-Teller matrix element in
tritium β decay. Norfolk models that use this fitting proce-
dure are designated with a “*” namely, NV2+3-Ia*/b* and
NV2+3-IIa*/b*. For completeness, we report the values of
cD and cE in Table I.

III. MANY-BODY METHODS

One of the two sources of uncertainties in microscopic
calculations of neutron matter pertains to the nuclear many-
body method of choice. To gauge it, we employ three largely
different many-body methods: the BBG many-body theory,
the FHNC/SOC, and the AFDMC. They are briefly described
below, with particular emphasis on their treatment of 3N
forces.

A. BBG

The BBG many-body theory (see, e.g., Refs. [41,42]) is
based on a linked cluster expansion (the so-called hole-line
expansion) of the energy per nucleon E/A of nuclear matter.
The various terms of the expansion can be represented by
Goldstone diagrams [58] grouped according to the number
of independent hole-lines (i.e., lines representing empty sin-
gle particle states in the Fermi sea). The basic ingredient
in this approach is the Brueckner reaction matrix G [59,60]
which sums, in a closed form the infinite series of the so-
called ladder diagrams and allows treatment of the short-range
strongly repulsive part of the nucleon-nucleon interaction. The
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G matrix can be obtained by solving the Bethe-Goldstone
equation [61],

G(ω) = V + V
∑
ka,kb

| ka, kb〉 Q 〈ka, kb |
ω − ε(ka) − ε(kb) + iη

G(ω), (11)

where V is the bare NN interaction (or a density-dependent
two-body effective interaction when three-nucleon forces are
introduced as discussed below) and the quantity ω is the
so-called starting energy. In the present work we consider
spin-unpolarized neutron matter, thus in Eq. (11) and in the
following equations we drop the spin indices to simplify the
mathematical notation. The Pauli operator | ka, kb〉Q〈ka, kb |
projects on intermediate scattering states in which the mo-
menta ka and kb of the two interacting neutrons are above
their Fermi momentum kF since single-particle states with
momenta smaller that this value are occupied by the neutrons
of the nuclear medium. Thus the Bethe-Goldstone equa-
tion describes the scattering of two nucleons (two neutrons in
our case) in the presence of other nucleons, and the Brueckner
G matrix represents the effective interaction between two nu-
cleons in the nuclear medium and properly takes into account
the short-range correlations arising from the strongly repul-
sive core in the bare NN interaction.

The single-particle energy ε(k) of a neutron with mo-
mentum k, appearing in the energy denominator of the
Bethe-Goldstone equation (11), is given by

ε(k) = h̄2k2

2m
+ U (k), (12)

where U (k) is a single-particle potential which represents the
mean field felt by a neutron due to its interaction with the
other neutrons of the medium. In the Brueckner-Hartree-Fock
(BHF) approximation of the BBG theory, U (k) is calculated
through the real part of the G matrix [62,63] and is given by

U (k) =
∑

k′�kF

Re 〈k, k′ | G(ω∗) | k, k′〉A, (13)

where the sum runs over all neutron occupied states, the
starting energy is ω = ω∗ ≡ ε(k) + ε(k′) (i.e., the G matrix
is calculated on-the-energy-shell) and the matrix elements are
properly antisymmetrized. We make use of the so-called con-
tinuous choice [64–67] for the single-particle potential U (k)
when solving the Bethe-Goldstone equation. As has been
shown in Refs. [68,69], the contribution of the three-hole-line
diagrams to the energy per nucleon E/A is minimized in
this prescription for the single-particle potential and a faster
convergence of the hole-line expansion for E/A is achieved
with respect to the so-called gap choice for U (k).

In this scheme Eqs. (11)–(13) have to be solved self-
consistently using an iterative numerical procedure. Once a
self-consistent solution is achieved, the energy per nucleon of
the system can be evaluated in the BHF approximation of the
BBG hole line expansion and it is given by

E

A
= 1

A

∑
k<kF

[
h̄2k2

2m
+ 1

2
U (k)

]
. (14)

Making the usual angular average of the Pauli operator
and of the energy denominator [65,67], the Bethe-Goldstone

equation (11) can be expanded in partial waves. In all the cal-
culations performed in this work, we have considered partial
wave contributions up to a total two-body angular momentum
Jmax = 9. We have verified that the inclusion of partial waves
with Jmax > 9 does not appreciably change our results.

Within the BHF approach three-nucleon forces cannot be
used directly in their original form. This is because it would
be necessary to solve three-body Faddeev equations in the
nuclear medium (Bethe-Faddeev equations) [70,71] and cur-
rently this is a task still far from achievement. To circumvent
this problem an effective density-dependent two-body force
Veff (ρ) is built starting from the original three-body one by
averaging over one of the three nucleons [72–74] and this is
added to the bare NN interaction to solve the Bethe-Goldstone
equation (11).

In the present work, we construct this effective density-
dependent two-body force as follows: We first antitransform
the coordinate-space three-nucleon potential to momentum
space, and then we average over the momentum and spin of
one of the nucleons using:

Veff = Tr(σ3 )

∫
d p3

(2π )3
np3

V123 (1 − P13 − P23), (15)

where

Pi j = 1 + σ i · σ j

2
Ppi↔p j

(16)

are spin-momentum exchange operators and np3
is the mo-

mentum distribution of the third nucleon. Here we do not
consider the effects of NN correlations on the nucleon mo-
mentum distribution [75–77] and we assume for np3

a step
function approximation.

An important point of the whole BHF calculation is that
when the three-nucleon force is added to the bare NN in-
teraction, some double counting is introduced both in the
calculation of single-particle potentials and in the total energy
per particle. In order to take care of this issue, we adopt the
strategy suggested in Refs. [78,79], namely we subtract from
the single-particle potentials 1/2 of the Hartree-Fock contri-
bution due to the contribution of the three-nucleon forces. We
finally correct the total energy per particle with the appropriate
Hartree-Fock correction due to the inclusion of the three-body
forces [78,79].

B. FHNC/SOC

In the absence of interactions, a uniform system of A non-
interacting neutrons can be described as a Fermi gas at zero
temperature, and its ground-state wave function reduces to
the Slater determinant of orbitals associated with the single-
particle states belonging to the Fermi sea,

�(X ) = A[ φn1 (x1) . . . φnA (xA) ]. (17)

In the above equation X = {x1, . . . , xA}, where the general-
ized coordinate xi ≡ {ri, si} represents both the position R =
r1, . . . , rA and the spin S = s1, . . . , sA, variables of the ith nu-
cleon while ni denotes the set of quantum numbers specifying
the single-particle state. Translational invariance imposes that
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the single-particle wave functions be plane waves

φni (xi ) = 1√
�

eiki·riχσi (si ) (18)

In the above equations, � is the normalization volume, χσi (si )
is the spinor of the neutron, and |ki| < kF = (3π2ρ)1/3. Here
kF is the Fermi momentum and ρ the density of the system.

The variational ansatz of the FHNC and SOC formalism
emerges as a generalization of the Jastrow theory of Fermi
liquids [44,80],

|�T 〉 = F |�〉
〈�|F †F |�〉1/2

, (19)

where |�〉 is the Slater determinant of Eq. (17) and

F (x1, . . . , xA) = S
(

A∏
j>i=1

Fi j

)
(20)

is the correlation operator. The spin-isospin structure of Fi j

reflects that of the dominant parts of the nucleon-nucleon
potential,

Fi j =
8∑

p=1

f p(ri j )O
p
i j, (21)

where the eight operators Op
i j are 1, σ i · σ j , Si j , and L · S,

and each of these times τ i · τ j . For pure neutron matter, the
expectation of the pair isospin operator is unity, reducing the
effective number of f p components to four. Since, in gen-
eral, [Op

i j, Oq
ik] �= 0, the symmetrization operator S is needed

to fulfill the requirement of antisymmetrization of the wave
function. The f p(ri j ) are finite-ranged functions, with the
conditions

f p(r � dp) = δp1,

df p(r)

dr

∣∣∣∣
r=dp

= 0. (22)

where the dp are “healing distances.” Consequently, the cor-
relation operator of Eq. (20) respects the cluster property: If
the system is split in two (or more) subsets of particles that
are moved far away from each other, then the F factorizes
into a product of two factors in such a way that only particles
belonging to the same subset are correlated.

The radial functions f p(ri j ) are determined by minimizing
the energy expectation value

EV = 〈�T |H |�T 〉 � E0, (23)

which provides an upper bound to the true ground-state energy
E0. The energy expectation value in matter is evaluated using
a diagrammatic cluster expansion and a set of 29 coupled
integral equations, which effectively make partial summations
to infinite order—the FHNC/SOC approximation [44]. This is
a generalization of the original hypernetted chain method for
Bose systems developed by van Leeuwen, Groeneveld, and
de Boer [81], which requires the solution of a single integral
equation, and the corresponding extension for spin-isospin-
independent Fermi systems by Fantoni and Rosati [43], which

requires four coupled integral equations. The integral equa-
tions are used to generate two- and three-body distribution
functions g2(ri j ) ≡ gi j and g3(ri j, rik ) ≡ gi jk , which can then
be used to evaluate the energy or other operators without
resorting to density-dependent approximations of the 3N po-
tential.

For the pure Jastrow case, we evaluate the Pandharipande-
Bethe [82] expression for the energy:

EPB = TF + W + WF + U + UF , (24)

where TF is the Fermi gas kinetic energy. The only terms for
a Bose system are

W = ρ

2

∫ (
vi j − h̄2

m

∇2Fi j

Fi j

)
gi jd

3ri j,

U = − h̄2

2m

ρ2

4

∫ (∇iFi j · ∇iFik

Fi jFik

)
gi jkd3ri jd

3rik, (25)

while WF and UF are additional two- and three-body kinetic
energy terms present due to the Slater determinant. Alter-
nately, we use the Jackson-Feenberg [83] energy expression

EJF = TF + WB + Wφ + Uφ, (26)

WB = ρ

2

∫ {
vi j − h̄2

2m

[∇2 fi j

fi j
− (∇i fi j )2

f 2
i j

]}
, (27)

where WB is the boson term and Wφ and Uφ are kinetic
energy terms involving the Slater determinant. In principle,
these energies should be equivalent, but in practice there are
differences due to the FHNC/SOC approximation to the dis-
tribution functions. We take the average EV = (EPB + EJF )/2
as our energy expectation value and the difference δEV =
|EPB − EJF|/2 as an estimate of the error in the calculation.

The FHNC two-body distribution function can be written
as:

gi j = f 2[(1 + Gde + Ede)2 + Gee + Eee

− ν(Gcc + Ecc − �/ν)2] exp(Gdd + Edd ), (28)

where the chain functions Gxy are sums of nodal diagrams,
with direct (d), exchange (e) or circular exchange (c) end
points; Exy are elementary diagrams; � ≡ �(kF r) is the Slater
function; and ν is the degeneracy. An example of the structure
of the integral equations is

Gdd,i j = ρ

∫
d3rk[(Xdd,ik + Xde,ik )Sdd,k j

+ Xdd,i jSde,k j], (29)

where Sdd = f 2 exp(Gdd + Edd ) − 1 is a two-point super-
bond and Xdd = Sdd − Gdd is a link function.

The introduction of spin-isospin correlations with op-
erators that do not commute complicates the calculation.
Fortunately, the first six operators p = 1, 6 form a closed spin-
isospin algebra, allowing single continuous chains of operator
links (the SOCs) to be evaluated. These involve five chain
functions Gp

xy for each of the five operators p = 2–6, with
xy = dd, de, ee, ca, cb in addition to the four Jastrow chain
functions in Eq. (28), making a total of 29 coupled integral
equations to be solved in nuclear matter, which reduces to 14
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coupled integral equations in pure neutron matter. There are
significant contributions from unlinked diagrams in the SOC
cluster expansion, but these can be accommodated by means
of “vertex” corrections, as discussed in Ref. [44]. Additional
higher-order corrections coming from (parallel) multiple op-
erator chains and rings are also calculated, as discussed in
Ref. [8].

As opposed to the FHNC/SOC calculations reported in
Ref. [50], in this work we include spin-orbit correlations,
corresponding to the p = 7, 8 terms in Eq. (21). Because of
the presence of a derivative operator, these correlations cannot
be “chained” so they are treated explicitly only at the two- and
three-body cluster level. It has to be noted that while the two-
body cluster contribution is evaluated exactly, following the
prescription of Ref. [8] only a limited number of three-body
terms in the cluster expansion are kept.

In standard FHNC calculations, the elementary diagrams
of Eq. (28) are generally neglected. Inclusion of the leading
four-body elementary diagram leads to the FHNC/4 approxi-
mation [84], while additional contributions have been studied
in liquid atomic helium systems [85]. In the present work
we include many central (p = 1) Exy diagrams, beyond the
FHNC/4 approximation, by introducing three-point super-
bonds Sxyz, such as

Sddd,123 = ρ

∫
d3r4{Sdd,14Sdd,24(Sdd,34 + Sde,34)

+(Sdd,14Sde,24 + Sde,14Sdd,24)Sdd,34 }, (30)

and then evaluating

Edd,12 = 1

2
ρ

∫
d3r3{Sddd,132[Sdd,13(Sdd,32 + Sde,32)

+ Sde,13Sdd,32 ] + Sded,132Sdd,24Sdd,32 }. (31)

With six Sxyz, where xyz = ddd , dde, dee, eee, ccd , and cce,
many elementary diagrams at the four-, five-, and higher-body
level contributing to gi j and gi jk can be evaluated. These
central elementary diagrams also dress the SOCs.

In matter calculations, the correlations of Eq. (22) are
generated by solving a set of coupled Euler-Lagrange equa-
tions in different pair-spin and isospin channels for S = 0, 1
and T = 0, 1. For pure neutron matter, only T = 1 channels
are needed, leaving a single-channel equation for S = 0, pro-
ducing a singlet correlation, and a triple-channel equation for
S = 1, which produces triplet, tensor, and spin-orbit correla-
tions. The singlet and triplet correlations are then projected
into central and σi j combinations. Three (increasing) healing
distances are used: ds for the singlet correlation, dp for the
triplet and spin-orbit, and dt for the tensor.

Additional variational parameters are the quenching factors
αp whose introduction simulates modifications of the two-
body potentials entering in the Euler-Lagrange differential
equations arising from the screening induced by the presence
of the nuclear medium

vi j =
8∑

p=1

αpv
p(ri j )O

p
i j . (32)

Changing αp affects the shape of the correlation functions, as
it alters the balance between the kinetic and potential energy
contributions when solving the Euler-Lagrange differential
equations. Note that the full (unquenched) potential is used
when computing the energy expectation value. In practice
we use just two such parameters: αp=1 = 1 and αp=2,8 = α.
In addition, the resulting correlation functions f p may be
rescaled according to

Fi j =
8∑

p=1

βp f p(ri j )O
p
i j, (33)

with βp=1 = 1, βp=2,4+7,8 = βσ , and βp=5,6 = βt . These βp

are not usually invoked when only two-body forces are con-
sidered, but they can significantly lower the variational energy
when three-body forces are included. As a major difference
with the αp parameters, the βp do not change the shape of
f p(ri j ), but simply rescale them by a constant factor. For
the present work, the variational parameters are the three
healing distances dc, dp, and dt , one quenching factor α, and
two rescaling factors βσ and βt . These are varied at each
density with a simplex search routine to minimize the en-
ergy. In principle, more sophisticated functional forms for the
f p(ri j ) can be adopted. Examples are those based on cubic-
splines, already employed in the AFDMC method—see the
following subsection. Their inclusion requires more advanced
optimization algorithm than simplex, suitable to handle many
variational parameters, and automatic differentiation pack-
ages. Work in this direction is in progress.

The cluster diagrams for the three-body force are illus-
trated in Ref. [86]; Fig. 2 shows the diagrams contributing
to the V � and V 2π terms of Eqs. (4), and (5), while Fig. 3
shows diagrams contributing to the cE term of V CT of Eq. (6).
Only the cD term of V CT requires some new work, but this is
a straightforward generalization of the methods described in
Ref. [86]; see also Ref. [33]. In the present work, the three-
body force diagrams are also dressed with all appropriate
central three-point superbonds Sxyz.

One measure of the convergence of the FHNC/SOC
integral equations is that the volume integral of the correla-
tion hole from the central part of the two-body distribution
function gi j [which has operator components like the Fi j

of Eq. (21)] should be unity. To help guarantee that the
variational parameters entering the FHNC/SOC correlations
are well behaved—and to ensure that in a given region of
the parameter space the cluster expansion is converged—we
minimize the energy plus a constant times the deviation of the
volume integral from unity:

E + C

{
1 + ρ

∫
d3r [gc(r) − 1]

}2

,

as discussed in Ref. [8]. A value of C = 1000 MeV is suffi-
cient to limit the violation of this sum rule to 1% or less at
normal density, and 3% or less at twice normal density for all
the potentials considered here. In symmetric nuclear matter
there is a related condition that the integral of the isospin

055808-6



BENCHMARK CALCULATIONS OF INFINITE NEUTRON … PHYSICAL REVIEW C 105, 055808 (2022)

FIG. 1. Neutron-matter EOS as obtained from the AV6P+UIX
(upper panel) and AV18+UIX (lower panel) Hamiltonians.

component gτ (r)

1 + 1

3
ρ

∫
d3r gτ (r),

should vanish to guarantee equal numbers of protons and
neutrons. The corresponding integral with the spin compo-
nent gσ (r) is not constrained when tensor forces are present.
Instead, its deviation from unity provides a measure of the
strength of the tensor (or spin-space) correlations in the
system.

C. AFDMC

The AFDMC method [45] projects out the ground state of
the system |�0〉 evolving a starting trial wave function |�T 〉
in imaginary time τ as

|�0〉 = lim
τ→∞ |�(τ )〉 = lim

τ→∞ e−(H−ET )τ |�T 〉, (34)

where ET is an estimate of the true ground-state energy E0.
The imaginary-time propagator e−(H−ET )τ is broken down and
evaluated stochastically in N small time steps δτ , with τ =
Nδτ . At each step, the generalized coordinates X ′ are sampled

FIG. 2. Single snapshot of a Metropolis random walk for VMC
calculations. The variational wave functions are optimized with the
NV2-Ia two-body force alone (upper panel) and including the three-
body force NV2+3-Ia (lower panel) which leads to the formation of
neutron droplets.

from the previous ones according to the short-time propagator

G(X ′, X, δτ ) = �I (X ′)
�I (X )

〈X ′|e−(H−E0 )δτ |X 〉, (35)

where �I (X ′) is the importance-sampling function. Simi-
larly to Refs. [87,88], we mitigate the fermion-sign problem
by first performing a constrained-path diffusion Monte
Carlo propagation (DMC-CP), in which we take �I (X ) ≡
�T (X ) and impose Re[�T (X ′)/�T (X )] > 0. The solution
obtained from the constrained propagation is not a rig-
orous upper-bound to E0 [89]. To remove this bias, the
configurations obtained from a DMC-CP propagation are fur-
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FIG. 3. Pure neutron-matter EOS as obtained from the NV2+3-
1a∗ (upper panel) and NV2+3-1b∗ (middle panel), and NV2+3-2b∗

Hamiltonians.

ther evolved using the positive-definite importance sampling
function [46,90,91],

�I (X ) =
√

Re[�T (X )]2 + Im[�T (X )]2, (36)

During this unconstrained diffusion (DMC-UC), the asymp-
totic value of the energy is determined by fitting its imaginary-
time behavior with a single-exponential function [92].

Applying standard diffusion Monte Carlo techniques to
the nuclear many-body problem is made particularly compli-
cated by the spin-isospin dependence of the nuclear forces.
The AFDMC keeps the computational cost polynomial in
the number of nucleons A by representing the spin-isospin
degrees of freedom in terms of outer products of single-
particle states. To preserve this representation, during the
imaginary-time propagation Hubbard-Stratonovich transfor-
mations are employed to linearize the quadratic spin-isospin
operators entering the nuclear potentials. When computing
the AV18+UIX and NV2+3 Hamiltonians, the propagation
is made with a simplified Hamiltonian H ′, which includes
a reprojected v′

8 version of the full v18 potential [93]. The
small difference �v = v18 − v′

8 is estimated at first order in
perturbation theory as

〈�v〉 � 2
〈�T |�v|�(τ )〉

〈�T |�(τ )〉 − 〈�T |�v|�T 〉
〈�T |�T 〉 . (37)

As discussed in detail in Ref. [90] for the UIX potential,
the relation {σα

i , σ
β
i } = δαβ is used to express the anticom-

mutator terms of Eqs. (4) and (5) as a sum of two-body
spin operators with a form and strength that depend on the
positions of three particles. For each quantum Monte Carlo
configuration, the sum over the position of the third particle
is carried out explicitly so that including these terms only
involves changing the strength of the NN potential’s spin
matrices. Similar strategies can be followed to handle the c1

term in Eq. (5), which is equivalent to the S-wave component
of the Tucson-Melbourne three-body potential [94], and the
cD contribution [33]. Finally, in PNM the cE term of Eq. (6)
is identical to the phenomenological repulsive scalar contri-
bution of the UIX force—again with different radial functions
and coupling constant—and its inclusion is trivial [90]. Note
that this procedure allows us to include the 3N force “exactly”
in the AFDMC, and there is no need to use density-dependent
approximations.

Within the AFDMC, infinite uniform neutron matter is
typically simulated using a finite number of neutrons obeying
periodic-box boundary conditions (PBC) [90]. The trial wave
function adopted in our calculations respects by construction
these PBC and it is expressed as

�T (X ) = 〈X |�T 〉 = 〈X |
∏
i< j

fc(ri j )|�〉. (38)

The spin-isospin independent Jastrow function fc(ri j ) is
parametrized in terms of a cubic spline that has a smooth first
derivative and continuous second derivative. The variational
parameters to be optimized are the values of the spline at the
grid points, plus the value of the first derivative at ri j = 0.
In order for the PBC to be satisfied, we impose fc(ri j ) = 1
and f ′

c (ri j ) = 0 when ri j � L/2. This Jastrow ansatz is more
flexible than the one used in our previous work [46] and has
proven to be able to capture highly clustered configurations of
nucleons, as discussed in Ref. [95] for the 16O nucleus.
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TABLE II. Energies per particle of PNM at ρ = 0.16 fm−3 ob-
tained with the plane-wave (PW) and spin-dependent backflow (BF)
Slater determinant using the AV18+UIX and NV2+3-Ia Hamiltoni-
ans simulating 66 neutrons with PBC.

VMCPW VMCBF DMC-CPPW DMC-CPBF

AV18+UIX 23.13(2) 21.78(1) 20.80(4) 19.32(3)
NV2+3-Ia∗ 20.40(1) 18.42(1) 17.31(4) 16.32(2)

In neutron-matter calculations, the mean-field part of the
wave function is usually taken to be the plane-waves Slater
determinant of Eq. (17). In order to satisfy the PBC, the
single-particle wave vectors take the discrete values

ki = 2π

L
{nx, ny, nz}, ni = 0,±1,±2, . . . , (39)

L being the size of the box. When simulating homogeneous
and isotropic systems, calculations are performed with closed
momentum shells. Since neutrons can be spin-up or spin-
down, this corresponds to A = 2, 14, 38, 54, 66, 114, etc.,
particles in a box. In this work, we improve on the plane-wave
Slater determinant by including the spin-dependent backflow
correlations [96] through the following replacement

eiki ·r j → eiki ·r j

⎡⎣1 + 1

2

∑
k �= j

fb(r jk )(r jk × ki ) · σ j

⎤⎦. (40)

In our previous work, the spin-orbit Jastrow function f b(ri j )
was determined minimizing the two-body cluster contribution
to the energy per particle, similarly to what is done in the
FHNC/SOC method. In that case, we observed relatively
minor improvements in the energy per particle with respect
to the simpler plane-wave Slater determinant. Here, we adopt
a more flexible cubic spline parametrization, analogous to
the one used for f c(ri j ); the only difference with the latter
is that to fulfill PBC we impose fb(ri j ) = 0 and f ′

b(ri j ) = 0
when ri j � L/2. As shown in Table II, this ansatz lowers
the VMC energies per particle by 1.3 MeV and 2.0 MeV
per nucleon at saturation density, for the AV18+UIX and
NV2+3-Ia∗ Hamiltonians, respectively. More importantly, the
DMC-CP results are also noticeably improved, and they are
closer to their DMC-UC values: 18.1(3) and 15.3(3) MeV
for the AV18+UIX and the NV2+3-Ia∗ models, respectively.
This behavior demonstrates that the flexible cubic-spline spin-
dependent backflow correlations refine the phase structure of
the variational wave function, making it closer to the one of
the true ground state of the system, thereby improving the
accuracy of the constrained-path approximation. In contrast
to the linearized spin-dependent correlations introduced in
Ref. [97], these spin-dependent backflow correlations add mi-
nor overhead to the computational cost of the method, which
still scales as A3. In addition, their inclusion does not violate
the factorization theorem, and it is therefore better suited for
treating translation-invariant uniform systems.

The DMC-CP simulations presented in this work are
carried out employing A = 66 neutrons in a box. This
choice considerably reduces finite-size effects, since the ki-

netic energy of 66 fermions approaches the thermodynamic
limit very well [98]. In addition, finite-size effects due to
the tail corrections of two- and three-body potentials are
accounted for by summing the contributions given by neigh-
boring cells to the simulation box [99]. When not otherwise
specified, the AFDMC results presented in this work always
refer to the unconstrained energies. The latter are obtained by
adding to the DMC-CP values obtained with 66 neutrons the
difference between DMC-UC and DMC-CP energies com-
puted with 14 neutrons with PBC, applying tail corrections
to the potential-energy contribution as discussed above. This
procedure decreases the computational cost of the method,
which still requires about 150k core-hours for each value of
the density for a given Hamiltonian. Its accuracy has been
validated in Ref. [46] by performing DMC-UC simulations
with 14 and 38 neutrons, which showed negligible differences.
Finally, we note that the unconstrained energies are indepen-
dent of the trial wave function of choice, although including
backflow correlations significantly reduce the statistical noise
of our results.

IV. RESULTS

In this section, we present the numerical results obtained
with the three many-body methods discussed above. We first
focus on the phenomenological AV6P+UIX and AV18+UIX
Hamiltonians—the latter used in the celebrated APR EOS.
Then, we analyze the first and second generations of Norfolk
potentials, elucidating the role of the cE term in the 3N force.

A. Phenomenological Hamiltonians

In Fig. 1 we display the EOS of PNM using the semirealis-
tic, phenomenological AV6P+UIX (upper panel) and highly
realistic AV18+UIX (lower panel) Hamiltonians. The BHF,
FHNC/SOC, and AFDMC many-body methods yield almost
identical energies per particle up to saturation density for both
interaction models. At ρ > ρ0, the FHNC/SOC results lie
below the BHF and AFDMC ones, consistent with what was
observed in Ref. [46] for the NN interaction only.

For the specific case of the AV6P+UIX Hamiltonian, the
discrepancies between the FHNC/SOC and the other two
many-body methods are larger than with the NN potential
alone. As the density increases, the optimized correlations
change character, with large values of βt that significantly
enhance the normally small tensor correlations in neutron
matter from NN forces. This can change the expectation value
of the two-pion exchange part of UIX from weak repulsion to
strong attraction. For AV6P alone, the optimized βt vary only
slightly from unity with no significant lowering of the energy.
If UIX is added in perturbation, i.e., without reoptimizing the
variational parameters, the result, shown by the dashed line
labeled FHNCp in the upper panel of Fig. 1, is very close to
the AFDMC result.

This kind of behavior of the FHNC/SOC energies has
been observed before [100] where it was identified as a
neutral pion condensate, i.e., a tendency toward spin-space
order in nucleon matter, and it is a noticeable feature of the
WFF and APR EOS [8,9]. The FHNC/SOC calculations for
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AV18+UIX shown in the lower panel of Fig. 1 also have
this enhanced tensor correlation, but the lowering of the en-
ergy relative to the BHF and AFDMC calculations is less
dramatic than for AV6P+UIX. This kind of ordered solution
in FHNC/SOC calculations depends on the Hamiltonian, and
is not found in most of the Norfolk potentials—only model
NV2+3-Ib* seems to exhibit this behavior. Whether this kind
of solution is a result of approximations in the treatment of
the 3N potential contribution [86], or it is actually discover-
ing a phase that the BHF and AFDMC calculations miss, is
unknown at this time.

For reference, in Fig. 1, we show the APR result of Ref. [9],
which has also been obtained solving the ground state of
AV18+UIX with the FHNC/SOC method. Following the
conventions of Ref. [1], we denote this EOS “APR1” to dif-
ferentiate it from the one that includes relativistic corrections
arising from the boost of the NN potential, dubbed “APR2.”
The differences between APR1 and our own FHNC/SOC
results are minimal and mainly due to our improved treatment
of elementary diagrams and some differences in the handling
of spin-orbit correlations.

The AFDMC and BHF energies per particle remain very
close up to ρ = 0.32 fm−3—the maximum difference being
3.2 MeV and 2.1 MeV for AV6P+UIX and AV18+UIX,
respectively. The AFDMC and BHF EOS obtained with the
AV18+UIX interaction are remarkably similar to APR1 up
to ρ0, thereby corroborating its accuracy, but become stiffer
at higher densities. This behavior is consistent with a recent
Bayesian analysis of the of masses, radii, and tidal deforma-
balities measured by the NICER satellite and the LIGO/Virgo
collaboration that favors a stiffer EOS than APR2 [101]. How-
ever, before definitive conclusions can be drawn, relativistic
corrections must be included in both AFDMC and BHF calcu-
lations. The latter can be fully included in the FHNC and BHF
methods, while their treatment in the AFDMC requires apply-
ing the first-order perturbation approximations discussed in
Eq. (37) for the difference �v = v18 − v′

8
It has also to be noted that cluster variational Monte Carlo

calculations indicate that the AV18+UIX Hamiltonian under-
binds 16O and 40Ca nuclei [102]. A less repulsive version of
the UIX force is therefore required to reproduce the ground-
state energies of these nuclei, which will likely soften the EOS
of PNM.

The differences between the AV6P+UIX and AV18+UIX
EOS are much smaller that when the two-body forces alone
are included [46,50]. This behavior may be ascribed to the
phenomenological repulsive term of the UIX potential that
prevents nucleons from getting close to each other, thereby re-
ducing the relevance of accurately fitting high partial waves in
NN scattering. Hence, as argued by the authors of Refs. [103],
the AV6P+UIX Hamiltonian can be safely employed to
make predictions of neutron-matter properties, including
finite-temperature ones [104], avoiding the technical com-
plications associated with spin-orbit and quadratic spin-orbit
operators.

The curves in the plot correspond to a polynomial fit for the
density dependence of the energy per particle. Its functional
form contains a term proportional to the kinetic energy of a
free Fermi gas plus two contributions that are inspired by a

TABLE III. Best-fit parameters from Eq. (41) for the AFDMC
energy per particle obtained from the AV6P+UIX and AV18+UIX
Hamiltonians.

a2/3 a1 a2

AV6P+UIX 27.2 ± 0.4 −19.1 ± 0.8 11.80 ± 0.04
AV18+UIX 30.5 ± 1.1 −25.7 ± 2.4 13.24 ± 0.23

cluster expansion of the energy expectation value, truncated
at the three-body level,

E (ρ)

A
= a2/3

(
ρ

ρ0

)2/3

+ a1

(
ρ

ρ0

)
+ a2

(
ρ

ρ0

)2

. (41)

The fit parameters that best reproduce the AFDMC calcula-
tions are listed in Table III with their estimated errors. The
covariance matrix of the fit has also been computed and it is
available on request.

B. Chiral-EFT Hamiltonians

The first generation of Norfolk NN plus 3N Hamiltonians,
fitted on the trinucleon ground-state energies and nd doublet
scattering length, are characterized by relatively large and
negative values of cE , listed in Table I. When used as in-
puts in the AFDMC, all the NV2+3-Ia/b and NV2+3-IIa/b
Hamiltonians yield to the “collapse” of PNM, whose energy
per particles became large—of the order of several GeV per
particle—and negative already at saturation density. Thanks to
the flexibility of our variational ansatz, based on cubic-spline
correlations, the collapse is clearly visible already at the vari-
ational level. On the other hand, using correlation functions
determined minimizing the two-body cluster contribution to
the energy per particle, as done in our previous work [46],
prevents the collapse from happening at the VMC level. In
this latter case, PNM becomes deeply bound already after a
few time steps in the imaginary-time diffusion.

The collapse is associated with the formation of “droplets”
of closely packed neutrons, ultimately caused by the attractive
nature of the cE term in the 3N force. Its strength grows with
the third power of the number of particles in a droplet, and
overcomes the repulsive kinetic-energy contribution. To better
illustrate this behavior, in Fig. 2 we display the positions of
66 neutrons with PBC obtained from a single Metropolis step
of a variational Monte Carlo calculation for model NV2+3-Ia.
In the upper panel, the 3N force is turned off and the neutrons
are distributed uniformly in the box. When the 3N is included
in the Hamiltonian, the variational wave function changes dra-
matically, making the neutrons form closely packed droplets.
Note that the average density of the system is unchanged, as
the droplets move across the box—and in fact they can enter
nearby boxes so that periodicity is enforced.

Requiring the energy per particle of PNM to be positive at
ρ = ρ0 yields lower bounds on cE . We find that these limits
are fairly insensitive to the value of cD—whose impact in
PNM is modest—and, more surprisingly, to the specific NN
interaction of choice. In fact, taking cE � −0.1 is sufficient
to avoid the collapse, for all the NV2+3-Ia/b and NV2+3-
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TABLE IV. Best-fit parameters from Eq. (41) for the AFDMC
energy per particle obtained from the NV2+3-Ia*/b* and NV2+3-
IIb* Hamiltonians.

a2/3 a1 a2

NV2+3-Ia* 24.23 ± 0.44 −15.09 ± 0.99 6.02 ± 0.13
NV2+3-Ib* 26.17 ± 0.18 −18.71 ± 0.40 10.85 ± 0.05
NV2+3-IIb* 24.35 ± 0.46 −15.11 ± 0.90 6.49 ± 0.06

IIa/b models. These limits are conservative for primarily two
reasons. First, we have obtained them by simulating 66 neu-
trons with PBC. At fixed density, the expectation value of
the 3N force grows a factor ∼N faster than the NN potential
and a factor ∼N2 faster than the kinetic energy, where N
is the number of neutrons in the box. Hence, putting more
neutrons in the box will likely increase the relative importance
of the 3N interaction, bringing the lower limits on cE closer
to zero—see Ref. [105] for a mathematical discussion on this
point. Second, here we are only imposing positive energies
per particle, neglecting constraints coming from astrophysical
observations, such as the maximum mass of the star or its tidal
deformability, which will probably require stiffer EOS, and
hence more stringent limits on cE .

The FHNC/SOC calculations for NV2+3-Ia/b and -IIa/b
also find these models are generally not suitable for neutron
star EOS. Finite energies are found at each density, but models
Ia and IIa, with their large negative cE terms, have energy
maxima near saturation density ρ0 and become less repulsive
or even bound at higher densities, indicative of collapse. En-
ergies for models Ib and IIb continue to increase slowly up
to 2ρ0, but NV2+3-Ib is already less repulsive than NV2-Ib
alone. Model IIb shows the greatest stability, consistent with
having the least negative cE term, but the energy appears
to be near a maximum at 2ρ0. As mentioned above, the
FHNC/SOC energies for these models show relatively little
sensitivity to the variational βt parameter, i.e., no evidence for
a neutral pion condensate.

The NV2+3-Ia*/b* and NV2+3-IIa*/b* Hamiltonians
are characterized by smaller values of cE than NV2+3-Ia/b
and NV2+3-IIa/b. As a consequence, among the models
fitted to also reproduce tritium β decay, only NV2+3-IIa*
causes PNM to collapse at ρ = ρ0. In the latter case however,
the uncertainty in cE , found by propagating the experimental
error of β decay rate, is about 0.1. Therefore, it may be
possible to find a value for cE for this model that does not
yield collapsing PNM while still providing a β-decay rate
compatible with the experimental value, at least within three-
sigma.

The EOS obtained with the Norfolk models that do not
make neutron matter collapse using the BHF, FHNC/SOC,
and the AFDMC methods are displayed in Fig. 3. The solid
curves correspond to the polynomial fit of Eq. (41), whose
best parameters for the AFDMC method are listed in Table IV.
Similarly to the AV6P+UIX and AV18+UIX cases, the BHF
and AFDMC energies are remarkably close up to twice sat-
uration density—the maximum difference remaining within
2.7 MeV per particle. On the other hand, the EOS computed

within the FHNC/SOC method are softer, especially in the
high-density region. It is however remarkable that the three
many-body methods differ at most by 1.9 MeV per particle for
ρ � ρ0. Extending the comparison to the high-density region,
the discrepancies among the many-body methods remain be-
low 5.9 MeV per particle, and hence significantly smaller
than the 16.2 MeV difference between the AFDMC results
obtained with the NV2+3-Ia* and NV2+3-Ib* Hamitlonians
at ρ = 2ρ0. Hence, the theoretical uncertainty associated with
modeling nuclear dynamics is more relevant than the one
pertaining to the many-body methods—even excluding from
this comparison the Hamiltonians that yield a deeply-bound
EOS of PNM.

V. CONCLUSIONS

Using as input the phenomenological AV6P+UIX and
AV18+UIX Hamiltonians, we observe an excellent agree-
ment between the AFDMC, BHF, and FHNC/SOC many-
body approaches up to saturation density, while in the region
ρ > ρ0 the FHNC/SOC yields softer EOS than the other
two methods, consistent with our NN potential results [46].
Our updated version of the FHNC/SOC method, which in-
cludes classes of elementary diagrams that were previously
neglected, is in excellent agreement with the APR1 EOS.
However, our AFDMC and BHF results indicate that the
AV18+UIX Hamiltonian produces an EOS which is even
stiffer than APR1. Finally, we observe that the repulsive com-
ponent of the UIX potential seems to reduce the importance
of high partial waves in the NN scattering. As a consequence,
the EOS obtained with the full AV6P+UIX and AV18+UIX
Hamiltonians are much closer to each other than those ob-
tained with the NN force alone, independent of the many-body
method of choice. This behavior suggests the utility of using
the AV6P+UIX Hamiltonian for studying PNM properties,
including finite-temperature ones, without the technical com-
plications that spin-orbit and quadratic spin-orbit operators
involve.

The AFDMC calculations indicate that the first generation
of Norfolk potentials yields deeply bound PNM already at
saturation density. This behavior, which is even more ex-
treme than already found in Refs. [33,35,36], is driven by
the attractive nature of the cE component of the 3N force,
when the operator τi j is chosen among the Fierz-equivalent
ones. This term provides a non-negligible contribution to the
energy per particle of PNM when regulators that are local
in coordinate space are used, and only vanishes in the infi-
nite regulator limit. The flexibility of the AFDMC trial wave
function introduced in this work makes it possible to observe
the collapse of PNM already at the variational level. On the
other hand, the BHF and the FHNC/SOC methods do not
provide such stringent indications of a collapse. The former
relies on a density-dependent formulation of the 3N potential,
similar to the normal ordering approximation used in other
many-body methods [48,106]. The latter instead is based on
correlation functions that are largely determined minimizing
the two-body cluster contribution to the energy per particle.
These approximations are reliable only when the 3N force
is much weaker than the NN one. However, this is not the
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case for the attractive cE contribution, as it induces significant
changes in the ground-state wave function, leading to the
formation of closely packed droplets of neutrons.

Our analysis reiterates the limitations of fitting the LECs
of the 3N force to reproduce highly correlated observables.
However, since the NV2+3-Ia model accurately reproduces
many ground- and excited-state properties of light nuclei [39],
there is no reason to expect dramatically different values of cD

and cE if these latter quantities were included in the fit. Analo-
gously to the AV18+IL7 Hamiltonian, an accurate description
of light-nuclear spectra does not automatically translate into
reliable predictions for the EOS of PNM. The reason behind
this common behavior is likely that A � 12 nuclei are either
almost isospin-symmetric or too light to constrain the be-
havior of cE in dense neutron matter. The above problems
are mitigated by determining cD and cE to simultaneously
reproduce the tri-nucleon binding energies and β decay rates.
Once again our three many-body methods of choice, and in
particular the AFDMC and BHF, provide similar EOS of
PNM for the NV2+3-Ia*/b* and NV2+3-IIb* models up to
twice saturation density—the FHNC/SOC results are softer,
consistent with what found using phenomenological Hamilto-
nians. However, as shown by AFDMC calculations with the
for NV2+3-IIa* interactions, the problem of deeply bound
PNM is not fully solved by including the β decay in the fit.

The benchmark calculations between the BHF,
FHNC/SOC, and AFDMC methods indicate that the
main source of theoretical uncertainty in the EOS of PNM
comes from modeling nuclear dynamics rather than the
many-body method used to solve the Schrödinger equation.
The highly realistic Hamiltonian AV18+UIX provides an
EOS that satisfies astrophysical constraints, but it underbinds
light- and medium-mass nuclei [102]. In addition, being
phenomenological, it does not come with a clear-cut
way to estimate its theoretical uncertainty. On the other
hand, the Norfolk local potentials derived within χEFT
provide an accurate description of light-nuclei spectra, but
their PNM predictions suffer from significant regulator
artifacts, hampering their predictive power. To remedy this
shortcoming, as in Ref. [35], other choices than τi j for the
cE term should be considered, such as the identity operator
and the projector on triplets with S = 1/2 and T = 1/2 —
the only ones contributing in the infinite-regulator limit. In
addition, as argued in the illuminating Ref. [107], including
subleading terms in the chiral expansion should reduce these
regulator artifacts.

AFDMC calculations of oxygen isotopes will help shed
some light on this problem, since their binding energies and
radii should be more sensitive to the details of the three-
nucleon interaction, including its isospin dependence, than
lighter systems [108,109]. Complementary finite systems that
are ideally suited to test the behavior of three-neutron inter-
actions are the ones composed of neutrons confined by an

external potential, or “neutron drops” [25,110–114]. Based on
the findings of the present work, once enough neutrons are
added to the system so that the 3N force becomes dominant, it
is plausible that the attractive cE contribution makes neutron
drops self bound, even with no external confining potential.
Since no such systems are observed in nature, this fact would
impose additional constraints on the 3N interaction.

Before comparisons with astrophysical observations can be
made, relativistic boost corrections, which are known to soften
the EOS in the high-density regime, must be included in our
calculations. The phenomenological 2+3-body AV18+UIX
and relativistic AV18+δv + UIX∗ interactions in Table VII of
Ref. [9] are close to each other up to 2ρ0, and well-separated
from the 2-body AV18 or AV18+δv interactions alone. The
difference between AV18+UIX and AV18+δ v+UIX∗ gets
much larger at higher density where the contribution of the 3N
potential grows as ρ2 but the relativistic δv correction grows
only as ρ5/3. The somewhat reduced stiffness of the relativisti-
cally corrected EOS helps prevent superluminal sound speeds
at high density, which the earlier work of Ref. [8] suffered
from. This kind of relativistic correction along with using
beta-stable matter are needed to produce realistic neutron-star
models. With a few exceptions (e.g., Ref. [10]), chiral-EFT
interactions have not been used beyond 2ρ0 because of con-
cerns about convergence of the chiral expansion and, in the
specific case of the Norfolk potentials, because of significant
regulator artifacts. Once the latter are resolved—for example
by using choices different from τi j in the cE term—we will
include relativistic-boost corrections in our methods.
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